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NONEXISTENCE OF SOME COMPLETE STABLE

MINIMAL SUBMANIFOLDS

BY MAKOTO SAKAKI

0. Introduction.

Simons [20] proved that there is no closed stable minimal submanifold in
the unit sphere, and that there is no closed stable minimal hypersurface in any
Riemannian manifold with positive Ricci curvature. Complete stable minimal
surfaces in 3-dimensional Riemannian manifolds with nonnegative scalar curva-
ture were discussed by Fischer-Colbrie and Schoen [5], and complete stable
minimal hypersurfaces in the Euclidean space were discussed by do Carmo and
Peng [3]. In Section 2 of this paper we deal with the nonexistence problem
for some complete stable minimal submanifolds in the unit sphere and some
complete stable minimal hypersurfaces in a Riemannian manifold with nonnega-
tive Ricci curvature. In Section 3 we consider an application of the nonexistence
argument to the free boundary problem of minimal surfaces.

The examples of complete non-compact minimal surfaces in the 3 and
5-dimensional unit sphere are obtained by use of the method in [9]. In [6] and
[14] uncountably many examples of complete non-compact minimal hypersurfaces
in the unit sphere are constructed.

In this paper all manifolds are smooth, connected, and have dimensions not
less than 2. We shall use the same < , > to denote the inner products on fibers
of vector bundles of Riemannian manifolds. We denote by λλ(M) the greatest
lower bound of the spectrum of the Laplacian of a Riemannian manifold M.

The author would like to express his hearty thanks to Prof. S. Tanno for
his constant encouragement and advice, and to the referee for his useful
comments.

1. Preliminaries.

Let f:M-^Sn be a minimal immersion of an ?n-dimensional Riemannian
manifold M into the n-dimensional unit sphere Sn in the (n+l)-dimensional
Euclidean space Rn+1. We denote by 7 the Riemannian connection of M. Let
φ be any function on M with compact support such that φ2 and | 7 ^ | 2 are
integrable on M and ψ~0 on the boundary of M. Let {vlf •••, vn+ί} be parallel

Received September 7, 1987

159



160 MAKOTO SAKAKI

vector fields in Rn+1 which are orthonormal at each point. We consider the
second variation I(φvf, φvf) of the volume functional of M for the variational
vector field ψvf, where we denote by ( ) x the projection to normal space of M
in Sn.

PROPOSITION 1.1. Under the same notation as above.

v}, φvf)=(n-m)[ (\lψ\2-mφ2)dM.
j= 1

Proof. We denote by ( ) τ the projection to the tangent space of M. Let
d be the flat connection of Rn+1. Then by the second variational formula for
minimal submanifolds

(1) I(φv},φv})=\ {\(d(ψvϊ)y\>-\(d(φvf))τ\2-mφ2\vf\2}dM
J M

As the ambient space is Sn, Vj=vf+vf+<.Vj, f(p)}f(p) at each p^M. Take the
differentiation of this equation on M and project to the normal space of M in
Sn. Then 0=(dvτ

})
L+(dvf)L. Thus we calculate

(2) Σ ' I (dυfy 12- "Σ I ( W 1 2 = "Σ <dvj, vϊY
>=1 3 = 1 },k=l

The proposition is shown by (1) and (2). Q. E. D.

COROLLARY 1.2. Let M be an m-dimensional minimal submanifold in the unit
sphere, and assume that λχ{M)<m. Then M is unstable.

2. Nonexistence theorems.

THEOREM 2.1. In the unit sphere there is no m-dimensional complete stable
minimal submanifold with Ricci curvature greater than —4m/(m—1).

Proof. Assume that there is an m-dimensional complete stable minimal
submanifold M with Ricci curvature greater than — 4m/(w—1) in the unit sphere.
From [20] we may assume that M is non-compact. If the volume of M is
finite, then λ1(M)=0, which implies the instability of M by Corollary 1.2. So
we may also assume that the volume of M is infinite. Define a family of
subsets B(r) of M by
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(3) B(r)={p<ΞM;

where p(p) is the geodesic distance on M from p to a fixed point on M. Let
V(r) be the volume of B(r). The exponential growth μ of M is defined to be
limr_ooSup(log V{r))/r. As the Ricci curvature of M is greater than —4m/(m—1),
it follows from the comparison theorem [1, p. 253] that μ<2m1/2. As M is
complete non-compact and the volume of M is infinite, we find by Theorem 1
of [2] that λλ{M)<m, which implies the instability of M by Corollary 1.2. This
contradiction completes the proof. Q. E. D.

THEOREM 2.2. Let M be an m-dimensional complete Riemannian manifold,
and assume that the scalar curvature S of M satisfies

\ (m(m-l)-S)dM<oo and ( (m{m~}Xm*~5) -s\m(m-l)-S)dM<0.

Then there is no stable minimal immersion of M into the unit sphere.

Proof. Assume that there is a stable minimal immersion of M into the
unit sphere. Let 7 and ψ be as in Section 1. We denote by A and Δ the
second fundamental form and the Laplacian of M, respectively. Then it follows
from Proposition 1.1 that

(4) 0g( (\Ί(ψ\A\)\2-m(ψ\A\)2)dM

\A\ϊ))dM.

In our previous paper [17] we have the following inequality:

1
(5) -—A\A\2+\1\A\ \2=-(AA, ^>- |7^1 | 2 +|7 |^ | | 2

2
2

( m -

Using (4), (5) and the Gauss equation \A\2=m(m—1)—S, we have

( 6 ) 0

for some Ci>0. We choose the function ψ as follows:

( 7 ) φ(p)=<

)\AV-m\A\"
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for p^M, where p(p) is defined as in (3) and R is any positive number. Put
this function into (6). Then using the intermediate-value theorem and the fact
that 17/01^1 almost everywhere on M, we have

(8) 0<R-*[ (m(m-l)-S)dM+c1[ im(m~^m2-^ s\m(m-l)-S)dM

for some re[J? , 2R~], where B(r) is defined as (3). Note that this inequality is
true even if M is compact. Because of the hypothesis, we have a contradiction
by choosing R sufficiently large in (8). Q. E. D.

Remark. Let M be an ra-dimensional minimal submanifold in Sn, and let Δ
denote the Laplacian of M. In [20] it is shown that the second fundamental
form A of M satisfies —<AA, Ay<{2-(n-m)-1} \A\*—m\A\*, which is better
than (5) if n<ί(m—l)(ra+4)/2. If we use it in the above proof instead of (5),
we may have another result. And if we use \A\a ( α ^ l ) instead of \A\, we
may have the other result.

Next we use the method in [5] and discuss the nonexistence for a complete
stable minimal submanifold conformally equivalent to a bounded open domain
in the Euclidean space or to a complete Riemannian manifold with nonnegative
Ricci curvature. Note that a complete non-compact minimal surface in a
Riemannian manifold has the universal covering space which is conformally
equivalent to the open unit disk on R2 or to R2.

THEOREM 2.3. Let M be an m-dimensional complete Riemannian manifold
conformally equivalent to a bounded open domain in Rm.

(i) // the scalar curvature S of M satisfies S^—4(m—1), then there is no
stable minimal immersion of M into the unit sphere.

(ii) There is no stable minimal immersion of M into any (m-\-l)-dimensional
Riemannian manifold N with nonnegative sectional curvature.

Proof. We may assume that the metric of M is represented as

( 9 ) ds2=g{dx\+--+dx2

m)

by the coordinate system (xlf •••, xm) over M induced from Rm. Let 7, A and
ψ be as in the proof of Theorem 2.2.

First we prove (i). Assume that there is a stable minimal immersion of
M into the unit sphere. Then we calculate as in (4)

(10) O^f (\V(φg-m/4)\2-m(φg-m/A)2)dM
J M

\2g~m/2-ψ2g~m/4Ag-m'/4-mψ2g-m/2)dM.
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By the computation we have

(11) Δg-™'<= v * ' 7 g < - " ' » - ' | 7 g 1 2 - ^ - g ^ ' ^ A g
lo 4

and

(12)

From (10), (11) and (12) we have

(13) 0

M

under our hypothesis. Choose the function ψ as (7) and put it into (13). Then

(14)

where B(R) is defined as (3). If g is constant, then M cannot be complete

under our condition. Therefore |V#| is not identically zero on M. The hypo-

thesis says that \ dxλ ••• dxm is bounded from above. So we have a contradiction
J M

by choosing R sufficiently large in (14), which completes the proof of (i).
Next we prove (ii). Assume that there is a stable minimal immersion of M

into N. We denote by A and RN the second fundamental form of M and the
Ricci tensor of N, respectively. Let v be the unit normal vector field to M.
Then by the second variational formula for minimal submanifolds

v} v))}dM

By use of the Gauss equation and the hypothesis, we can see that (mS/4(m—1))
-\-\A\2+RN(v, v) is nonnegative on M. The rest of the proof is identical to
that of (i). Q.E.D.

Using the computation in the above proof, we find the following fact.

PROPOSITION 2.4. Let M be an m-dimenύonal complete Riemannian manifold
conformally equivalent to a bounded open domain in Rm. Then the scalar curvature
of M is negative at some point.
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Proof. Assume that the scalar curvature of M is nonnegative at each point.
Then using the same notation and computation as in the proof of Theorem 2.3,
we have

\ ( φ g ) \ \
J M J M

And we have a contradiction as above. Q. E. D.

Remark. The m-dimensional hyperbolic space Hm(a) with constant curvature
α<0 is conformally equivalent to the open unit ball in Rm. So we find that
Proposition 2.4 is strict by considering Hm(a) for a sufficiently close to 0.

THEOREM 2.5. Let M be an m-dimensional complete Riemannian manifold
conformally equivalent to a complete Riemannian manifold M' with nonnegative
Ricci curvatvre. Then there is no stable minimal immersion of M into the unit
sphere, and into any (m-\-l)-dimensional Riemannian manifold N whose infimum of
Ricci curvature is positive.

Proof. Let 7 be as in Section 1. Let φ be any nonnegative function on M
with compact support such that φm and | lφ \m are integrable on M. Using the
arithmetic-geometric mean inequality, we have

(15) \lφmι2\2=^φm-2\lφ\2^-ψζ-m^-v\lφ\m+ v J ε2mφm

for any positive number ε.
Assume that there is a stable minimal immersion of M into the unit sphere.

Then using Proposition 1.1 and (15) for a sufficiently small ε, we have

(16) O^ί (\Ίφm/2\2-m(φm/2)2)dM<c2\ \lφ\mdM-cz[ ώ
JM JM jM

dM

for some c2, c3>0. We choose the function φ as (7) except p(p) is defined to
be the geodesic distance on M' from p^M to a fixed point on M. Put this
function into (16). The first integral of the right hand side of (16) is an con-
formal invariance, so we may compute it on Mf. Therefore, we have for some

(17)

Here V\r) is the volume of B(r) measured on M' and V(r) is the volume of
B(r) measured on M, where B{r) is defined as (3) except ρ(p). As Mr has
nonnegative Ricci curvature, it follows from the comparison theorem that
R-mV\2R) is bounded from above. Thus we find that the volume of M is
finite by choosing R sufficiently large in (17). Then ^1(M)=0, which implies
the instability of M by Corollary 1.2. This contradiction completes the proof.
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The second statement is shown similarly. Q. E. D.

Let K denote the Gaussian curvature of a 2-dimensional Riemannian manifold

M, and set C~=[ max{-/ί, 0}dM.

COROLLARY 2.6. In the unit sphere there is no complete stable minimal
surface with finite C~.

Proof. Any complete non-compact 2-dimensional Riemannian manifold with
finite C" is parabolic (see [7]). Thus the assertion is proved by use of Theo-
rem 2.5. Q. E. D.

3. An application.

Let M be a hypersurface in a Riemannian manifold, and assume that the
unit normal vector field to M is given. The hypersurface M is said to be
^-convex and weakly ^-convex if and only if the sum of any p principal curva-
tures at each point with respect to the given normal vector is positive and
nonnegative, respectively (see [19]).

In this section we use the method in [13] and show the following results:

THEOREM 3.1. Let M be a closed hypersurface embedded in Rn. Let X be
the closure of the unbounded component of Rn—M, and let Y be the closure of
the complement of X in Rn. Choose the unit normal vector field to M toward Y.

(i) ([13]) // M is (n—2)-convex, then X is simply connected.
(ii) // n ^ 4 and M is 2-convex, then the map i*: π^M)—>ττi(F) induced from

the inclusion i: M—>Y is an isomorphism.

THEOREM 3.2. Let M be a closed hypersurface embedded in Sn. Let X and
Y be the closures of two distinct components of Sn—M. Choose the unit normal
vector field to M toward Y.

(i) If M is weakly (n—2)-convex, then X is simply connected.
(ii) // n^4 and M is 2-convex, then the map z*: T Γ ^ M ) - ^ ^ ^ ) induced from

the inclusion i: M—•F is an isomorphism.

We prove only the latter, because the proof of Theorem 3.1(ii) is similar
to that of Theorem 3.2(ii). First we show two lemmas for the preparation.

If a map / from a 2-dimensional manifold L to a Riemannian manifold is
critical for the area functional of L and the points in the interior of L at
which / is not an immersion are isolated, then / is called a branched minimal
immersion and the points at which / is not an immersion are called the branch
points of /.

Let / : L->Sn be a branched minimal immersion of a 2-dimensional manifold
L into Sn, and let L' denote the complement of the branch points on L. In
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the following we shall assume that L admits the metric induced by / from Sn,
which is zero at the branch points. Let / : Sn-*Rn+1 be the inclusion. We
denote by G2(n + 1) the Grassmannian manifold of 2-dimensional planes through
the origin in Rn+1. Then the Gauss map γ: L'-+G2(n+Ϊ) of the isometric
immersion j°f\L> \Lf->Rn+ι is defined on V'.

LEMMA 3.3* Under the same notation as above, the map γ: U—>G2(n + l)
extends smoothly at the branch points in the interior of L.

Proof. As f\L> is a minimal immersion, the mean curvature vector of
j°f\u is parallel on L' (see [4]). Thus it follows from [15] that γ is harmonic
on ZΛ Therefore we can see our assertion by use of Theorem 3.6 of [16].

Q. E. D.

The next lemma is shown exactly as in [12]. Let N be a compact Rieman-
nian manifold with boundary dN to which the inner unit normal vector field
is given. Let Γ be a Jordan curve on dN. We denote by D the set
{{x, y)(=R2; x2jry2<l} with its closure D. Let £F be the family of all Lf-maps
f:φ,dDy+(N,Γ).

LEMMA 3.4. // dN is 2-convex and 3 is not empty under the same notation
as above, then there exists a weakly conformal harmonic map in 9" vjhich has least
area among % with respect to the metric induced from N

Proof of Theorem 3.2. First we prove (i). Assume that X is not simply
connected. Let £F0 be the family of all smooth maps / : {D, dD)^(Sn, X) such
that f\dD represent nontrivial elements of πx(X). Let M(ε) be the ε-neighborhood
of M in Sn for ε>0. Then there exists a positive number ε0 such that M is
a deformation retract of M(ε) for each ε^ε 0. Let <31 be the family of all
smooth maps f:D-+Sn such that:

(1) The total energy of / is finite.
(2) Given ε<ε 0, there exists an r < l such that f(D—D(r))(ZM(ε), where

D(r)={(x, y)^D; x2+y2<r2}, and
(3) f\dDίr-> represents a nontrivial element of πί{X\jM{ε)).

Then it follows from the argument in [11] and [13] that there exists a weakly
conformal harmonic map /0 in 30 which has least area among 2^ and /„ maps
the normal vector of 3D to a normal vector of M.

It is standard that we may regard f0: D->Sn as a branched minimal immer-
sion. In the following we shall assume that D admits the metric induced by /0

from Sn. Let {vu •••, vn+ί} be defined as in Section 1. If p^D is not a branch
point, we define at p the projection ( ) τ to the tangent space of D and the
projection ( Y to the normal space of D in Sn, which extend smoothly at the
branch points on D by Lemma 3.3. From the property of fQ, we may consider
the variation ft^$i of f0 for the variational vector field vj, and we may com-
pute the second variation I(vf, vj) of the area functional of D. Let 3 be the
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flat connection of Rn+1, let h be the second fundamental form of M in Sn, and
let v be the unit normal vector field to M toward Y. We denote by dv and ds
the area element of D and the line element of 3D, respectively. Then from the
same argument as in [13] and the computation in Section 1, we calculate

"ΈKvf, vf)=nJi\\ {\(3vfY\2-\{3vj)T\*-2\vj\*)dv-\ <h(vf, vj), v}ds
J = l .7 = 1 U£> JδD

= -2(n-2)area(i9)-f Jl<h(vjf vj), v)ds.

Here we may assume that vn-ί is tangent to 3D, vn—v, and vn+1~f0(p) at each
p<=3D because the value of Σι?=Kh(vj, vj), v) is independent of the choice of
{Vj). Then by the property of f0, we have

(18) ΣI I(vj, vj)——2(n—2)area(Z))— \ S (h(vj, v,), v}ds.
j=l JdD ; = 1

The hypothesis says that the right hand side of (18) is negative, which implies
a contradiction.

Next we prove (ii). Assume that the map i* is not injective. Then π1(M)Φθ.
Let % and £F( be defined as £F0 and 3Ί in the proof of (i) respectively,
except we replace Sn by Y and X by M. Then using the argument in [11]
and [13] with Lemma 3.4, we can see that there exists a weakly conformal
harmonic map /ί in % which has least area among % and f'o maps the normal
vector of 3D to a normal vector of M. Thus the same argument as in (i)
yields a contradiction. The surjectivity of i* is shown by use of Theorem 1
of [10]. Q.E.D.

Remark. It is announced in [19] that Theorem 3.1(i) is shown from the
following theorem:

THEOREM 3.5 ([19]). // a compact Riemannian manifold N has nonnegative
sectional curvature and p-convex boundary 3N to which the inner unit normal
vector field is given, then N has the homotopy type of a CW-complex of dimension
not greater than p—1.

We can see that the above statement is true also in the case where N has
positive sectional curvature and 3N is ! weakly ^-convex, because 3N becomes
p-convex by multiplying the metric on N by a function φ which is sufficiently
close to 1 in C2-norm and satisfies dφ(v)<0 on 3N where v is the inner unit
normal vector field to 3N. Thus also Theorem 3.2(i) is shown from the above
theorem.
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