DEFORMATIONS OF SOME ALGEBRAIC SURFACES WITH $q=0$ AND $p_{g}=1$

By Naoki Hashimoto

§ 1. Introduction.

Let M^{a} be an affine algebraic surface in \boldsymbol{C}^{3} defined by $h(w)=1+\sum_{\imath=1}^{3} w^{A_{\imath}}=0$ where A_{1}, A_{2}, A_{3} are linearly independent non-negative integral vectors. Let Δ be the simplex in \boldsymbol{R}^{3} spun by $\overrightarrow{0}, A_{1}, A_{2}$ and A_{3}. In [6,7], Oka showed that M^{a} has a canonical smooth compactification in a toric variety W of dimension three. Let A_{4}, \cdots, A_{l} be the other integral points on Δ and let $h_{t}(w)=h(w)$ $+\sum_{i=4}^{l} t_{i} w^{A_{i}}$. There exists a Zariski open set U^{e} of C^{l-3} such that the family of affine algebraic surfaces $M_{t}^{a}=\left\{h_{t}(w)=0\right\}$ ($t \in U^{e}$) has a simultaneous smooth compactification M_{t} in $W\left(M_{0}=M\right)$. This deformation is called the embedded deformation of M ([7]). Let ν_{t} be the sheaf of the germs of the holomorphic section of the normal bundle of M_{t} in W and let Θ_{t} and Θ_{W} be the sheaves of the germ of holomorphic vector fields of M_{t} and W respectively. We have the canonical exact sequence:

$$
\begin{equation*}
0 \longrightarrow \Theta_{t} \longrightarrow \Theta_{W} \mid M_{t} \longrightarrow \nu_{t} \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

This induces the following long exact sequence:

\[

\]

In [7], Oka has studied the infinitesimal displacement map

$$
\begin{equation*}
\xi^{e}: T_{t} U^{e} \longrightarrow H^{0}\left(M_{t}, \nu_{t}\right) \tag{1.3}
\end{equation*}
$$

and the Kodaira-Spencer map $\delta \circ \xi^{e}$ where δ is the canonical homomorphism

$$
\begin{equation*}
\delta: H^{0}\left(M_{t}, \nu_{t}\right) \longrightarrow H^{1}\left(M_{t}, \Theta_{t}\right) . \tag{1.4}
\end{equation*}
$$

The dimension of $\operatorname{Ker} \delta$ is at least 3. He gives an example (See § 7, [7]) where $\operatorname{dim} \operatorname{Ker} \delta=3$ and δ is surjective.

The purpose of this note is to give an example of an algebraic surface M embedded in a toric variety W such that $\operatorname{dim} \operatorname{Ker} \delta=12$ and δ is not surjective (Theorem 2.11). $\quad M$ is locally defined by $h(w)=1+w_{1}^{8}+w_{1}^{2} w_{3}^{4}+w_{1}^{3} w_{2}^{2}=0$.

The Author is greatly indebted to Professor M. Oka for many helpful suggestions and discussions, and for reading the manuscript.

§ 2. Deformation of surfaces M.

In this section, we study the algebraic surface M introduced in $\S 1$ and its deformation $\left\{M_{t}\right\}$ through the infinitesimal displacement. We use the same notation as in [6, 7].

Let M^{a} be the affine algebraic surface in \boldsymbol{C}^{3} which is defined by

$$
\begin{equation*}
h(w)=1+w_{1}^{8}+w_{1}^{2} w_{3}^{4}+w_{1}^{3} w_{2}^{2}=0 . \tag{2.1}
\end{equation*}
$$

Let Δ be as in $\S 1 . \Delta$ has 27 other integral points A_{4}, \cdots, A_{30} and let $h(w, t)=$ $h(w)+\sum_{j=4}^{30} t_{j} w^{A}, \quad M_{t}^{a}$ is defined by $h(w, t)=0$. For the compactification of M_{t}^{a}, we consider the homogeneous polynomial $f_{\mathcal{E}}(z, t)$ which is defined by

$$
\begin{equation*}
f_{\mathcal{E}}(z, t)=h_{\Xi}\left(z_{1} / z_{0}, z_{2} / z_{0}, z_{3} / z_{0}, t\right) \cdot z_{0}^{8} . \tag{2.2}
\end{equation*}
$$

and let

$$
\begin{equation*}
f(z, t)=f_{z}(z, t)+z_{2}^{L}+z_{3}^{L}, \tag{2.3}
\end{equation*}
$$

for sufficiently large L. Let M_{t} be the compactification of M_{t}^{α} through the troidal embedding theory as in [7]. M_{t} has the following numerical invariants.

$$
\begin{equation*}
K^{2}=0, \quad e\left(M_{t}\right)=24, \quad \pi_{1}\left(M_{t}\right) \cong Z / 2 Z \quad \text { and } \quad p_{g}=1 \tag{2.4}
\end{equation*}
$$

Here K is a canonical divisor, $e\left(M_{t}\right)$ is the topological Euler characteristic and p_{g} is the geometric genus. For the calculation, we use $\S 9$ of [5]. M_{t} is a minimal surface. Let us recall the compactification M_{t} of M_{t}^{a}. Let $V_{t}=f^{-1}(0)$ (t is fixed). The dual Newton diagram $\Gamma^{*}(f)$ contains five particular vertices $P_{1}={ }^{t}(5,3,0,2), P_{2}={ }^{t}(3,5,0,2), P_{3}={ }^{t}(1,1,1,2), P_{4}={ }^{t}(1,1,2,1)$ and $P=^{t}(1,1,1,1)$. Let Σ^{*} be a simplicial unimodular subdivision of $\Gamma^{*}(f)$ and let $\hat{\pi}: X \rightarrow \boldsymbol{C}^{3}$ be the associated birational proper morphism and let \tilde{V} be the proper transform of V. For each strictly positive vertex Q of Σ^{*} with $\operatorname{dim} \Delta(Q) \geqq 1$, there is a corresponding exceptional divisor $\hat{E}(Q)$ and $E(Q)$ of $\hat{\pi}: X \rightarrow \boldsymbol{C}^{3}$ and $\hat{\pi}: \tilde{V} \rightarrow V$ respectively. $\hat{E}(Q)$ is a toric variety. Then it is shown in $[5,6]$ that the exceptional divisor $E(P)$ is a smooth compactification of M_{t}^{a} which is a hypersurface in the toric variety $\hat{E}(P)$. We denote $\hat{E}(P)$ by W hereafter. Let \mathcal{S} be the 3 -simplexes of Σ^{*} which contains P as a vertex. Then S gives a canonical affine coordinate system of W. In our case, $|\mathcal{S}|$ is 24 . For a vertex Q which is adjacent to P and $\operatorname{dim} \Delta(P) \cap \Delta(Q) \geqq 1$, there is a corresponding divisor $C(Q)$ of M_{t}. In our case, we have the divisor $C\left(T_{12}\right)$ besides $C\left(P_{2}\right)(i=1, \cdots, 4)$ where $T_{12}={ }^{t}(2,2,0,1)$.

Take the following 3 -simplex $\sigma=\left(P, R, P_{2}, P_{3}\right)$ in \mathcal{S} where $R=^{t}(3,4,1,3)$. σ is fixed hereafter. The defining equation of M_{t} in $\boldsymbol{C}_{\sigma}^{\mathbf{s}}$ is

$$
\begin{equation*}
h_{\sigma}(y, t)=y_{1}+y_{1}^{9} y_{2}^{16}+y_{1}^{3} y_{3}^{4}+1+\sum_{j=4}^{30} t y^{B}=0 . \tag{2.5}
\end{equation*}
$$

where the monomials $y^{B_{J}}(j=4, \cdots, 30)$ are embedded monomials. As l is 30 , the dimension of the embedded deformation is 27 . Then by Theorem (5.1) of [7], we have the next Lemma.

Lemma 2.6.

$$
\operatorname{dim} H^{0}\left(M_{t}, \nu_{t}\right)=30 .
$$

By the Riemann-Roch theorem, we have the Euler-Poincare characteristics $\chi\left(\Theta_{t}\right)$ is -20 .

Lemma 2.7.

$$
H^{0}\left(M_{t}, \Theta_{W} \mid M_{t}\right) \cong \boldsymbol{C}^{12} \quad \text { and } \quad H^{0}\left(M_{t}, \Theta_{t}\right)=0
$$

Proof. We follow the method of calculation in §7 of [7]. Take the 3simplex $\tau=\left(P, P_{1}, S, P_{4}\right)$ in \mathcal{S} where $S={ }^{t}(4,3,2,3)$. We denote $y_{\sigma \imath}, y_{\tau \imath}$ by y_{\imath}, u_{\imath} respectively. Then we have $y_{1}=u_{1}^{16} u_{2}^{7} u_{3}^{-2}, y_{2}=u_{1}^{-9} u_{2}^{-4} u_{3}$ and $y_{3}=u_{1}^{-12} u_{2}^{-5} u_{3}$. Let $v \in H^{0}\left(M_{t}, \Theta_{W} \mid M_{t}\right)$. By the GAGA-principle, v can be expressed in $\boldsymbol{C}_{\sigma}^{3} \cap M_{t}$ as $\sum_{j=1}^{3} v_{j} \frac{\tilde{\partial}}{\partial y_{2}}$ where v_{j} is a Laurent polynomial in y_{1}, \cdots, y_{3} and $\frac{\tilde{\partial}}{\partial y_{j}}$ is equal to $y_{j} \frac{\partial}{\partial y_{j}}$ by definition. We may assume that v_{j} has a regular form on $C\left(P_{1}\right)$ and $C\left(P_{4}\right)$ simultaneously (For the definitions of divisors $C\left(P_{2}\right)$ and regular forms, see Lemma (7.6) of [7]). Assume that the monomial y^{ν} has a non-zero coefficient in v_{i}. As we have

$$
\begin{equation*}
y^{\nu}=u_{1}^{16 \nu_{1}-9 \nu_{2}-12 \nu_{3}} u_{2}^{7 \nu_{1}-4 \nu_{2}-\sigma \nu_{3}} u_{3}^{-2 \nu_{1}+\nu_{2}+\nu_{3}}, \tag{2.8}
\end{equation*}
$$

we must have $8 \nu_{2}+8 \nu_{3}+8 \geqq 16 \nu_{1} \geqq 9 \nu_{2}+12 \nu_{3}-1$. Combine this with $\nu_{2} \geqq-\delta_{i 2}$, $\nu_{3} \geqq-\delta_{i 3}$ where $\delta_{i j}$ is the Kronecker's symbol. The possible cases are $\frac{\tilde{\partial}}{\partial y_{2}}$, $y_{1} y_{3} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1} y_{2} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1}^{2} y_{2} y_{3}^{2} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1}^{2} y_{2}^{2} y_{3} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1}^{2} y_{2}^{3} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1}^{\mathbf{s}} y_{2}^{4} y_{3} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1}^{3} y_{2}^{\frac{5}{2}} \frac{\tilde{\partial}}{\partial y_{i}^{i}}$, $y_{1}^{4} y_{2}^{7} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1}^{5} y_{2}^{9} \frac{\tilde{\partial}}{\partial y_{2}}(i=1,2,3), \quad y_{2}^{-1} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{1} y_{2}^{-1} y_{3}^{2} \frac{\tilde{\partial}}{\partial y_{2}}, \quad y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, \quad y_{2} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}$, $y_{1} y_{2}^{2} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, \quad y_{1} y_{2}^{3} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, \quad y_{1}^{2} y_{2}^{4} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, \quad y_{1}^{2} y_{2}^{5} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, \quad y_{1}^{3} y_{2}^{6} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, y_{1}^{4} y_{2}^{8} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}$, $y_{1}^{5} y_{1}^{10} y_{3} \frac{\tilde{\partial}}{\partial y_{3}}$ and $y_{1}^{6} y_{1}^{12} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}$. After checking their linear combinations in detail, we have

$$
\begin{align*}
v= & \alpha_{1} \frac{\tilde{\partial}}{\partial y_{1}}+\alpha_{2} y_{1} y_{3} \tilde{D}+\alpha_{3} y_{1} y_{2} \tilde{D}+\alpha_{4} y_{1}^{2} y_{2}^{2} y_{3}+\tilde{D}+\alpha_{5} y_{1}^{2} y_{2}^{3} \tilde{D} \tag{2.9}\\
& +\alpha_{6} y_{1}^{3} y_{2}^{4} y_{3} \tilde{D}+\alpha_{7} y_{1}^{3} y_{2}^{5} \tilde{D}+\alpha_{8} y_{1}^{4} y_{2}^{7} \tilde{D}+\alpha_{9} \frac{\tilde{\partial}}{\partial y_{2}}+\alpha_{10} \frac{\tilde{\tilde{o}}}{\partial y_{3}} \\
& +\alpha_{11} y_{2} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}+\alpha_{12} y_{1} y_{2}^{3} y_{3}^{-1} \frac{\tilde{\partial}}{\partial y_{3}}, \quad \text { in } \boldsymbol{C}_{\sigma} \cap M_{t},
\end{align*}
$$

where $\alpha_{i} \in \boldsymbol{C}(i=1, \cdots, 12)$ are arbitrary constants, and

$$
\tilde{D}=2 \frac{\tilde{\partial}}{\partial y_{1}}-\frac{\tilde{\partial}}{\partial y_{2}}-\frac{\tilde{\partial}}{\partial y_{3}} .
$$

On the other hand, an easy calculation shows that v as in (2.9) is holomorphic on M_{t}. Thus, $H^{0}\left(M_{t}, \Theta_{W} \mid M_{t}\right) \cong \boldsymbol{C}^{12}$.

Now we consider $H^{0}\left(M_{t}, \Theta_{t}\right)$. Let v be as in (2.9). We can write v as $v=\sum_{\imath=1}^{12} \alpha_{\imath} X_{\imath}$. We show that the mapping $\theta: H^{0}\left(M_{t}, \Theta_{W} \mid M_{t}\right) \rightarrow H^{0}\left(M_{t}, \nu_{t}\right)$ is injective. Assume that $\theta(v)_{\sigma}=\sum_{i=1}^{12} \alpha_{\imath} X_{i}\left(h_{\sigma}\right) \equiv 0$ modulo $h_{\sigma}(y, t)$. We claim that all $\alpha_{2}(i=1, \cdots, 12)$ vanish. We have,

$$
\begin{aligned}
\sum_{i=1}^{12} \alpha_{\imath} X_{i}\left(h_{\sigma}\right) & =\sum_{\imath=1}^{12} \alpha_{\imath} X_{i}\left(h(y)+\sum_{j=4}^{30} t_{j} y^{A_{j}}\right) \\
& =\sum_{j=1}^{30} t_{j} \sum_{i=1}^{12} \alpha_{\imath} X_{i}\left(y^{A_{j}}\right)
\end{aligned}
$$

where $t_{1}=t_{2}=t_{3}=1$. We can see that the support of $X_{i}\left(y^{A^{\prime}}\right)$ is included in the support of h_{σ}. As the right hand side of the above equality has no constant term, this implies $\sum_{i=1}^{12} \alpha_{\imath} X_{i}\left(h_{\sigma}\right) \neq 0$ modulo h_{σ}. This shows that the mapping θ is injective, completing the proof of Lemma (2.7).

Lemma 2.10.

$$
H^{2}\left(M_{t}, \Theta_{W} \mid M_{t}\right)=0 .
$$

Proof. By the Serre duality, we have isomorphism

$$
\begin{aligned}
H^{2}\left(M_{t}, \Theta_{W} \mid M_{t}\right) & \cong H^{0}\left(M_{t}, \Omega_{W}^{1}(K)\right) \\
& \cong H^{0}\left(M_{t}, \Omega_{W}^{1} \mid M_{t}\left(6 C\left(P_{2}\right)-C\left(P_{3}\right)+C\left(T_{12}\right)\right)\right)
\end{aligned}
$$

as we have $K=6 C\left(P_{2}\right)-C\left(P_{3}\right)+C\left(T_{12}\right)$ by an easy calculation. Ω_{W}^{1} is the sheaf of the germs of 1 -forms. on W. Let $\omega=\sum_{i=1}^{3} Y_{i} \tilde{d} y_{i}$ be a rational 1-form and assume that the restriction of ω is in $H^{0}\left(M_{t}, \Omega_{W}^{1} \mid M_{t}\left(6 C\left(P_{2}\right)-C\left(P_{3}\right)+C\left(T_{12}\right)\right)\right.$. Let y^{ν} be a monomial with non-zero coefficient in Y_{\imath} (i : fixed). Then by Lemma (7.4) of [7], we have. $\nu_{2} \geqq-6+\delta_{i 2}, \nu_{3} \geqq 1+\delta_{i 3}$ and $8 \nu_{2}+8 \nu_{3} \geqq 16 \nu_{1} \geqq 9 \nu_{2}+12 \nu_{3}$. This
has the unique integral solution $\nu=(-2,-5,1)$. Let $\tau^{\prime}=\left(P, P_{1}, T_{12}, S^{\prime}\right)$ where $S^{\prime}={ }^{t}(5,4,1,3)$. Using $K=2 C\left(P_{2}\right)-2 C\left(P_{3}\right)+C\left(P_{4}\right)$ on $\boldsymbol{C}_{\tau^{\prime}} \cap M_{t}$, and assuming that the restriction of ω is in $H^{0}\left(M_{t}, \Omega_{w}^{1}(K)\right.$), we have $\nu_{2} \geqq-2+\delta_{i 2}, \nu_{3} \geqq 2+\delta_{i 3}$, $16 \nu_{1}-9 \nu_{2}-12 \nu_{3} \geqq 0$ and $4 \nu_{1}-2 \nu_{2}-3 \nu_{3} \geqq 0$. The above integral solution does not satisfy these inequalities. Hence, we have $H^{2}\left(M_{t}, \Theta_{W} \mid M_{t}\right)=0$. This completes the proof of Lemma (2.10).

Now we are ready to show that
Theorem 2.11. The Kodaira-Spencer map

$$
\delta \circ \xi^{e}: T_{t} U^{e} \longrightarrow H^{1}\left(M_{t}, \Theta_{t}\right),
$$

is neither injective nor surjective.
Using Theorem (5.1) of [7], we get
Corollary 2.12. The canonical homomorphism

$$
\delta: H^{0}\left(M_{t}, \nu_{t}\right) \longrightarrow H^{1}\left(M_{t}, \Theta_{t}\right)
$$

is neither injective nor surjective.
Proof of Theorem 2.11. We consider the exact sequence (1.2). Considering the section $\phi \in H^{0}\left(M_{t}, \nu_{t}\right)$ such that $\phi_{\sigma}=1$, we have that the normal bundle N_{t} is defined by the divisor $(\phi)=\left[16 C\left(P_{1}\right)+4 C\left(T_{12}\right)\right]$. The notation ϕ_{σ} is the same as in §7, [7]. By the Riemann-Roch theorem, we have $\chi\left(\nu_{t}\right)=30, \chi\left(\Theta_{t}\right)=-20$ and $\chi\left(\Theta_{W} \mid M_{t}\right)=10$. Then we get $H^{2}\left(M_{t}, \nu_{t}\right)=0$, and using the Lemmas (2.6), (2.7) and (2.10), $H^{1}\left(M_{t}, \nu_{t}\right)=H^{2}\left(M_{t}, \Theta_{t}\right)=0, \operatorname{dim} H^{1}\left(M_{t}, \Theta_{W} \mid M_{t}\right)=2$ and $\operatorname{dim} H^{1}\left(M_{t}, \Theta_{t}\right)$ $=20$. This completes the proof of Proposition (2.11).

Remark 2.13. Our toric variety W has many "symmetries", i.e. we have $\operatorname{dim} H^{\circ}\left(W, \Theta_{W}\right)=12$.

We give another example of an algebraic surface N in which the surjectivity of δ fails but dim $\operatorname{ker} \delta=3$.

Example 2.14. Let N^{a} be the affine algebraic surface in \boldsymbol{C}^{3} which is defined by

$$
\begin{equation*}
h(w)=1+w_{2}^{5} w_{3}^{3}+w_{2}^{4} w_{3}^{4}+w_{1}^{4} w_{2}^{3} w_{3}=0 . \tag{2.15}
\end{equation*}
$$

As the homogeneous polynomial $f_{E}(z)$, we take

$$
\begin{equation*}
f_{z}(z)=z_{0}^{8}+z_{2}^{5} z_{3}^{3}+z_{2}^{4} z_{3}^{4}+z_{1}^{4} z_{2}^{3} z_{3} \tag{2.16}
\end{equation*}
$$

N has the following invariants.

$$
K^{2}=0, \quad e(N)=24 \quad \text { and } \quad \pi_{1}(N) \cong Z / 2 Z .
$$

As $K \sim C\left(P_{1}\right)+C\left(P_{3}\right), N$ is minimal, and $p_{g}=1$. Then we have the following exact sequence:

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(N_{t}, \Theta_{W} \mid N_{t}\right) \longrightarrow H^{0}\left(N_{t}, \nu_{t}\right) \xrightarrow{\delta} H^{1}\left(N_{t}, \Theta_{t}\right) \\
& \longrightarrow H^{1}\left(N_{t}, \Theta_{W} \mid N_{t}\right) \longrightarrow 0
\end{aligned}
$$

and $\quad H^{0}\left(N_{t}, \Theta_{W} \mid N_{t}\right) \cong \boldsymbol{C}^{3}, \quad \operatorname{dim} H^{0}\left(N_{t}, \nu_{t}\right)=14, \quad \operatorname{dim} H^{1}\left(N_{t}, \Theta_{t}\right)=20 \quad$ and $\operatorname{dim} H^{1}\left(N_{t}, \Theta_{W} \mid N_{t}\right)=9$. Hence we get that the Kodaira-Spencer map $\delta \circ \xi^{e}: T_{t} U^{e}$ $\rightarrow H^{1}\left(N_{t}, \Theta_{t}\right)$ is not surjective, and δ is neither injective and surjective as the case of M.

Remark 2.17. Minimal surfaces M and N with $q=0, p_{g}=1$, Euler number $=24, K^{2}=0$ and non-trivial fundamental group are classified as the minimal properly elliptic surface, and by Theorem (7.1) of p. 201, [1], the deformation of such surfaces is also minimal.

Remark 2.18. $\left\{B_{j}\right\}$ in (2.5) are (1, 0, 1), (1, 1, 0), (2, 0, 2), (2, 1, 1), (2, 2, 0), $(2,2,1),(2,3,0),(3,1,3),(3,2,2),(3,3,1),(3,4,0),(3,4,1),(3,5,0),(4,3,3)$, $(4,4,2),(4,5,1),(4,6,0),(4,7,0),(5,6,2),(5,7,1),(5,8,0),(6,8,2),(6,9,1)$, $(6,10,0),(7,11,1),(7,12,0)$ and $(8,14,0)$.

References

[1] W. Barth, C. Peters and A. Van de Ven, Compact complex surface, Springer, Berlin-Heidelberg-New York-Tokyo, 1984.
[2] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings, Lecture Notes in Math., 339, Springer (1973).
[3] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Springer, Berlin-Heidelberg-New York, 1985.
[4] K. Kodaira and D.C. Spencer, On deformations of complex structures I, II, Annals of Math., 67 (1958), 328-466.
[5] M. Oкa, On the Resolution of Hypersurface Singularities, Advanced Studies in Pure Mathematics 8 (1986), 405-436.
[6] M. Oкa, Examples of Algebraic Surfaces with $q=0$ and $p_{g} \leqq 1$ which are locally Hypersurfaces, preprint.
[7] М. Ока, On the deformation of a certain type of algebraic varieties, preprint.
[8] A.n. Varchenko, Zeta-Function of Monodromy and Newton's Diagram, Invent. Math., 37 (1976), 253-262.

Department of Physics
Tokyo Institute of Technology
Oh-okayama, Meguro, Tokyo, 152
Japan

