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A CERTAIN PROPERTY OF GEODESICS OF THE FAMILY

OF RIEMANNIAN MANIFOLDS 01 (IX)

BY TOMINOSUKE OTSUKI

§ 0. Introduction.

This is exactly a continuation of Part (VM) ([20]) with the same title written
by the present author which proved the following conjecture is true for
4.5^n5^5. He aimed at giving the proof of it for 3 ^ n ^ 5 but found that the
method by using computors in it was not so effective, when n comes near 3
and we know that the method used until now does not work well for the proof
of Conjecture C for 2 ^ n ^ 3 by Lemma 8.1 of Part (IΠ) ([13]). We shall show
that this conjecture is also true for 2.4^n^4.5 in the present paper by taking
a new way. As the previous ones, we shall use the numerical data obtained
by means of computors in the verification. We shall also use the same notation
in the previous papers ( I )-(\l).

The period T of any non-trivial solution x(t) of the non-linear differential
equation of order 2:

(E)

with a constant n > l such that x2+x'2<l is given by the integral:

(o i) τ=vτc~[Xl dx

κ J )χ0 xV(n-x){x(n-x)n-1-c}'
where x0—n{minx(t)}2, Xi = n{maxΛ:(0}2, 0<xQ<.Kxι<n and c—xo(n —

CONJECTURE C. The period T as a function of τ=(xι—l)/(n—l) and n is
monotone decreasing with respect to n (>2) for any fixed τ(0<τ<l) .

§ 1. Preliminaries.

Setting T=Ω(τ, n), we have the formulas

r, n)8fl(r, n) _ V T f*i
on 2(B—c)nV n}χ0

x\n—x)n
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((7.4) and Proposition 3 in (IΠ)), where β = ( n - l ) 7 1 - 1 and

(1.2) V(x, Xl)= x i V

\ 3x%Ux) 2nx\B-ψ{x))\
\{x-ϊ)Wn-x (x-ίfVn^xi

( 3X%(X) 2nX\B-φ(X)))
\{X-V)Wn-X (X-l)2Vn^X I '

(1.3) fo(z) :=(2n-l-z)B-(n-z)n-1{n-z+(n-l)z2},

(1.4) F2(z) :=-P2{z)B+{n-z)n-ιP${z),

(1.5) P2(z):=(2n + l)z2-2(2n2+5n-4)z+16n2-16n+3,

(1.6) P 8 (z) :=-(n-l)

(1.7) λ(z): = log(n-z)+-^—-, φ(z):=z(n-z)n~1,
n—z

(1.8)

and X=Xn(x), 0<x<KX<n, defined by φ(x)=φ(X).
By Lemma 8.1 in (ΠI), we know the following:

FACT 1. For 0 < x < l , V(x, xx) is increasing with respect to xλ in Xn{x)

FACT 2. We have

(1.9) V(x,

near x=0, which implies V(x, Xn(x)) is negative near x=Q, when 2 < n < Y~

=2.151387819- ((8.10) in (ΠI));

FACT 3. We have

(l.io) v(X, xn(χ))/B= n (5 (

n

n l\y^^- 3 ) a-χ){i+oa-χ)\,

near x=l, which implies V(x, Xn(x)) is negative near x=l, when 2 < n < ^—

=2.302775638 ((8.22) in (IΠ)).

Since we have from (1.7) and (1.8)



88 TOMINOSUKE OTSUKI

ΐl — 1 X\ΐl — X)

introducing an auxiliary function

(1.11) η(z, n):=-τ—

we obtain from (1.2)

(1.12) V(x, * , ) = —

n-z ^ n-1 (z-l)Vn-z

and

(1.13) V(x, Xn(x))=^

Furthermore, we have

X(xi)}—y(x> n)+η(X, ή),

{λ(x)-λ(X)}-η(x, n)+η(X, n).

and

=3x(2n-l-x)B-3x(n-x)n-1{n-x+(n-l)x2}

= Bhx(2n-l-x)-2nx(x-l) ^
L 72 — 1

n—

l-P2(x, nW+in-xr-'Ptix, n)],

where

n - 1

(x> n) : =

( x , n ) : ^ _ ( n _

hence
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Since we obtain easily

P2(x, n)=(n—x)Q1(x, n) and P3(x, n)=(n — x)Q2(x, n),

where

(1.14) Q1(xy n): = -(4n2+2n-3)x-\-16n2-16n+3,

(1.15) Q2(x, n):=(n-l)(2n-3)x

we have

(1.16) η{x, n)/B= ^ ~ *

Our principle of the verification of Conjecture C, this time, is that investi-
gating the behavior of η(x, n), we shall show that

η(Xn(x), n)—η(x, n)>0 for 0 < x < l

with n>— hθ.011 and using the properties of the positive function

x^n-xζM {l(χn(x))-χ(x)} in 0<*<l, we shall show that V(x, Xn(x))>0
\1 X)

for 0<; t<l with n^2.4. Then by Fact 1, we see that

V(x, Xi)>0 for
which implies

r, n)
<0 for n^2.4 with 0 < r < l .

dn

§2. Properties of η(x, n)(0£x^n).

In order to guess the behavior of η(x, n), we show here the graphs of
η(x, 2) and η(x, 3) as examples.

X=2-x,

η(X, 2)-η{x, 2)=-Vx(2-xXVJ=rx-VΊc)<0 for

... , Qv 3 π

n) (̂x, 3)=Ύx(2x-3)V3-x, η\x, 3)=- / q
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5.427-

Fig. 1.

We may imagine as

for 0<x<l at this stage.

LEMMA 2.1. We have

(2.1, JL,α

-2.548-

U, 3)>0

Fig. 2.

(2.2) ρ3(x, n) :=(4n2+2n-3)xs-8(n-lXn2+5n-3)x2

+3(lβnδ-40n2+24n-3)x+2n(4n-l)(4n-3),

(2.3) ρ4(χ, n) :=(n-l)(2n-l)(2n-3)x4+(2n-3)(2n2-13n+8)x3

+3(8?23-26n2+21n-3)x2+n(28n2-52n+15)x+6722(2n-l).

Proof. From (1.16), we have
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V, n)/B

3x2-(4n-3)x-2n

Computing separately the terms in the brackets, we have

-(3x2-(4n~3)x-2n)Q1-2x(x-iXn-x)Q/

1

+2x(x-lXn-x)(4n2+2n-3)

n-3)x2

n-l)(4n-3)=ρ 3U, n)

and

2?2-l)=Q4(x, n),

from which we obtain (2.1). Q. E. D.

LEMMA 2.2. We have

i) 9(0, n)=η(n, n)=0,

ii) lim^^(x, n ) - - y 7 2 ( n - i r - 2 5,

iii) Tŷ O, n)=(n-ir-2V¥{(472-l)(4n-3)-3^_1n(2n-l)}<0

( 1 \Λ-1
H 7-J ,

71 — I /

iv) l im^ n - 0 )/U, n)—— ex) /6>r n>~-^~-—,
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v) lim^'U, n)=~n(2n-lXn2-n-3)(n-l)n-3'5>0

f0r n>i±^!3 ^

Proof, i) is evident from (1.16). In order to prove ii) we set x—l-\-y.
From (1.14) and (1.15) we have

, n)=-(4n2+2n-3)y+6(n-l)(2n-l),

, n)=(n-l)(2n-3)y2+(8n2-2On+9)y+6(n-l)(2n-l)
and

from which we obtain easily

) n " 1 ^ n)=-

near ;y=0. Hence we obtain from (1.16)

^(,72 — 1) ώ

Regarding iii), we have easily from (2.1)

φ'(0, n)= ( n

2 " ^ - " 2 {2n(4n-l)(4n-3)-^.16n2(2n-l)}

In order to prove the negativeness of this quantity for n^2, we show that

3n(2n-l) / n γ-\ . 9 . . ,
i ^j \ m 2 < n < + oo.

(4n — l)(4n—3) \ n — 1 /
We have

— log! ^ ^ - ^ (-JL-V1

dn 8l(4n-l)(4n-3)\72-l/(4n-l)(4n-3)

I 2 4 4
+ 2 n - l 4n- l 4

2 4 4 n
+ log2τ2-l 4τ2-l 4τ2-3

and

\ / _n U
/ + \ g n - l n

0 (as n->+oo),
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d2 , r 3n(2n-l) / n v 1

dn
ί 3n(2n-l) / n γ-i)

g l (4n-lX4n-3)\n-l/ J

4 16 16 1

(2n-l)2 ' (4n-l)2 ' (4n-3)2 n(n-l)

_ 8n 2 -8n+l 16(32n2-32n+10) 2 _

" n ( n - l ) ( 2 n - l ) 2 + (16n2-lβn+3)2 C n }

r̂: 1 z=z ^>0
\J( Λ J\J\_ 1\ (Λ (\ Λ/"_J O N 2 ΛT/ A ΛT i 1 \ / 1 λ ? Λ Γ l ON9. ̂  ^ *

which implies

rf f 3n(2n —1) / n v -, ^ A , ^ o

for 72^2.l(4n — l)(4n— 3)\n —

and

3n(2n-l) / n \»-
( )(4n — l)(4n—3) \ n —

Using this fact, we obtain

\m2<n< + oo.

(4n—l)(4n — 3) V n —

which implies the inequality of iii).
Next, from (2.1) and Q3(n, n)=-n(n-l)\4n2-10n+3) we obtain

near x=n, which implies iv).
Finally, setting again x=l+y, from (2.2) and (2.3) we have

, n)=(4n2+2n-3)ys-(8ns+20n2-70n+33)y2

+(32n3-172n2+20βn-ββ)3;+72n3-180n2+144n-3β

, n)=(n-l)(2n-lX2n-3)yi

+(2n -3)(10n2-25n + 12)3;3+3(20n3-82n2+98n -

from which we obtain

^ ) " - , n)=

near 3;=0. Hence we obtain from (2.1)
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r // N r B j n(2n-l)(n2-n-3)

x_i ' .̂.0 2(n — l)Vn — l—y I 6(n —1)

which is positive for n > 1 + / 1 3 and negative for 2 ^ n < 1 + y 1 3 . Q.E.D.

Remark. From Lemma 2.2 we see that η(z, n) and τy'0, n) are complex
analytic with a removable singular point at z—\ and regular on a domain
containing the real half line x<n.

LEMMA 2.3. When n^2, we have

i) Q2(x, n)>0 for —
ii) QA(x, n)>0 for 0^

Proof. First, from (1.15) the discriminant of Q2(x, n) as a quadratic poly-
nomial of x is

(4n2-10n+3)2-12n(n-l)(2n-l)(2n-3)=-(32n4-64n3+8n2+24n-9)

and

32n4-β4n3+8n2+24n-9^8n2+24n-9>0 for n^2,

which implies i).
Second, we set x=nt and S4(ί, n)=Qi(nt> n)/n2, then we have

+3(8n3-2βn2+21n-3)ί2+(28n2-52n+15)ί+6(2n-l).

Putting w=2, we have

and

. 62 5+V31 133

= 4r(244-31 V3l)>0 for

lo

Hence

12ί*-20ί8-3ί2+23ί+18ί/1 in 0^
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and so we obtain

S4(t, 2)^18 for f^O.

Then, we have

8S4(t, n) = (20 w ^48
= ( 2 0 w 4 8

on

+3(24n2-52n+21)ί2+4(14n-13)ί+12

(setting n=m+2)

=(20m4+112m3+225m2+190m+56)ί4+(lβm3-82rn-60)f

+3(24m2+44m+13)ί2+4(14rn+15)ί+12

=mtt(20m3+112m2+225rn+190)t3+2(8m2-41)t2

+12(6m+ll)ί+56]

On the other hand, we see that

(56t4-60ts-\-39t2y=6(112t2-60t+13)>0 for -

and so

in — oo<ί<+oo and ^60 for ί^O. Hence we obtain

5βί4-60ί3+39ί2+β0ί+12^12 for ί^O.

Next we have

(20m3+112m2+225m+190)ί3+2(8m2-41)ί2+12(6rn+ll)ί+56

=mί[(20m2+112m+225)ί2+lβmί+72]+190ί3-82ί2+132ί+56.

We see that

for -oo<α<+oo

and so
190ί3-82ί2+132ί+562;56 for

Hence we see that

(20m3+112m2+225m+190)ί3+2(8m2-41)ί2+12(βm+ll)ί+5β>0

for m^O and

From these evaluations, we obtain

dSj(t, n)
dn

and hence

>0 for t^O and n^2,
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S4(f, n)>0 for t^O and w^2. Q.E.D.

PROPOSITION 1. When n> "z , η\xy n)=0 (0<x<n) Λαs two solutions

a and β such that 0 < α < l and Kβ<n and η(x, ή) takes its minimum at a and
its maximum at β and is monotone in 0<x<a, a<x<β and β<x<n, respectively.

Proof. By means of Lemma 2.2, it is clear that η'(x, n)=0 has roots in

each interval 0 < x < l and Kx<n, when n>—^—. Let a be the minimum

one and β the maximum one. Any root x of η\x, n)=0 is characterized by
the condition:

(2.5) -#^4

by Lemma 2.1 and Lemma 2.2. We know that the real analytic function
Qs(x, n)/QA(x, n)—((n — x)/(n—I))71"1 is negative at x=0 and χ—n and equals to

n(n2—n—3) , i

2 1 6 ( n - l ) 3 C^- 1

and hence we see that

- 1 ) ) n e a r x = 1

(2.6) - ^ - ~ ' J

dx Q4(x, n)
at this root x, if it changes the sign from negative to positive there as a or
from positive to negative there as β, respectively. Using (2.5), (2.6) is clearly
equivalent to

(2.7) (n-x){Qί(x, n)Qt(x, n)-Qz{x, n)Q'A(x, n)}

+(n-ϊ)Qs(x, n)Qt(x, n)^0 or

Next by a little long computation we obtain

Qi(x, n)Q,{x, n)-Qz{x, n)Q'A(x, n)

= {3(4n2+2n-3)x2-16(n-l)(n2+5n-3)x+3(16n3-40n2+24n-3)}

X{(n-l)(2n-lX2n-3)x4+(2n-3X2n2-13n+8)x8

+3(8n3-26n2+21n-3)x2+n(28n2-52n + 15)x+6n2(2n-l)}

-{(4n2+2n-3)x3-8(n-l)(n2+5n-3)x2

+3(16n3-40n2+24n-3)x+2n(4n-l)(4n-3)}

X{4(n-lX2n-l)(2n-3)%3+3(2n-3)(2n2-13n+8)%2

+6(8n3-26n2+21n-3)x+n(28n2
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= -(n-l)[(4n2+2tt-3)(4tt2-8n+3)x6

+(544n5-2592n4+5280n3-5548tt2+2964n-630)*4

+4(224n5-1352n4+2868n3-2634n2+999n-108)x3

+(1760n5-7984n4+11216n3-6144n2+1206n-81)x2

+12(144n5-344n4+272n3-78n2+9n)x

+2(160n5-25βn4+108rz3-18n2)] = - ( n - l ) ( # ) ,

where (#) denotes the polynomial in the brackets. Then, we obtainΊ urthermore

J~γ{Qr^> n)Q<(x, n)-Qs(x, n)Q[{x, n)}

x, n)=(x-nX#)+Q3(x, n)Q,{x, n)

+(64w6+672?25-3568w4+6688n3-6316n2+3108n-630)x5

-(544n6-3488n5+10688n4-17020n3+13500n2-4β2βn+432)x4

-(896n6-7168n5+1945βn4-21752n3+10140n2-1638n+81)x3

-(1760n6-9712n5+15344n4-9408n3+2142n2-189n)%2

-(1728tt6-4448tt5+3776tt4-1152n3+144n2)x

-320n6+512n5-21βn4+3βn3

+ {(4n2+2n-3)x3-8(n-l)(n2+5n-3)x2

+3(lβn3-40n2+24n-3)x+2n(4n-l)(4n-3)}

X{(n~l)(2n-l)(2n-3)x4+(2n-3)(2n2-13n+8)x3

=n[(4n2+2n-3)(4n2-8n+3)x7-(32n5+9βn4-328n3+5βn2+240n-108)x6

+(224n5-160n4-736n3+63βn2+324n-270)%5

-(41βn5~928?24-21βn3+1232n2-lβ8n-252)z4

+(160n5~1040n4+800n3+680n2-498n-81)x3

+(256n6+256n4-752n3+168n2+216n)x2

-(256n5-160n4-120n3+180n2)x+64n5-64n4+48n3]

=n(x-iyP4(x, n),

where
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(2.8) P4(x, 72):=(2n-l)(2n-3)(4n2+2n-3)x4

-(32n5+48724-256n3+104n2+150n-81)x3

+4n(32n4-88n3+26n2+93n-54)x2

Thus, we obtain a rule for roots γ of η'(x, n)=0 as follows, which we
denote here by (R):

Case 0<r<l . P4(r, n)<0, if Q~^X' n) -(-^—g-V"1 changes its sign from
Q*(x, n) \ n—l /

negative to positive at x—y as α, otherwise
Case l<p<n. P4(f, w)^0, if this function changes its sign from positive to

negative at x—y as β, otherwise P4(γ, n)^0.
Now, for the above biquadratic polynomial PA(x, ή) of x we have the

following:

P4(0, n)=-lβn 3(4n 2-4n+3)<0 for

P4(l, n)=9βn5-288n4+24n3+432n2-336n+72

=24(n-l)(2n-l) 2(n 2-n-3)>0 for n

Pin, n)--lβn8+5βn7-48n6-2n5+13n4-3τ23

for

and (2w-l)(2n-3)(4n2+2n-3)>0 for n>3/2, from which we see that P4U, n)=0
has a unique root α0 and β0 in 0<x<l and l < x < n , respectively, when

n > 1+V13 =2,3027756•••, then
z

f 4(x, n)<0 for 0^x<α 0 and βo<x<n,
(2.9)

I P4U, n)>0 for αo

which implies 0<a<a0 and βo^β<n. By means of the above mentioned rule
(R), we see that rj\x, n)=0 has no solutions in 0<x<a and β<x<n and η(x)
is monotone in a<x<β. Q. E. D.

We shall show the approximate values of a—a{n) with other related con-
stants with step 1/100 in Table A on the final page. Here, we can show

roughly the graph of y=η(x, n) with n> *Z— as in Fig. 3. Then, we see

that η(xf n) is decreasing in 0<x<a(n) and β(n)<x<n, and increasing in

a(n)<x<β(n). Thus, when n > - ~ — , let z(n) be the unique solution of
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η(x, n)=0

99

in 0<;c<n.

Fig. 3.

PROPOSITION 2. When °~τ'2±o<n<x"rJ1O, T/OC, n)=0 (0<x<n) Λαs fuw

solutions a and β such that l<a<β<n and η(x} n) takes its minimum at a and
its maximum at β, and is monotone inθ<x<a, a<x<β and β<x<n, respectively.

Proof. By means of Lemma 2.2, we see easily that η\xy n)=0 has at least
two solutions in l<x<n. Let a and β be the minimum and the maximum of
them. Any root γ of η\xy n)=0 satisfies the rule (R) in the proof of Prop-
osition 1. Since Q3(x, n)/Q4(x, ri)—{(n—x)/(n—ϊ))n~1 changes its sign from
negative to positive at a and from positive to negative at β, we see that

^0 and PA(β, n)£0.

Since P4(0, n)<0 and P4(n, n)<0 and P 4(l)<0 in this case, we see that P4(x, n)=0
has two roots a0, β0 in Kx<n, such that

P*(x, n)<0 for 0£x<a0 and

P*(x, n)^0 for tfo^*^/3o,

and Kao<:a<:βo<β<n. On the other hand, if η\x, n)=0 has roots in 0 < x < l ,
then at some γ of them it must be P4(γ, n)^0 by the rule (R), which contradicts
to the fact P4(x, n)<0 for O ^ x ^ l . Furthermore, if there exist roots other
than a and β in Kx<n, then at some γ1 and γ2 (a<γ1<γ2<β) of them we
must have

and P4(γ2> n ) ^ 0 ,
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from which we have f2^/3o^?Ί and hence γί

:=βo=γ2, which implies that η(x, n)
is monotone increasing in a<x<β. We can use the same argument for the
intervals l<Λ:<α and β<x<n. Q.E.D.

Here, we can show roughly the graph of y—η(x, n) with — j — < n < — = —

as in Fig. 4. Then, we see that η(x, n) is decreasing in 0<x<a(n) and
β(n)<x<n and increasing in a(n)<x<β(n). In this case, we can also define
z(n) of the unique solution of

η(Xf n )=0

in

Fig. 4.

PROPOSITION 3. When 2^n< ^ , η\x, n) has a solution a such that

Ka<n and η takes its minimum at a and is monotone in 0<x<a and a<x<n,
respectively.

Proof. By means of Lemma 2.2, η(x, n) takes its minimum in l<Lχ<n at
some points in 1<JC<W. Let a be the minimum of them. By the rule (R), we
have P4(a, n)^0. Now, from (2.8) we obtain

because

Since we have

for

Pan, n)>0 for 2rgn<

Hence, P4(x, n)=0 has roots in n<x<2n and 2n<x< + oo. Thus, we see that
> n)=0 has only one.root aQ in 0<x<n and l<α:o<n, and
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P4(x, n)<Q for 0£

P4(x, n)>0 for

101

and ao<a. Using the rule (R), we see easily that η\x, n) has no solution in
0<x<l and a<x<n and η(x, n) is monotone decreasing in 0<x<a and
increasing in a<x<n. Q. E. D.

Here, we can show roughly the graph of y — η(x, n) with 2<n< *Y— as

in Fig. 5.

y= η(x, n)

Fig. 5.

§3. Some auxiliary constants depending on n.

On the constant z(n) defined at the end of § 2, we obtain by Proposition 1
and Proposition 2 the following

LEMMA 3.1. When

if and only if

(3.1)

, a constant b{l<b<n) is greater than z{n)

, n)>0.

Now, looking over the data of z(n) computed in — ~ —

puter (Table A) the following inequality will be assumed

liVon — όZ)

by a com-

LEMMA 3.2. (3.2) holds for 2Λ£n£10.

n * τ? u i . 7(n-l) 37n-71
Proof. For b-l+ 2 ( 1 5 n _ 3 2 ) - 2 ( 1 5 n _ 3 2 )

n - 1

-, from (1.14), (1.15) we obtain

iΦ, n)=
2(1571-32)

(332n2-9β2n+405),
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Q*Φ, w)= • I M I?~ 1o 9v, (12578n 3-59607n 2+83434n-28755)
4(1072 oΔ)

and
30n—71y

n - l / \2(15n-32)
By Lemma 3.1, (3.2) is equivalent to

/30w-64y-i 12578n3-59607n2+83434n-28755
{ } \30n-71/ 2(15n-32)(332n2-9β2n+405)

Now, we first show that

/30n-64\»-i . 71

( )
 N

In fact, its logarithmic derivative is

. 3 0 n - 6 4 , 3 4 41
l + ( a S n& 30/2-71 ' 30n-64

Furthermore, the derivative of this function of n is

30(15750/2-35266)
(30n-64)2(30n-71)2 '

u u • ί 7 1 / 3 5 2 β β 2 5 1 9 ooonίλ
which is positive for ft>-^r(> i r r y r ^ = 1 1 O Γ =2.2391).

ol) \ lo/bU llZb /
Hence we obtain

-7— ί-oπ 7fr) <0 for n>-^r-.
dn \30n—71/ 30

Then, we show that the right hand side of (3.3) is also decreasing in 2.18<
n<+oo. In fact, we have

d /12578n3-59607n2+83434n-28755 \
dn \ 2(15n-32)(332n2-962n+405) /

= -(18286352n4-96222364n3+166131917n2-104157900n

+21424095)/{2(15n-32)2(332n2-962n+405)2},

which is negative for nj>2.18, because we see easily that

18286352n4~96222364n3+166131917?22-104157900n+21424095

is increasing in 2.13<n<+oo and =2031.8772 at n=2.18.
On the other hand

lim
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and

. 12578n3-59607n2+83434n-28755 _ 12578
i»™-» 2(15n-32)(332n2-9β2n+405) ~ 2x15x332 -

Denoting the left hand side and the right one of (3.3) by L(n) and R(ri)t re-
spectively, and computing their values with steps 1/1000 and 1/10000 in the
following intervals, we see that

L{n)<R(n +0.001) in 2.400^n^2.580
and

L(n)<#(tt+0.0001) in 2.5800^ n ^10.0000,

which implies

L(n)<R(n) for 2Λ<n^lO

by means of the decreasing property of L(n) and R(n). Q. E. D.

We have the following proposition which is important for the purpose of
this work in order to use the same method as the one in the proof of Lemma
3.2 and will be proved in another paper [22].

PROPOSITION 4. z(n) is decreasing in 5 + " / 1 < j + <n<22, and hence
4 lUUu

We have more sharp evaluations as follows:

i ) z(n)<2.1 for 2.250£n^2.400,
ii) z{n)<2 for 2.300^/2^2.550,
iii) z(n)<1.85 for
iv) 2r(n)<1.65 for
v) 2r(n)<1.38 for
vi) z(n)<Ll for 6.0^n^2

PROPOSITION 5. w(n):=Xn\z(n)) is increasing in + 1 Λ Λ A < w < 2 2 .
4 lUUU

Proof. For z—z{n) and w=w(n), we have w(n — w)n~1=z(n—z)n~1, from
which we obtain by differentiation with respect to n

/ n .. n(l—w) , n(z—Y) , , , Λj 1 1 \ . , n— z
(3.4) —f 'τw'= γ ~z'+(n-l){ ) + log .

w\n — w) z(n—z) \n—z n — w/ n — ww\n — w) z(n—z)

By means of Proposition 4, we see that

f 0 Γ 4 ' 1000



104 TOMINOSUKE OTSUKI

Setting T=(l-w)/(n-l) and S=(2r-l)/(n-l), we obtain

(n-l)( ) + log^—-
\n—z n — w/ n — i

_ 1 1 IS
~ 1-S 1+T + g 1+T

-2

-w

m

2m
1 2m w ' ' 2m+l w

since we have S>T by Proposition 4 in (IV) for n>2. Q.E.D.

Remark. The monotony of z{n) and w(n) with respect to n was proved for

5 ~ 4 1 3 + i o o o " < n < 2 2 ' a n d t h e r i g h t e n d 2 2 m a y b e r e P l a c e d b y +°°> b u t t h e

left end cannot be replaced by ~^j ^~~uv)> w n i c n wι^ ^e shown in [22].

As started in § 1, we wish to prove the inequality

(3.5) v(Xn(x), n)—η(x, n)>0

for 0 < % < l and n> ?—h . By means of Proposition 1 and Proposition
4 lUUU

2, we see easily that (3.5) holds for

and n>
4

LEMMA 3.3. // α(n)^u;(n) for n>1+^13, then (3.5) Ao/ds for

Proof. By means of Proposition 1, η(x, n) is increasing in a(n)<x<z(n),
hence we have for w(n)<x<l

η(Xn(x\ n)>η(x, n)

because a(n)^Lw(n)<x<Xn(x)^Xn(w(n))=z(n). Therefore, combining this with
the fact mentioned above, we obtain this lemma. Q. E. D.

On the other 'hand, by means of an analogous way in the proof of Proposi-
tion 4 we can prove the following proposition ([22]).
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PROPOSITION 6. a(n) and β(n) in Proposition 1 are decreasing and increasing

^ 1+VΪ3
in -<n<22, respectively.

The right end 22 may be replaced by +oo. Now, looking Table A we find
as follows:

α(3.23)=0.644034 - , w(3.23)=0.643027 - ,

α(3.24)=0.642357 - , w(3.24)=0.645647 - ,

α(3.25)=0.640700 - , w(3.25)=0.648237 - .

Hence, we obtain from Propositions 5 and 6 and Lemma 3.3 the following

LEMMA 3.4. When 3.24^n^22, (3.5) holds for 0 < x < l .

In the following, by virtue of Lemma 3.4 we shall treat mainly values of
n such

w(n)<a(n)
and

For such n we define x=Z(n) by

a(n)<Z{n)<z(n)
and

(3.6) η(w(n), n) — η{Z{jι), n).

win) a(n) Z(n)

\L>

Iz(n)

*/y=y(χ,n)

Fig. 6.

LEMMA 3.5. // w(n)<a(n) and Z ( n ) ^ l , then (3.5) holds for

Proof. By means of Proposition 1, for w(n)<x<l we have

η(x, n)<η(l, n)<r}(Xn(x), n).
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Hence, we obtain this lemma. Q. E. D.

Now, we consider the case: w(n)<a(n) and l<Z(ri)«z(jι)). We wish to
show that Z(n) is decreasing with respect to n. Differentiating (3.6) with respect
to n we obtain

where w=w(n) and Z=Z(n).

Since we have |2-(u/, n)<0, |2-(Z, ?i)^0 and u;'>0 for

by Propositions 1, 2 and 5, we can claim Z ' < 0 if we have

(3.7, &<".•«£<*.•>•
Since we have from (1.16)

where we set

(3.8) Λ{x, n) : = - & ( * ,

^ j - ) n " 1 ρ 2 ( x , n)},

using (3.6), (3.7) is equivalent to

;, n) ^ ZΛ(Z,n)
^ * / (w-l)Wn-w = ( Z - l ) V n - Z '

Now, by (1.14) and (1.15) we obtain

(3.10) Λ(x, n)=-j&(x, n)+2(n-x)-7Γ-Q1(x, n)\
I (772 J

+2(n-x)Q2(x, n
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—5(4n2+14n—

n — 1

+(20n2-54?2+9)x+3n(1072-3)+2(n-x)(52(x, n)

x—1
X

(. n — x , x—1 \ϊ
ίlog Γ H )k
\ n—l n—xn

LEMMA 3.6. Regarding Λ{x, n) we have the following:
i) Λ(0, n)>0 for n ^ 2 ,

n) ^ ( l + ( n —l)ί, n)=

iii) lim^n-oΛC*, n)=(n~l)(4n 2 "10n+3).

/. i) From (3.10) and (1.15), we obtain

Since we have

& n — l n ~ 2n2 '
I I I . II Li II \

Λ(β, n)>0 is implied from the inequality:

i.e.
/ n y-t^ «(80n2-48«+3)

(3-11) ( ^ ϊ ) > 3 0 n ' - 3 n ' + n - 2 : = A ( l l )

We shall prove that (3.11) holds for n ^ 2 . First of all, we see that

2X227

228

and

lim ( Γ-) =£=2.71828 ••• > lim h(n)=-τr

If (3.11) does not hold for 2<n< + co, there exist 2<ni^n2< + ̂  such that

^gin,) and f(n2)^g(n2),
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where

d h( 1200n4-20n3-519n2+192n-6
gW~ dn g ( n n(80rc2-48tt+3)(30n3-3tt2+tt-2)*

We shall show that f(n)>g(n) for 2^n^34.9. f(n)>g(n) is implied from

1 . 1 . 1

which is equivalent to

4 n + 3 ^ 1640tt4-1352n8+601n2-llltt+β
>

12n2 = 2(80?22-48n+3)(30n3-3n2+n-2) '
and hence

-240n6+8592n5-7390n4+740n3-291n2+273w-18^0.

The left hand side of the above inequality

^148.4n4+740tt3-291tt2+273n-18>0 for 2^nrg34.9,
since we have 8592/2x240=17.9.

Next, we shall show that f(n)<g(n) for 3β^n< + oo. f(n)<g(n) is implied
from

which is equivalent to

4 n - l ^ 1640n4-1352n3+6Oln2-llln+6
12n(n-l) =2(80n2-48n+3)(30n3-3n2+n-2) y

and hence
-240n6rf-8832n5-8782n4+3090n3-89n2-87n+6^0

The left hand side of the above inequality

for 3β^

Thus we see that 34.9<n1^n2<36.
On the other hand, we have

1200?24-20tt3-519tt2+192tt-6

and hence for 33<n<36 we have
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/ 72 \n-i /33\3 2

>/z(36)=2.629539 ^

which contradicts to the existence of nx and n2.
ii) On the expressions in (3.10), setting x = l+(n — l)t, we have

4(4n+l)x2-5(4n2+14n-7)x+80n2-48n+3

-2(4n -5)x3+(10n2-31n +23)x2+(20n2-54n +9)x+3n(10n -3)

=(« -1) {-2(4n -5Xn-l)Ψ+(10n2-55n +53)(n-l)t2

+(40n2-140n+85)ί+β(10n-7)},

Q2(x, n)=(n-l){(2n-3)(n-l)Ψ+(Sn2-20n+9)t+6(2n-l)}>

(n-lXn-2Xn-3Xn-4)
•+- 24 r-f- ,

from which we obtain

(3.12)

iii) Since we have

and



110 TOMINOSUKE OTSUKI

n — x , x — l

We obtain easily

(3.13) lim Λ(x, n ) = ( n -

Q. E. D.

Remark, From Lemma 3.6, we see that when n>2, A(x, n) is negative for

x>l sufficiently near 1 and when n> —t-.—, Λ(x, n) is positive for x<n

sufficiently near n. For 0<%<l, we have the following proposition which will
be proved also in [22].

PROPOSITION 7. When n ^ 2 , we have

Λ(x, n)>0 for 0 ^

Now, considering (3.9) and Lemma 3.6, we define an auxiliary real analytic
function Γ(x, n) by

r xΛ(x, n) £ Λ ^ ^ t Λ-. 3 ' for 0<x<n, xΦl,
(x — iyVn — x ~

(3.14) Γ(x,n):=\
-Ί 7 Γ for x=l.

I ( n - l ) v n - l

LEMMA 3.7. We have

3 Γ / ,Ί 10tt4-25tt3+13tt2+17n-6Γ U n ) J =
>0 for nj>2.

Proof. Setting x = l + ( n - l ) ί , we obtain from (3.12) and (3.14)

1 2 + Ϊ2

from which we obtain

•}•

2

(n-l)2(10»3-25w2+19M+2)-
12
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= 10n4-25n8+13n2+17n-6
~~ 1 2 ( w - l ^ V ^

Next, we have

for n^2. Q.E. D.

In the following, we want to show that Γ(x, n) is monotone increasing in

w{n)<x<Z{n) with

Differentiating Γ(x, n) with respect to x, we obtain from (3.10)

d f xΛ(x, n) } 1 m ,
dχ\(x-l)Wn-x! 2{x-l)\n-xWn-x Ki )y

where

77(x, n)=2x(x — l)(n — x)-~—Λ(x, n)+ {5x2—(4:n — l)x—2n}Λ(x, n)

71 — 1 71 — X

n—1

7 — r \ τι-1

71 —

χΓ-2(4tt-5)x3+(10tt2-31n+23)x2

+(20n2-54n+9)x+3n(10?2-3)+2(n-x){(2n2-5?2+3)x2

g
n —

which can be arranged by a long computation as follows:

(3.15) 770c, n ) = A ( x , n)
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\B,(X, n)-2Bt(x, n)(n-χ)(log-^ + — )
i \ n—i n — x'

(3.16) A4(x, n):=-4(4w + l)x4+5(12n2+2βn-25)xδ

-8(5n3+48n2-68n+15)^2+(240n3-552n2+200n-3)x

+2n(80n2-48n+3),

(3.17) Blx, n):=(n-lX2n-l)(2n-3)%4+(4n3-32n2+55n-24)x3

+3(8n3-26n2+21n-3)x2+n(28n2-52n+15)x+6n2(2n-l),

(3.18) Bδ(x, n) :=2(12n2-24n + ll)x5-(20n3-60n2+139n-107)Λ:4

-(20n3-240n2+367n-102)x3-(120n3-402n2+271n-21)x2

-n(140n2-228n+39)x-βn2(10n-3).

LEMMA 3.8. On A^x, n) we have the following:

i) When ^—<n^2.84, A4(x, n)>0 for O^x^n and convex upward in

and decreasing in Kx<n.
ii) When 2.84<n^5, A4(x, n)>0 for O^^^l.β and convex upward in 0<x<l

and decreasing in K i < 1 . 6 .

Proof. From (3.16) we have

A/( )

We see easily that
15(12tt2+26n-25) 5

->τr
2x24(4n + l) " 2

We have
AS(1, n)=2(-40n3-204n2+838n-519)<0 for n^2.05,

hence
A/(x, n)<0 for O^x^l with

and so AA(x, n) is convex upward in 0<x<l with n2^2.05. We have

A/(n, n)=2(44n3-18n2+169n-120)>0 for n^2.

Next, we have

We see easily
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A'4(0, n)=240τ23-552n2+200n-3^5βn-3^109 for n ^ 2 ,

Ml, 72)=160n3-1140n2+1614n-634<0 for 2^n<5.3,

A'ln, n)=36n4-154n3+lβln2-40n-3<0

for 2^n^2.848 and >0 for 2.849^n<+oo
and

Λί(1.6, n)=112n3-1320n2+2677.056ft-1412.536<0 for 2 ^ n ^

Last, we have
A(0, n)=2n(80n 2-48n+3)>0 for

for

Λ ( , ) ( ) W ) for

and
Λ(1.6, n)=441.6n3~1716.48n2+2146.2624n-850.2144>0 for

Taking account of these facts, we obtain the claim of this lemma. Q. E. D.

Remark. The reason of noticing the value 1.6 is

2(n)^z(2.84)=1.579536- for ^ 2 . 8 4

and 2r(2.8)=1.602411-. (see Table A).

LEMMA 3.9. When n^2, B4(x, n) is positive for 0<^x<,n and increasing in
0<x<n.

Proof. We have from (3.17)

+3(n-l)(8n2-18n+3)x2+n(2n-3)(14n-5)x+βn2(2n-l),

ί(x, n)=4n(n-lX2n~l)(2n-3)x3+3(2n-3X2n2~13nJrS)x2

, +6(n-l)(8n2-18n+3)x+n(2n-3)(14n-5),

+(2n-3)(2n2-13n+8)x+(n-l)(8n2-18n+3),
from which we see

£4(0, n)=6n\2n-l)>0 for n>0.5 ,

Bίφ, n)=n(2n-3)(Un-5)>0 for n>1.5.
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The discriminant D of B4"(x, n)/6 as a quadratic polynomial of x is given by

D=(2n-3)2(2τ22-13n+8)2-8(n-l)2(2n-l)(2n-3)(8n2-18n+3)

--(2n-3)(120n5-492n4+466n8+259n2-512n+lβ8).

Since we have

(120n5-492n4+466tt3+259n2)//

=2(1200n3-2952n2+1398n+259)>0 for n ^ 2 ,

(120n5-492n4+466n3+259n-512n)/

=600rc4-1968n3+1398n2+518tt-512/t in 2<n<+oo,

= -28 at n=2 and =7.49875 ••• at n=2.02

and
-124 at w=2,

120n5-492n4+466n3+259n2-512n + 168= -4.77919 ••• at n=2.31,

5.18081 ••• at n=2.32,
we see that

D<0 for n>2.31 ••• and D>0 for 2 ^

Therefore we see that when w>2.31 ••• we have

BS(x, n)>0 for - o o < χ < + o o

and so
B'4(x,n)>0 and B^x, n)>0 for (K

Next, we consider the case such that D~^0. Regarding B/'(x, n)/6 we see

0 < S ^ ^ l = ϊ Z n <
4(n — l)(2n — l)(2n— 3) 4(n — l)(2n—1)

and
5/(n, n)=6(8?2 5 -20n 4 -2n 3 +23n 2 -3n-3)

/ in 2<n<+oo, ^18 for n^2.

On the other hand, we have

B'4(x, n ) - | 5 / U , n)=(2n-3)(2n2-13n+8)%2

and
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iU )B/'( ί)-ίΰΛ;c, n)

=(120tt5-492tt4+4ββn3+259n2-512tt + lβ8)x

+(n-l)(96n4-124n3-14On2+153n-24).

For the big root x of B/'(x, n)=0, we obtain from the above expression

2(n-l)(2n-l)jBlU, n)^(120n5-492n4+4ββn3+259n2-512n+lβ8)n

+9β?25-220n4-lβn3+293n2-177n+24

= 120n6-39βtt5+24βn4+243rc3-219n2-9n-f24,

which is increasing in 2<n< + oo and ^18 for n>2. Hence, taking account of
B't(0, n)>0 for n>2, we have also

B'lx, n)>0 for (K

and so

B4(x, n)>0 for 0^
Q.E.D.

LEMMA 3.10. B6(x, ή) has the following

BB(n, n)-n 3(n-l) 2(4n 2-l)>0 for

ii) l̂ /ẑ n 2^n<2.33 , B6(x, n) is convex downward in 0<x<l and / in
Kx<n.

iii) When 2.33 ••• <n^4.17, B5(x, n) is \ in 0<%<l and \/ in Kx<n.

In ii) and iii), 2.33 ••• denotes the greter root of the equation: 260n2—79βn+443

=0, i.e. (199+Vΐ0806)/130=2.330399 .

Proof. From (3.18), we obtain easily i), the discriminant of B'ξ{x, n)/24
becomes

(20n3-β0n2+139n-107)2+5(12n2-

=400n6-1200n5-7640n4+309β0n3-31199n2+2679n+5839,

which is negative for 2^n^4.17 and positive for 4.18^n< + co} as it is shown
by observing its derivatives. Hence, we obtain that when 2^n^4.17

Bζ(x, n)>0 for -

and B5"(x, ή) is increasing in — oo<χ<+oo.
Next, we have
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β6"(0, 72)=-2(120n3-402?22H-271n-21)

>0 for 2^n^2.4 , and <0 for n>2.4 —

β/(l, ?2)=-2(300n3-1722n2+2686n-1189)

>0 for 2^n<3.5 , and <0 for n>3.5

B6"(n, 72)=2(120n5-180n4-14n3-57n2+35n+21)>0 for n ^

5j(0, n)=-n(140n2-228n+39)<0 for

B'6(l, n)=-520n3+2112n2-2478n+886

= -2(n-l)(260n2-796n+443)

>0 fo

and <0 fo

B'δ(n, ή)—n(n — l)(40n4—20n3+14n2+5?z—3)>0 for

Thus, we can imagine the shape of the graph of y=B'δ(x, n) as shown in Fig.
7 and obtain the claims ii) and iii). Finally, we obtain easily from (3.18)

ΰ5(0, n)=-6/22(10n-3),

B5(l, n)=-36(n-mi0n-7),

n x

y

0

2.,

1 t

33"

J
A

n x

-<n<2.4"

y

0 I
4

2.4

1

y 2

/
f

y=B/(x,n)

3.5-- <n&4.17

Fig. 7.
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Bb{n, n)=n3(n-m4n2-l).
Q. E. D.

Now, doing a long elaborate computation, we obtain

(3.19) ^

and we see easily

10n4-25n3+13n2+17n-6^40 for n^

(see Lemma 3.7) and

80n5-346n4+479n3-171n2-48n+3β

is increasing in 2 < n < + o o and J>112 for n ^ 2 . Finally noticing that

(n—x)(log γ-\ ) is decreasing in 0<x<l and increasing in Kx<n with
\ it JL Yl %'

w>l, since we have

and making use of Lemmas 3.8-3.10 and taking account of (3.19), we have in-
vestigated the sign of Π(x, ή) by a computor. We computed approximately the
values of Π(x, n) for 0£x^n with step 1/100 and for 2.2^n^5 with step 1/50,
and then found out for 2.8^ n ^5

(3.20) Π(x,n)>0 for w(n)<x<n, xΦl,

which can be proved by the same way as used in the previous papers, here we
cite some data as follows.

n=2.6: 77(0)=-44.12098, 77(0.49)^0.03175, 77(2.59)=27.05419,

w(2.6)=0.38252, ^(2.6)=1.73948;

n=2.8:/7(0)=-55.80181, 77(0.48)=0.01790, 77(2.79)=57.55155,

w;(2.8)=0.49188, ^(2.8)=1.60241

rc=3.4:77(0)=-103.05941, 77(0.47)=0.05794, 77(3.39)=293.78317,

u;(3.4)=0.68373, z(3.4)=1.36120

n=5: 77(0)=-344.70200, 77(0.45)=0.09335, 77(4.99)=4169.85710,

u;(5)=0.86576, z(5)=l. 14391.
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Thus, we see that

(3.21) Γ(x, n) is increasing in w(n)<x<n, with 2.S<n<5.

Then, we compute approximately the values of Γ(x, n) in order to prove

(3.9) for 5 + / 1 3 + ITjoo" - n - 2 8 F i r s t ' r e ^ a r d i n g t h e expressions in (3.10) we

have the following

LEMMA 3.11. Setting m=(5+VΪ3)/4=2.15138 •••, we have:

is decreasing in 0<x<2.5 and ^0.38443

for 0<x£m with n^m+0.011.

ii) -2(4n-5)x3+(10n2-31?2+23)x2+(20n2-54n+9)x

+3n(10n-3) is positive for 0<x<m with n>2

and \ / \ in 0<x<m with 2^n<2.521

and S\ in 0<x<m with 2.521 ••• <n^3.ββ ••• (2.521 ••• =(27+3V6l)/20).

iii) Q2(x, n)=(n-l)(2n-3)x2+(4n2-10?2+3)x+3n(2?2-l)

is increasing in 0<x<+oo with n>m .

Proof, i) We see easily that

5(4n2+14n-7)

8(4n+l)
->2.5 for n^

hence this polynomial of x is decreasing in 0<x<2.5. Since we have 4m2—10m+3
=0, at x—m this polynomial is equal to

(80-20m)n2-30(m+2)n+45m

>3β.97224n2-124.54164n+9β.81245>0.38443 for n^m+0.011.

ii) Regarding the derivative of the cubic polynomial P of x :

we see that its discriminant >0 for n>2,

10n2-31τ2+23 . . . . o

is increasing in 2<n<+oo ,„.

n=2, g a t «=3, | at n=4,
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and Q becomes at x—2

60n2-274tt+221^-3 for2^n^3.5,

and hence it is negative at x=m when 2^n^3.5, and

20n2-54n+9<0 for 2<n< ^ | p ^ - 2 . 5 2 1 5 3 •••,

> 0 f 0

By solving the quadratic equation on n:

-6(4n-5)m2+2(10n2-31n+23)m+20n2-54n+9=0,

we get the bigger root n=3.66786 •••. Next, we compute the value of P at
x=m as follows. Using 4m2=10m—3, we have

-2(4τ2~5)m3+(10n2-31n+23)m2+(20n2-54?2+9)7n+30n2-9n

=(45m+22.5)n2-(Γ75.5m-29.25)n + 12L5m-36

^4(45m+22.5)-2(175.5m-29.25)+121.5m-36

= -49.5m+112.5=6.00630 >0 for

Hence, from these facts we see that this cubic polynomial P is positive for
0^x£m, with w^(27+3V6ϊ)/20=2.52 .... When 2^n<(27+3V5T)/20, we have
to invextigate its sign at x=x0: the smaller roof of

Since we have

3P-%Q=(10n2-31n+23)x2+2(20n2-54n+9)xH-90n2-27n,

6(4n-5)(3P-%Q)+(10n2-3l72+23)(?

>2(100n4-140n3-475n2+410n+259)%

+200tt4+1000tt3-1124n2-711?2+207
and

100n4-140n3-475n2+410n+259 is increasing in 2<n< + oo

= -13.82063 ••• at n=2.47 and 1.68313- at 72=2.48,
and

10n2-31n+23 7.624

6(4n-5)

for 2^n^2.48, we obtain
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[18(4n-5)P]Λ=Λ;o>2x0.2β(100n4-140n3-475n2+410n+259)

+200n4+1000n3-1124n2-711n+207

=252n4+927.2n3-1371?22-497.8n+341.68>0 for 2^n^2.47 .

From these facts, we can show the graph of y—P(x, n) as Fig. 8.
iii) is easily checked from the expression of Q2(x, ή). Q. E. D.

y=P(χ,n)

2.52" <n<3.66'

Fig. 8.

Then, we computed approximately the values of Γ(x, n) for 0^x<,n with
step 1/100 and for 2.15^n^2.19 with step 1/100 and for 2.2^n^2.9 with step
1/10 and find out

(3.22) Γ(w(n), n)<Γ{Z(n), n) for 2.152^:22.8,

which can be proved, using Lemma 3.11 and developing a special method for n

near ^—, which is ommited here to describe, since it needs a large space.

Thus, we obtain the following

PROPOSITION 8. Z(n) is decreasing in 2.152<^n^22.

§4. Positiveness of η(Xn(x))—η(x, n) and V(x, Xn(x)).

Noticing the arguments developed in §3, we define inductively a series of
constants Zi{n) and Wi(n), * = 1 , 2, •••, as follows:

(4.1)
) \—z(ή), wλ{n) :=w(n),

z2(n) :=Z(ή), w2(n) :=Xn\<

and, supposing Zi(ri) and Wi(n) are defined for i>2 as

zt(n)>z2(n)>
(4.2)
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zt+i(n) and ιvι+1(n) are determined by

ί η(zι+1(ri), n)=η(Wi(n), n) with Kzι+I(n)<n ,
(4.3) i

When n>(l+VΪ3)/2=2.30277 , by means of Proposition 1, if wt{n) satisfies

n(n-l)n~2

then zι+1(n) can be defined by (4.3) and

because 0<wι-1(n)<wi(n)<α(n) and the behavior of η(x, n) as shown in Fig. 3,
and

I>wι+I(n)>wt{n),

which is evident from (4.3) and the property of Xn(x). Considering these facts,
we continue the above process to define zι+2{n) and wι+2(n) as long as (4.4) is
satisfied for z'+l.

PROPOSITION 9. // Zi(n) and Wi(n), i^l, are defined in some interval of

w>(l+VΪ3)/2, then Zι(n) is decreasing and wι(n) increasing there.

Proof. zλ{n), wx(ri) and z2{n) have these properties in (5+Vl3)/4+0.011<:
nfj22 by Propositions 4, 5 and 8. Observing the arguments in the proofs of
these propositions, we see that the arguments are also available for Zi(n) and
Wi{ri), i^2. Hence the statement is true. Q. E. D.

n(n-l)

η(x,n)

f^y
Fig. 9.

PROPOSITION 10. When n>(l+Vl3)/2, we have

η(Xn(x),n)-η(x,n)>0 for 0<x<l.
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Proof. If Wi(n)^α(n), the above inequality holds by Lemma 3.3. So, we
suppose w;i(n)<α(n) and

then

for 0<*<u;(w), since we have

rj{xy n)<0<η(Xn(x), n).

Next, we suppose

n(n-l)n-

and
n(n —l) n " 2

for a fixed z>l. Then, we see Wi(n)<a(n) and

η(Xn(x), n)—η(x, n)>0 for Wi(n)<x^wl+1(n).

And by (4.2) it holds also for 0<x<wt(n). Next, for wι+1(n)<x<l, we have

=F^>η(x, ή).

Q.E.D.

The length of series of 2*(n) and ι^i(n) is depend on n. For each n >

(l+Vl3)/2 we determine j{n) as follows: If

then /(w)=l, otherwise y(w)=z + l by

η(Wi(n), n)> 2 ,-—j and η(wι+1(n), n ) ^ 2 ,—-^ .

We computed the values of Zi(ή), wτ(n) by a main frame computor and found,
for example,
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n

2.303

.310

.32

.33

.34

.35

.36

.37

J\n)

81

30

18

13

11

9

8

7

n

2.38

.39

2.40

.41

.42

2.43

2.46

jXn)

6

6

5

5

5

4

n

2.47

2.55

2.56

2.80

2.90

5.00

jXn)

3

2

1

Now, we try to prove the positiveness of V(x, Xn(x)), by using numerical ap-
proximation by computors. Regarding the expression of V(x, Xn(x)) by (1.13),

we have studied η(x, n) thus far. We know the following facts: i)
l — X

X)

is increasing in 0 < * < l with n>l(Lemma 3.2 in (YΠ)) ii) F2{x) is decreasing
in 0 < x < l with n>2 and positive there (Lemma 3.1 in (YΠ)).

LEMMA 4.1. When n ^ 2 , λ(Xn(x))—λ(x) is decreasing in 0 < x < l and positive
there and

Proof. Setting Xn(x)=X(x), we have

d
dx {λ(X(x))-λ(x)}

dX

(n-l)X\n-X) dx (n-l)x\n-x)

by Lemma 7.1 in (IΠ) and

dX 1-x X(n-X)

hence

dx

dx x(n-x) 1-X '

{λ(X(x))-λ(x)}

(n-l)x(n-x) \X x

Since we have

this function is positive for 0 < x < l .
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Next, we have from (1.8)

lim {λ(X(x))-λ(x)}

= lim \log(n-X)- rτ-^—\og(n-x)+- —-1
χ-++o{ (n — l)X (n — l)x)

nin —

From x(n-x)n-1=X(n-X)n'\ we have

1

* } ^ - l o g n , X=Xn(x).

login-X)+
(n-l)x

2-1)%

-+log(n —*) v-logX,

hence we have

i ίi / v \ , 1 1 n — 2

hm\log(n-X)+~ τr~\ = r-
Λ-*+OI (n — l)x) n — \

from which we obtain

Q.E.D.

Taking account of these facts, we computed approximately the values of
V(x, XnWyin — ϊ)"-1 for 0 < x < l with step 1/100 and 2.30^n^5.00 with step
1/50 by a computor and found that

V(x, XnMXO

for some interval of x as follows:

72=2.30: 0.20 0.99
2.32: 0.25 0.96
2.34: 0.29 0.91
2.36: 0.35 0.85
2.38: 0.43 0.77

and when 2.40^ n ^5.00

(4.4) V(x,Xn(x))>Q for0<x<l,

which can be proved by the same ways which have been used for the verifica-
tions of certain propositions in (VI)-(VIII), in fact, we have prepared so far also
many lemmas and* propositions for this purpose.
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Combining the above result with the ones in (IV)-(YDI), we obtain the main
theorem of this paper as follows.

THEOREM C. The period T as a function of τ—{xι—l)/(n — 1) and n is
monotone decreasing with respect to n>2A for any fixed Γ ( 0 < Γ < 1 ) .

Remark. By the fact disclosed in this paper, we see that, to prove Theorem
C by means of (4.4), n—2A is nearly the lower limit of the available interval of
n. Therefore, we have to develope completely different methods from the ones
used until now for 2^n<2.4.

At last, we cite the table of the constants used in the arguments in the
present paper.

n

2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25

2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35

2.36

2.37
2.38
2.39
2.40
2.41
2.42

a

1.136433
1.125524
1.114824
1.104334
1.094053
1.083979
1.074113
1.064450
1.054989
1.045726

1.036659
1.027785
1.019098
1.010597
1.999410
0.994133
0. 986165
0.978365
0.970731
0.963259

0. 955944
0.948783
0.941773
0.934909
0.928188
0.921607
0.915161

Table A

w

0.003389
0.009526
0.016968
0.025294
0.034253
0. 043671
0.053421
0.063405
0.073547
0.083788

0.094080
0.104383
0.114666
0.124905
0.135077
0.145167
0.155161
0.165048
0.174819
0.184468

0.193988
0.203377
0.212631
0.221748
0.230726
0.239565
0.248265

z

2.151726
2.148953
2.144188
2.137989
2.130695
2.122543
2.113711
2.104338
2.094537
2.084398

2.073995
2.063391
2.052638
2.041781
2.030856
2.019895
2.008925
1.997968
1.987044
1.976170

1.965360
1.954625
1.943976
1.933421
1.922968
1.912623
1.902390

Z

2.146321
2.136309
2.123337
2.108150
2.091227
2.072922
2.053505
2.033198
2.012180
1.990601

1.968586
1.946244
1.923664

1.900926
1.878095
1.855231
1.832382
1.809591
1.786895
1.764327

1.741912
1.719676
1.697637
1.675812
1.654217
1.632864
1.611761
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2.43
2.44

2

2,
2,
2,
2,
2.
2.
2.
2.
2.
3.

3.
3.

CO*

3.

CO*
CO*

3.
3.
3.
4.

4.
4.
4.
4.

4.
4.
4.
4.
4.
5.

2.

CO*

.45

.46

.47

.48

.49
,50
,6
,7
8
9
0

1

2
3
4
5
6
7
8
9
0

1
2
3
4
5
6
7
8
9
0

84
24

0.908847
0.902663
0.896604

0.890667
0.884850
0.879150
0.873562
0.868085
0.818805
0.777915
0.743593
0.714475
0.689531

0.667975
0.649199
0.632727
0.618184
0.605268
0.593735
0.583388
0.574062
0.565621
0.557953

0.550963
0.544568
0.538702
0.533303
0.528323
0.523717
0.519447
0.515479
0.511785
0.508339

0.731385
0.642357

5+VΪ
4

1+VΪ

0.256827
0.265249
0.273535

0.281684
0.289699
0.297581
0.305332
0.312954
0.382522
0.441509
0.491885
0.535272
0.572949

0.605919
0.634976
0.660745
0.683731
0.704341
0.722906
0.739702
0.754955
0.768857
0.781570

0.793229
0.803953
0.813842
0.822982
0.831451
0.839313
0.846627
0.853444
0.859809
0.865761

0.510000
0.645647

1
1
1

1
1
1
1
1
1
1
1
1,
1,

1.
1.
1.
1.

1.
1.
1.
1.
1.
1.

1.
1.

1.
1.
1.
1.
1.
1.
1.
1.

1.
1.

.892274

. 882278

. 872405

.862656

.853034

. 843538

. 834171

. 824932

. 739489

.665843

.602412

.547598

.500000

,458442
421960
389763
361204
335751
312964
292480
273994
257251
242034

228162
215476
203845
193151
183296
174193
165765
157946
150679
143911

579536
408606

--2.151387819-,

3
 =2.302775638- •-.

1
1
1

1
1
1
1
1
1
1
1,
1,
1,

1.
1.

1.

. 590919

.570343

.550039

.530012

.510264

. 490797

. 471613

. 452713

.279068

.131452

.006263

.000051

.000040

,000038
000030

000070
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