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THE GELFAND THEOREM AND ITS CONVERSE

IN SASAKIAN GEOMETRY

BY O. KOWALSKI AND L. VANHECKE

1. Introduction.

The φ-symmetric spaces have been introduced in Sasakian geometry by T.
Takahashi [10] where they seem to be the analogs of the symmetric spaces.

Symmetric spaces have been studied extensively and they have some
remarkable properties. In particular, it is well-known that for a symmetric
space M—G/H, where G denotes the connected component of the identity of
the full isometry group S(M), the algebra £){G/H) of invariant differential
operators is commutative. This is known as the Gelfand theorem. But the
converse theorem is not true in general. There are a lot of non-symmetric
homogeneous Riemannian manifolds where this algebra is commutative. However,
it is shown in [9] that the Hermitian symmetric spaces can be characterized
as the homogeneous Kahler manifolds with commutative algebra 3){G/H), where
G denotes the connected component of the identity of the group of holomorphic
isometries.

The main purpose of this paper is to derive a similar result for ^-sym-
metric spaces using here the group of automorphisms of the Sasakian structure.
However, we do not obtain a complete commutativity but only commutativity
modulo the characteristic differential operator determined by the characteristic
vector field.

At the same time we derive a second characterization of ^-symmetric spaces
using the property that all geodesies are orbits of one-parameter subgroups of
automorphisms.

2. Preliminaries.

A C°° manifold M 2 n + 1 is said to be an almost contact manifold if the structural
group of its tangent bundle is reducible to U(n)xl. As is well-known, such a
manifold admits a tensor field φ of type (1, 1), a vector field ξ and a one-form
-η satisfying
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These conditions imply that φξ=O and η°φ=§. Moreover, M admits a Rie-
mannian metric g satisfying

g{φX, φY)=g(X, Y)-η{X)η{Y)

for any tangent vector fields X and Y. Note that this implies τ](X)=g{X, ξ).
M together with these structure tensors (g, φ, η, ξ) is said to be an almost
contact metric manifold.

If now these structure tensors satisfy

=g(X, Y)ζ-η(Y)X,

where 7 denotes the Riemannian connection of g, then M is said to be a
Sasakian manifold. This condition implies

from which it follows that ξ is a Killing vector field. Further, the curvature
tensor

of a Sasakian manifold satisfies

Rχ*Y=g(X, Y)ξ-η{Y)X,

RχYξ=7){X)Y-η{Y)X.

A plane section in TmM2n+1, m^M, is called a φ-section if it possesses an
orthonormal basis of the form {X, φX}, where I e T m M 2 n + 1 is a vector orthog-
onal to ξm. The sectional curvature K(X, φX)-H{X)—R{Xf φX, X, φX) is called
the associated φ-sectional curvature. (We refer to [1], [13] for more details and
references about Sasakian geometry.)

A geodesic j o n a Sasakian manifold is said to be a φ-geodesic if η(γ') =Q.
It is easy to see that a geodesic which is orthogonal to ξ at one point remains
orthogonal to ξ.

A local diffeomorphism sm of M defined in a neighborhood UdM of the
point m^M is said to be a φ-geodesic symmetry if for each point p from U
which lies on the integral curve of ξ through m, and for each ^-geodesic γ(s)
such that 7(0)=p we have

for all 5 with γ(±s)^U, s being the arc length. Note that

T. Takahashi introduced [10] the notion of a locally φ-symmetric space by
requiring that
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(1) φ\ΊvR)xγZ=0

for all vector fields V, X, Y, Z orthogonal to ξ. This is equivalent to

for all vector fields V, X, Y, Z, W orthogonal to ξ.
Now we state several equivalent properties of (1). First, let 0 be a neigh-

borhood on M on which ξ is regular. Then, as is well-known, the fibration
π:U->U=U/ξ gives a Kahler structure (/, G) on the base manifold U. We
have

PROPOSITION 1 [10]. A Sasakian manifold is a locally φsymmetric space if
and only if each Kahler manifold, which is the base space of a local fibering, is
a Hermitian locally symmetric space.

Next, let

φ(X,Y)=dη(X,Y)=g{X,φY).

Then we have

PROPOSITION 2 [2]. Let M be a Sasakian manifold. Then M is a locally
φ-symmetric space if and only if the local φ-geodesic symmetries are

i ) φ-preserving, or
ii) φ-preserving, or
iii) η-preserving, or
iv) g-preserving.

Finally, the following characterization will prove to be useful.

PROPOSITION 3 [3]. A Sasakian manifold is locally φ-symmetric if and
only if

^ χRχφxxΨx—0

for all vector fields X orthogonal to ξ.

M. Okumura determined on a Sasakian manifold M with structure tensors
(<P> V> £> S) a linear connection 7, which is very useful for the study of Sasakian
geometry, by

lχY^χY-TxY

where

( 2 ) TxY=-dη{X, Y)ξ+*η{X)φY-η{Y)φX.

The torsion of 7 is — 2T and by direct computation we find easily
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Moreover, if R denotes the curvature tensor of 7 we have

PROPOSITION 4 [10]. A necessary and sufficient condition for a Sasakian
manifold to be locally φ-symmetric is that VR=0.

In particular, this implies that a locally ^-symmetric space is locally homo-
geneous and since (2) implies

it follows (see [11]) that T is a naturally reductive structure on M. This
implies that a complete simply connected locally ^-symmetric space is a naturally
reductive homogeneous space. 1 is the canonical connection with respect to the
natural reductive decomposition. As is shown in [3], this leads to

PROPOSITION 5. Let M be a complete, connected, simply connected Sasakian
manifold. Then M is a globally φ-symmetric space if and only if M is a naturally
reductive homogeneous space with invariant Sasakian structure.

Note that in [10] a globally φ-symmetric space M is defined as a Sasakian
manifold such that any ^-geodesic symmetry of M is extendable as a global
automorphism of M and such that the Killing vector field ξ generates the one-
parameter group G1 of global transformations which are automatically auto-
morphisms of M. In this case the group Λ(M) of all automorphisms of M is a
transitive Lie transformation group of M and since a homogeneous Sasakian
manifold is regular, M is a principal G ̂ bundle over a Kahler manifold B, which
is a Hermitian symmetric space.

Note also that a complete simply connected Sasakian locally ^-symmetric
space is globally ^-symmetric [10].

3. ^-Geodesies and one-orbits of automorphisms.

In this section we give a new characterization of ^-symmetric spaces using
^-geodesies. We start with

THEOREM 6. A Sasakian manifold M is a locally φ-symmetric space if and
only if the φ-sectional curvature H(γ') is constant along the φ-geodesic γ for all γ.

Proof. Let γ be a ^-geodesic. Then H(γ') is constant along γ if and only if

T \ Kf <PT' 7' <P7'' *

This is equivalent to

( 3 ) Ίr Rr φ7. r ψ7. +2Rr cvr ψ^r r φr,=0.

But, using the formulas of section 2, we have
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Φfφ)r'=ξ,
and

So (3) is equivalent to

and hence r7χRχφxxφx=0 for any X orthogonal to ξ. Now the result follows
from Proposition 3.

From this we obtain

COROLLARY 7. Let M be a Sasakian manifold and suppose that each φ-geodesic
is an orbit of a one-parameter group of automorphisms of the Sasakian structure.
Then M is a locally φ-symmetric space.

Proof. We just have to note that H(γ') is constant along any ^-geodesic γ.

Note that the converse follows from the properties given in section 2: On each
complete simply connected locally ^-symmetric space, each ^-geodesic is an orbit
of a one-parameter subgroup of automorphisms of the Sasakian structure. In
fact, each geodesic is such an orbit.

Corollary 7 provides a new proof for a part of Proposition 5.

4. Invariant differential operators and the Gelfand theorem.

Let M=G/H be a homogeneous space where G is a connected Lie group
and H a closed subgroup. A differential operator D on M is said to be invariant
with respect to G if

(Df)og=D(f*g)

for all g&G and all smooth functions / with compact support.
A well-known result by Gelfand states that each Riemannian globally sym-

metric space (M, g), for which I0(M) is the identity component of the full
group of isometries, has the property that the algebra of all 70(M)-invariant
differential operators on M is commutative. But there are also a lot of non-
symmetric Riemannian homogeneous spaces with the same property. In partic-
ular, all naturally reductive spaces of dimension ^ 5 have this property. (This
is no longer true for higher dimensions, as has been shown in [6].)

Further, we proved in [9] a converse for the Gelfand theorem in the frame-
work of Kahler geometry (see also [12]):

PROPOSITION 8 [9]. Let (M, g, J) be a simply connected homogeneous Kahler
manifold. Then (M, g, J) is Hermitian symmetric if and only if the algebra of
invariant differential operators, with respect to the identity component of the
group of holomorphic isometries, is commutative.
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Remark. It has been shown in [7], [8] that naturally reductive spaces M
in dimension 3 and 5 are always "commutative" with respect to 70(M). Hence
the globally ^-symmetric spaces of dimension 3 and 5 are commutative with
respect to /0(M). We do not know if this is true for arbitrary dimension

In what follows let M be a homogeneous Sasakian manifold with structure
tensors (g, φf η, ξ). Then M is a reductive homogeneous space, M—G/H,
where G—B0(M), the identity component of the full automorphism group B(M)
of the Sasakian structure and H is the isotropy subgroup at the origin p^M.
Consider the algebra £>(G/H) of all G-invariant differential operators on
M—G/H. Each transformation « e G preserves the canonical vector field ξ,
and hence ξ can be interpreted as an element of £){G/H).

We are going to prove the following Sasakian version of the Gelfand theo-
rem and its converse:

THEOREM 9. Let M be a simply connected homogeneous Sasakian manifold.
Then M is a globally φ-symmetric space if and only if the algebra <D(G/H) is
commutative modulo ξ.

Proof. First, we know that the homogeneous Sasakian manifold is a prin-
cipal G*-bundle over a Kahler manifold M, where G1 is a one-dimensional Lie
group isomorphic to the one-parameter group of global transformations generated
by ζ. Let A(M) be the group of all automorphisms of the Kahler manifold M.
Obviously, G1 is a Lie subgroup of G and it belongs to the center ̂ of B(M).
Hence G—G/G1 is a Lie group isomorphic to a subgroup of A(M). If we
identify G with this subgroup (which acts transitively on M), M can be written
in the form M=G/H, where H is the isotropy subgroup at x~π(p)^M. The
projection G-+G induces an isomorphism of^H onto H because HΓ\G1={e} in G.

Consider now the algebra £)(G/H) of G-invariant differential operators on
M. We prove

PROPOSITION 10. There is a canonical projection (an algebra homomorphism
onto) p: £D(G/H)->$(G/H) with kernel £)(G/H)ξ.

Proof. Consider an ad(#)-invariant decomposition g—m+h and an ad(//)-
invariant decomposition g=m+h (such decompositions always exist). According
to [4], we can obtain the operator algebra 3)(G/H) in a purely algebraic way,
as follows: Let S(m) be the algebra of all polynomial functions on the dual
space ra* of m. (For any basis {Xlf •••, Xn\ of m, S(m) can be identified with
the polynomial ring R[_XU •••, Xn~l>) Denote by 3){G) the algebra of all left-
invariant differential operators on G (this can be identified with the universal
enveloping algebra U(g)). We can introduce the operation λ: S(m)->£)(G), called
"symmetrization", as follows: for any vectors Ylf---,YP selected from the
basis {Xu -" , Xn} of m put
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(where σ is running over all permutations of {1, •••, p}) and extend this map
to the whole of S(m) by the linearity. It is known that λ is an injective linear
map. Now, all elements of the algebra <D(G) determine some differential operators
on G/H. If we denote by I(m)dS(m) the subring of all ad(//)-invariant poly-
nomial functions, then λ(I(m)) can be identified with £)(G/H) via a bijection.

On the other hand, a generator Z of the one-dimensional central subalgebra
gιdg determines the vector field ξ as an element of <D(G/H). Hence the
decomposition g—mΛ-h can always be chosen such that g1dm, and we can
write m=m'+g1 (an orthogonal decomposition with respect to the scalar product
<,> on m~TvM). In particular we get aά(H)m/dm/ because ad(i/) preserves
the scalar product.

We can consider an analogous construction for the algebra £){G/H) using
the ad(H)-invariant decomposition g=m-\-h. Now, consider the projection
« g-+g with the kernel g1. Then a maps isomorphically mr onto m and h
onto h. We obtain a natural isomorphism between S(m') and S(m) and also
between I(m') and l{m) (we note that aά(H) acts on mf exactly in the same
way as ad(//) acts on m). Further, I(m)=I(m/)®I(m)g\ Finally, the projection
a: g-+g induces a projection U(a): U(g)->U(g) with the kernel U(g)g1 (g1 belongs
to the center of U(g)), i.e., a projection £)(G)->3)(G) with the kernel £KG)ξ.
Now, λ(I(m))C.U(g) is mapped on the whole of λ(I(m))CZU(g) because so is
already λ(I(m'))c:λ(I(m)). The fact that the kernel must be ^(/(m))^1 is now
obvious. Hence our Proposition follows.

Hence we obtain

COROLLARY 11. The algebra £>{G/H) is commutative if and only if £)(G/H)
is commutative modulo ξ.

Let now M be globally ^-symmetric and let s: M-+M be the ^-symmetry
with the origin J G M as center. Then one can see easily that (G, HxG1)
forms a symmetric pair with respect to the involution σ: G->G given by
gt->s°gos. Then (G, H) forms a symmetric pair with respect to the involution
σ : G^G induced by σ via the projection. According to [5, Corollary 5.4, p. 293],
the algebra £>(G/H) is commutative and hence £)(G/H) is commutative modulo ξ.

Conversely, let 3){G/H) be commutative modulo ξ. Then W(G/H) is com-
mutative and according to [9], the space M is locally Hermitian symmetric. So,
Proposition 1 implies that the Sasakian manifold M is locally ^-symmetric.
Because M is also complete and simply connected, it is globally ^-symmetric.
This completes the proof.
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