S. KODANI
KODAI MATH. J.
10 (1987), 314—327

ON TWO DIMENSIONAL ISOSYSTOLIC INEQUALITIES

By SHIGERU KODANI

1. Introduction and statements of results.

Let M be a closed (i.e. compact without boundary) Riemannian manifold of
dimension two. We denote by Area(M) the area of M, by sys(M) the length
of the shortest noncontractible closed geodesic in M. Put

Area (M)
sys(M)? ’

where infimum is taken over all metrics on M. The explicit value of X is
known when M is a real projective space, torus and Klein bottle.

> y=inf

THEOREM 1 (Pu [9]). When M is a real projective space PR?,

2
2pre= =

where the infimum is attained by the metric of constant curvature.

THEOREM 2 (Loewner [2]). When M is a torus T?,
The infimum is attained by R*/I" with flat metric, where I' is a lattice generated
by (1, 0), (1/2, +/37/2).

THEOREM 3 (Bavard [1]). When M is a Klein bottle K,

T

where the infimum is attained by a metric of positive constant curvature with
singularities.

When M is of large genus, it seems difficult to find 3>, but some lower
bounds are known.

THEOREM 4 (Gromov [6]). Let M be as above, with the first Betti number
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by(M). Then

3 Vb(M) 27
(1) > y=max (-4—, m?ﬂ‘a)
(2) 403 ,,-5°V1°54%u > p (M),

Remark. For higher dimensional isosystolic inequalities, see [5], [6].

In this paper, we will prove an inequality analogous to theorem 4(1) by a
different method from that of [6], and show some relations between the iso-
systolic constants of dimension two and that of dimension one.

Before stating our results, we define some isosystolic constants of dimension
one. Let I" be a finite graph. We denote by length I" the whole sum of the
length of edges, by sysI” the length of the shortest closed curve in I". Let G,
be the set of all finite graphs of Euler number —g such that at each vertex
there are more than one edges. Put

_ . . lengthI”
C“_}ggg sysl”
Let G, be the set of all finite graphs of Euler number —g such that at each
vertex there are even numbers of edges. Put
,_ . ¢ lengthl’
Ce —ﬂgg'g sysl” °

For an orientable closed Riemannian manifold M of dimension two with genus

g, wWe put X,=2Xy.
Our results are the following.

THEOREM A. For g=1,

Cie-1
(1) Cg—lzzgg 12(2g+l) )
’ Cézg-l
(2) ComzZez 0.

PROPOSITION B. For g=1,

Vg 343
2e2(5575 +58):

By theorem 4(2), for any 0<8<1, 33, can be written as X ,=c,g’°, where
¢y is a constant depending on 9. But theorem A says that if C, could be writ-
ten as C,=ag-+f with constants «, 8 then X, would be linear. One sees our
inequality of proposition B is worse than that of theorem 4, but our method to
prove proposition B, using Morse function and counting the number of the
critical points, is interesting itself. The author wishes to express his hearty
thanks to Professor S. Tanno for continuous encouragements and valuable sug-
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gestions. He also would like to thank the referee for valuable advices.

2. Notations and definitions.

In this paper, we adopt the following notations and definitions.

(1) For a set (a topological space) A, we denote by #A the number of
elements (resp. components) in A.

(2) Assume that M is orientable, and an orientation is given. If a Morse
function f is given on M, then grad f determines a direction on f~!(¢) for all
te R excepting critical points of index 0 or 2 and, for x,, x,= f~%(¢), determines
a directed segment ;c_l—;z in f7'(t) from x; to x,. For a path 7 in M, 7' means
the inversely directed path of 7.

(3) We put

M@)=5-%t), M[t, t'I=f7"[t, '], M[t, o0)=f""[t, ),
M_,[t, t"]=the component of M[t, t’] containing x= M.

For an arbitrary subset B of M, put

BO)=MtNB, B[t t'1=M[t, 'JN\B, B[t «)=M[t, ©)N\B,
and
B.[t, t’]=the component of B[t, ¢’] containing x&M.

3. Some preliminaries on finite graphs.

Let G$ be the set of all finite graphs with Euler number —g such that at
each vertex there are three or two edges. Then put

C®— inf length I
¢ ree(® sysI” °

Similarly let G be the set of all finite graphs with Euler number —g such
that at each vertex there are four or two edges. Then put

CH= inf lengthl”.
é TEG}“ SYSF

For convienience, we ignore the vertices v of I'eG,, g=1, such that there
meet exactly two edges e;, ¢, at v and regard e¢,\Ue, as one edge. Therefore
we can assume that at each vertex of I'eG, there are more than two edges.
In particular, if I'eG then I' has 2g vertices and 3g edges, and if ['eG{P
then I” has g vertices and 2g edges. Throughout this section, we use 0<e, &’
as sufficiently small numbers. We verify the following.

LEmMA 3.1. For g, g'=0,
3.1 CP=C,, CP=CY,
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3.2 CennzCy, en=Cy,
(3-3) Cg’+cggcg'+g+2; Clg'+clgc’g'+g+2-

Proof. First we prove lemma for the cases of C,. To see (3.1), let us
take I';€G, such that lengthI",/sys [, <C,+c¢. 1If there are d(v) edges ey, ¢5, -+,
eawy, d()=4, at vertex v, then move each edge e,, =4, ---, d), sufficiently
near v so that we get I, €G® with C®<lengthl’,/sys[,<C,+¢’. To see
(3.2), let us take I',=G,,, such that lengthI',/sysI»<C,.,+¢, and remove one
edge from I',. Then we get [5G, so that C,,+e=length'}/sysl}=C,.
To see (3.3), let us take I'j€G,, ['seG, such that length[y/sysIs<C,+e¢,
length I';/sys '}<C, +¢ and sysl;=sysls. Choose two points p;, p, in I,
(g1, g2 in I';) such that the distance between p; and p, (resp. ¢, and g,) is not
less than sysI;/2. And join p; and g, (p, and g,) by adding short edges. Then
we get ['4€ G4z 42 SO that

Co+Cy+2e+2e'=length I /sys = Cyriges.

We can prove the cases of C, by modifying the above proof as follows:
for (3.1), moving one edge is replaced by moving a pair of two edges. For
(3.2), removing one edge is replaced by removing one vertex, that is making
one vertex with four edges into two vertices at which there meet two edges.
For (3.3), joinning two points by a new short edge is replaced by identifying
the two points. q.e.d.

M. Gromov ([6], p. 63.) constructed a two dimensional Riemannian manifold
of genus g with Area (M)=IlengthI'sysI’, sys(M)=sys I, but with singularities,
from any I'eG$,, g=1. Therefore C$,=3),, and with (3.1) we get the first
inequalities of theorem A (1), (2).

Remark. For more details, we can verify
1 Cena
— > — > g
5 =2Cp—C,= g+

Thus (g+2)/2=g/2+C,=C,. In fact, take I'eG, such that length I'/sysI'+¢
=C,, choose two points p;, p, such that the distance between p, and p, is not
less than sys/'/2, and join p, and p, by a new edge of lengthsys//2. Then
we get [7€G 4, with sysl/=sysI and

length” _ lengthI'+sysl/2
sysl” sysI”

1
=Cg+?-

Ceni=
Next, in the proof of (3.2), I, has 3(g+1) edges. Therefore we can remove
an edge whose length is not less than length I',/3(g+1), and get I'; with

- lengthI'; _ lengthl',—length I",/3(g+1)
< <
&= gysI', = sysl’,
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=(cg-1+e>(1—-%1+—1)).

LEmMA 3.2. For I'eGY, g=0,

(1) I is a union of simple circuits, and each two simple circuits intersect at
two vertices at most,

(2) the number of simple circuits mentioned above is not less than 1/2+

+g+¥1/4, and so,
length Fg(% —}-\/g-i-—i—) sysl'.

Proof. (1) First we can assume ['=\J",c,, where ¢, (=1, ---,m) is a
closed curve in I” passing each edge of ¢, only one time and ¢;N\¢, ({#5) con-
sists of the vertices of I'. In fact as such ¢, we can take an Euler circuit of
I', that is a closed curve in I passing every edges of I” exactly one time.
Next, if this \U™,c; satisfies the conditions of (1) of the lemma then our proof
is completed, but if not then we can increase the number of closed curves keep-
ing the above conditions by the following two types of operations until we get
a desired union of simple circuits.

(i) If ¢, is self-intersected at vertex v, then divide ¢, into two closed

curves at v,.
(ii) If c;Nc, (##7) contains three vertices vy, v, v;:

Cl=vlszv2vstgvl ) C_,:vlszvgvstgvl y
then decompose ¢;\Uc, into three closed curves:
D,0,\UV,04, V03 JV305, T30;\JV1Us .

+u+
Finally we get I” =mL1j1 véz satisfying the conditions of (1) of lemma, after u
1=

times of operation (i) and v times of operation (ii).
(2) Since I' has g vertices and each pair of two simple circuits shares at
most two vertices, the number N of simple circuits satisfies

N(N—1)

5 2=g. g.e.d.

Next, we consider finite graphs of the following type. Suppose there are
m circles ¢y, ¢s, -+, Cm (¢,=S") and g intervals I, I, ---, I, (I,=[0, 1]), and 2g
points v% (=1, ---, g, a=0, 1) on Qc" Attaching the end points 7,(0), I;(1) to
Y, v, respectively, we get a finite graph 'eG$. Then the next lemma holds.
LEMMA 3.3.

(3.4) 2 length c"+§} lengthI;=C,sysI .
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(3.5) 1%1 length ¢;+2 il length I;=C/sys I .
< =
We can take integers u, v, w such that

(3.6) in;length ¢;+2 %}llength I, z(m+u+v) sysl,
1= I=

1 1
m+u+v2§+«/g+z,
u+3v=w.

Proof. (1) Since the left term of (3.4) is length [, this is nothing but the
definition of C,.

(2) To see (3.5), let us take a copy [, of I, (j=1, 2, ---, g), identify fj(1/2),
I0), I,1), I40), I,) with I;1/2), 5,0), 5,1), v,0), v,1), respectively, and
remove 7;(b)v,(b), where 7;(b), vib) are points near »% (b=0, 1). Then we get a
finite graph I”=G{” with vertices [,(1/2), j=1, ---, g. Since sys/’=sysl —¢,
we get

length I"= gl)length ci—e+2 gzllength I,=ClhsysI”
1= J=
=Cy(sys'—e).
(3) By identifying v with v} in \mjlc,, we get a finite graph I”7G{ with
1=
new vertices v, (=1, ---, g) and through the operations of type (i), (ii) in the

m+uto _ 1 1 .
proof of lemma 3.2(1), we get I'”"= 1U_l Ca, m+u+v§—¢g+—, after u times

of the operation of type (i) and v times of the operation of type (ii), satisfying
the conditions of lemma 3.2(1). Each é; can be written as

c'z=v¢1vi2Uv,-2v,~sU Uvis(i)vil,

where ViVi,py is connected in some ¢; and Vi Vs, \ Vs, Vigey is not connected in
any ¢;. Then

Et=vilvi2UI@2UU;‘2v13UI¢3U v Uvis(i,vilulh

is a simple closed curve in I'. Now we consider the number of jump points
vi, @=1, -+, m4u+tv, =1, -+, s(?)) appearing in ¢;. Since each jump point v;,
belongs to exactly two closed curves ¢, and ¢;, the total number of jump points
is w=)"4%*s(7)/2. Since each operation of type (i) creates at most one jump
point and each operation of type (ii) creates at most three jump points, we get
(#+3v)=w. Summing up the length of ¢,, we obtain
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m+utv m+u+vsii) +u+tvs(®)
> length¢,= Z} Z_} length v,]vzﬁl-i- ‘_4,“ Z_) length 11]

1=1 1

length cH—ZElengthI =m+u+v)sysl. q.e.d.

i

4. An approximation of the distance function by a Morse function.

Let M be a closed orientable Riemannian manifold of dimension two with
genus g. For a point p of M, we denote by d=d(p, *) the distance function
from p, by C, the cut locus of p, and by B(p, ») the metric ball of radius »
centered at p. For x=M we denote by =(x) the cut point of p along minimal
geodesic from p to x. We define an e-neighbarhood of C, as

={xeM|d(x, n(x))<e}.
We approximate d by a Morse function f=f. as follows,
4.1) ld—f]<e on M,
4.2) |gradd—grad f|<e on M\{C3UB(p, )}.

Furthermore we can assume that

(x1) f has a critical point of index 0 only at p=p, with t,=f(pe)=0,

(#2) for each critical value ¢, (t;<t,+s, =1, 2, ---, n) of f, there is exactly
one corresponding critical point p;, t.=f(ps).

We denote by Q, (=0, 1, 2) the set of all critical points of index . Then
by the definition of f, we get

4.3) #Qo=1,
(4.4) 1-#Q,+*%Q,=2—2g.

Let us take a small >0 such that ¢,,,—,>25 for all . We assign I(p;)
==1 to each p,, if

My [t tiHON\M(E)} =*{M,[1:—0, t.\M(t.)} 1.

Obviously, I(pe)=1 and I(p;)=—1 for p;=Q,. We denote by Q% the set of all
critical points p; of index 1 with I(p;)==+1. Since M is orientable, we can
verify

(4.5) QiNQi=¢, Q.=QiVQ7.

In fact, for p;€Q, M,,(t) consists of two two-sided circles ¢j, ¢}, and
M, [t;—0, t;4+-0]\M,,(t.) consists of three cylinders. Therefore

(4.6) SU(p)=1+*Q1 —*Qi—*Q,=0.
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Combining with (4.3), (4.4), (4.5) and (4.6), we get

4.7 Qo +#QT=*Q7+%Q,,
4.8) 1—#Q7=*%Q,—*Q1=1—g,
4.9) *Qi=g.

For the later arguments, we need to remove some disks from M. For
pi€Q1, Mp,[t.,, ©)\M,(t.) consists of one or two components. If such a com-
ponent D contains only the critical points of Qf or Q, then D is a disk and we
remove it from M. Let {D;}™, be the set of all such D’s. Put

M=M\\Jr,D,,
V:=MNQ*, 9Q:=0MNQ*, intQ*=int MNQ*,

where oM (int]\71 ) is the boundary (resp. interiour) of M. In this case, we also
get Morse equality,

¥0Q1+*%0Q7=m,
1-(*Qt+*QD)+m=2—2g.
Calculations similar to (4.7), (4.8) and (4.9) lead us to
1+#Q1=*Q7+m,
m—*Qt{=1—g
and therefore
(4.10) *int QT=%0Q7+(g—1)=g.

For brevity Het us put Q*=intQ+, Q-=07, 0Q-=3Q;. Then above argument
shows the following.

LEMMA 4.1.
(4.11) *Q =g,
(4.12) #Q+=%0Q +g—1=g.

5. The behavior of the level curves near the cut locus.

Throughout this section we assume that M is a real analytic closed
Riemannian manifold of dimension two whose genus is not less than one. We
fix a point pM and approximate the distance function d(p, *) from p by a
Morse function f=f, satisfying the conditions (4.1), (4.2).

For t[0, max f] let A, be a compoment of f*(#)NC; which contains
ge 1 NCs.
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This section is devoted to prove the following proposition.

PROPOSITION 5.1. Assume that M is real analytic and its genus is not less
than one. Then for a sufficiently small >0, we can take a(e)>0, which goes to
0 as ¢ goes to 0, such that

A,C B(q, a(e)),
where a(e) depends only on e, M and does not depend on the choice of f..

S. Myers [8] showed that if M is real analytic, then C, is a finite graph
and h=d]|, » is analytic on each edge of C, with respect to arc length parameter
s. Futhermore, M. Berger [3] and J. Hebda [7] showed that, if the genus of
M is not less than one then % is nonconstant and 0B(p, t) is an Euler graph
with vertices C,MaB(p, {)={r:{t)}=4 and real analytic edges. The number m
of the segments of C,\{a.},; is not less than m, for all ¢, where {a,}, is the
set of all vertices of C, and all points at which dh/ds(a,)=0. In fact, the
analyticy of 2 on each edge of C, ensures that on each segment of C,\{a.}*;
h is strictly monotonous and there exists at most one 7;(f).

We denote by p be the distance on C, and at ¢g=C, put

D(g, 0)=1{¢'€Cylplg, ¢")=0}.

CLAIM 5.2. For all ¢’>0, we can take 8,, s,—¢,(0,)<<e’ such that, 1f |h(s)—
t|<ey then

se Unero, )0 UDa, ).

Proof. Since h is strictly monotonous on each segment of C,\{a,}7,, the
measure of
A~ min A+(k—1)r, min A+kz] (k=1,2, -, N),

goes to 0 when N goes to oo, where r=(max h—min 4)/N. Then by taking a
large N, we can choose small ¢;, §, such that

measure of A~'[min A+(k—1)r, min A+4+k7]<3,/10, ¢,<7/10

and for all t€[min h+(k—1)r, min h+k7],

sEh Y [t—ey, t+e&,]Ch [ min h+(k—2)r, min h+(k+1)7]
CQD(n(t), 51)U1CJ;D(aL, d4). g.e.c.
Proof of Proposition 5.1. We can easily see
A CCoN{B(p, t+e)\B(p, t—e)}
Ce-neigborhood of C5N{B(p, t+2e)\B(p, t—2¢)}.

Assume e<e,/2, where ¢, 05, ¢’ are those given in claim 5.2. Then we have
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C5N B, t+2\B(p, t—26)l{{[] Dirto), 89U [ Dia, 3},
and so, at some ¢’(=r;(t) or a;)
A, CB(g’, (20,+¢)(m,+m')CTB(g, a(e)),

where a(e)=0;+¢&+(28,+¢)m+m’). When & goes to 0, we can choose &’ such
that a(e) goes to 0. q.e.d.

6. Some finite graphs in M.

Let t,=f(p1), 1=1, 2, .-, n, 0<¢;<t,4+1, be the critical values of f at p;e
Q+*UQ", as defined in section 4, where n=¥Q*4+#Q =2g.

LEMMA 6.1. Let us denote by sys(M, p) the length of the shortest noncontrac-
tible closed curve in M passing through peM. Then

_sys(M, p)

5 <Ze.

b

Proof. Since B(p, sys(M, p)/2—e)DMTO, sys(M, p)/2—2¢] is contractible,

sys(M, p)/2—2e<t,. Since B(p, sys(M, p)/2+4e)CM[O0, sys(M, p)/2+2¢] is non-
contractible, sys(M, p)/2+42¢>1,. q.e.d.

By (4.1) and (4.2), we see that p,=C5. Since M is assumed to be orientable,
My, (t.) consists of two circles c}, 2. E}t us take a E&nt bt (p?%) on ci (resp. c2)
such that p} (resp. p2)€dCs and zi=pip; (resp. ti=p?p;), except p} (resp. p2), is
contained in C%. Let 7] (=1, 2) be the distance minimizing geodesics from p}
to p. Put

ro=rtUtiuti iU,

Fig. 1. Fig. 2.
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PUt A=U:‘=lrt) A(t):Amf_l(t)“—:U?’}:Ir'L(t): A[t, t,]:Amf—IEt: t’]=U¥=1ri[ty t/]
for 0<t<t’'<oo. In this section, we consider the next finite graph in M:

T)=M@)\UALL, o).

LEMMA 6.2. If t is a regular value of f, then any closed curve cCI(t) is
not contractible in M, except M(t) for t<t,.

Proof. Assume c is contractible. Then ¢ divides M into two parts M;, M,

such that peM, and M, is a disk.
case 1; cC M), 1>t Then M,=MT[t, ) is a disk. But this cannot occur

from the definition of M.

case 2; max f(c)=t,=f(p:), p+=Q*. Then one of ¢} and ¢? must belong to
M, and be contractible. But this can not occur.

case 3; max f(c)=t,=f(p:), p:Q-. At p; each side of ¢ can be joined by
¢i. This is a contradiction. q.e.d.

7. Proof of theorem A (second inequalities) and proposition B.

We prove our results only for the real analytic cases, because we can ap-
proximate a smooth metric by a real analytic one and sys(M), area (M) change
continuously. In section 6, we constructed some finite graphs on M. With (3.4),
(3.5) and (3.6), we can estimate the length of dB(p, t) and, with the co-area
formula, Area(M).

Let ¢} /=1, 2, ---, n, =1, 2) be a distance minimizing geodesic segment
from pj to p;. Since #/C B(ps, a(e)), by Proposition 5.1, y;[t, o) is homotopic
to 7:[¢, o), which is obtained from 7, by replacing 7} to #] (f=1, 2), keeping
end points 7{(¥) (=1, 2) fixed, and

(7.1) length 7:[t, 00)<2(t;—t)+4(e+a(e)).

By the co-area formula, we get

dp@)
r=1anesy |Vf] 7

where dp(t) is the meaure of f~'(#). Now let ¢ tend to 0. Then we obtain

Area <M\C;>=S:dt5

(7.2) Area (M):S:length M(t)dt?;gjlength ]\7I(t)dt )
by (7.1),

and by lemma 6.1,

(7.4) ti=sys(M, p)/2=sys(M)/2.
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Proof of theorem A(1l) (second inequality). Put

Ik=[t1+(k—1)2', t1+k1'], k:(), ]_, 2’ e, K’
teli, tn€lx, t=Cogisys(M)/62¢+1),

where K=(t,—t,)/t>K—1. We can take g, critical points p, ., (=1, 2, ---, gs)
in M[t,+(k—1)z, t,+ k7] such that

K
b1,1=01, kgxgk=2g.
If k=2 then by lemma 6.2 any closed curve in
~ g
rio=MeOU(\Jteilt, ),  for teli,
is not contractible in M, and so,

(7.5) length J()+ 332015, —2 C, sysT4(0)
=Cy,sys(M).

Integrating (7.5) on each I,_, (=2, ---, K), we get

~ g
SI length M(f)dt+2 }jg (te.—1)dt=C,, sys(M)e.
k-1 1= -1

Ig
Since
S (te =Dt =~z
Ipq 2
we get
(7.6) Area (M[t,, oo))= églk_l length M(t)dt

v

K
EZ(C“ sys(M)r—3g.7%).

Next if =1 then M#)=M(t) (tI,) is contractible in M, and so, we can
not get (7.5) for t=l,. But, for t<t;,, 7,(¢) devides M(¢) into two parts a,(f),
a,(t) and o,(t)\Ufi[t, 00), a.(t)\U7i[t, o) are not contractible in M. Take a copy
$.[t, 00) of #1[t, ) and regard a,(t)\U7i[t, o) and a,(t)UF,[¢, oo) as disjoint two
closed curves. Then any closed curve in

Fi0=10.0UATE e UtaURLL | Ul o)

for tel,, is not contractible in M. We apply (3.4) and (7.3) to I',(t). Then
we get

g ~
(7.5)  length M()+4(t,—t)+ §2<t1,,.—t); CyrrsysI(t)= Cyyisys (M),
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and integrating on I,

(7.6)’ Area (M[t,—7, t,1)=C,-18ys (M)r—67°—3(g,—1)7°.
With (7.6) and (7.6)’, we get

K K
Area (M)g( gzcgﬁcgl_l) sys (M)r—3(k22gk+2+g1—1)12

Cie-1

—_ 2 Ta/0 - 1 1N
= Cogmasys (M)r—32g+1)e"= 455 =

sys (M), q.e.d.

Proof of theorem A(2) (second inequality). In the above proof, we only need
to replace t=C,,-15ys(M)/6(2g+1) to t=Cs4-15ys(M)/24g and apply (3.5) in-
stead of (3.4). q.e.d.

Proof of proposition B. In this case we put
I, =[t,4+(k—D), t,;+ k7], £=0,1, -, K,
r=sys(M)/36.
By applying (3.6), (7.1) and lemma 6.2 to

. -
Tk(t)‘—‘M(t)UJ\:Jl?k,j[f, o), for tel,-,
we get

& length M)+ 314(te, s~ = (s, v sys (M)

1 1
St+uz+v;%§+«/gk+z,
u+3v=w,,

where s;,=1 is the number of the components of M(@). Integrating (7.7) on I,_,,
we get

7.8) Slk_llengthM(t)dt;(st—l—ut-l-vz)sys(M)r—warz

sys (M)?
36

{335+2uc+(u:+3vz w;)

2 {stuto—

v

n sﬁ+u,+v,} sys (M)?

2 36
s

(zlg +— )sys (M)?.

v

%
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Since o;()\U7i[t, o0) (=1, 2), for t<t,, is noncontractible in M, we obtain
length ¢;+length 7,[¢, t,1=sys (M), i=1,2,

and integrating this on [0, ¢t,—7],

(7.9) S:"’length M(z)dtgg’” @sys (M)—A(t,—1)dt= % sys (M2,

t1-sys(M)/2
where we have used (7.4). With (7.8) and (7.9), we obtain
Area (M)= kﬁg Sl length M(t)dt—i—S:rt length M(z)dt
= k

sys (M)*K = sys(M)?

+ $ vai+ 2 sys e
=748 72 &V ErT g SYS

JZ . 343 \
2(36\/'2_ +——648)sys(M) g.e.c.

Remark. In the proof of proposition B, we need not an argument for the
contractibility of M() for t<t; as in the proof of theorem A. Recalling the
proof of (3.6) we can verify w,=1 and so (7.7) still holds for ¢<¢,.
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