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ON TWO DIMENSIONAL ISOSYSTOLIC INEQUALITIES

BY SHIGERU KODANI

1. Introduction and statements of results.

Let M be a closed (i. e. compact without boundary) Riemannian manifold of
dimension two. We denote by Area(M) the area of M, by sys(M) the length
of the shortest noncontractible closed geodesic in M. Put

^ _• * Area(M)
Σ m fΣ 3 f - m f sys(M)2 '

where infimum is taken over all metrics on M. The explicit value of Σ M is
known when M is a real projective space, torus and Klein bottle.

THEOREM 1 (Pu [9]). When M is a real projective space PR2,

where the infimum is attained by the metric of constant curvature.

THEOREM 2 (Loewner [2]). When M is a torus T2,

^ π - 2

The infimum is attained by R2/Γ with flat metric, where Γ is a lattice generated
by (1, 0), (1/2, VT/2).

THEOREM 3 (Bavard [1]). When M is a Klein bottle K,

Σ κ l Γ '
where the infimum is attained by a metric of positive constant curvature with
singularities.

When M is of large genus, it seems difficult to find ~ΣM, but some lower
bounds are known.

THEOREM 4 (Gromov [6]). Let M be as above, with the first Betti number
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ON TWO DIMENSIONAL ISOSYSTOLIC INEQUALITIES 315

bx(M). Then

(1) Σ ^ ( +

(2) 40Σitf 5wτ*ϊ^ ^ bx(M).

Remark, For higher dimensional isosystolic inequalities, see [5], [6].

In this paper, we will prove an inequality analogous to theorem 4(1) by a
different method from that of [6], and show some relations between the iso-
systolic constants of dimension two and that of dimension one.

Before stating our results, we define some isosystolic constants of dimension
one. Let Γ be a finite graph. We denote by length Γ the whole sum of the
length of edges, by sysΓ the length of the shortest closed curve in Γ. Let Gg

be the set of all finite graphs of Euler number — g such that at each vertex
there are more than one edges. Put

C . = inf
r

sys/

Let Gg be the set of all finite graphs of Euler number — g such that at each
vertex there are even numbers of edges. Put

length Γ
Ksσ 1111

Γ ' sys Γ

For an orientable closed Riemannian manifold M of dimension two with genus
g, we put Σ ί = Σ i f .

Our results are the following.

THEOREM A. For g ^ l ,

(1)

PROPOSITION B. For g ^ ,

( V J l

12(2^+1)

648/*

By theorem 4(2), for any 0 < # < l , Σ ^ can be written as Έg^dg9, where
c9 is a constant depending on -9. But theorem A says that if Cg could be writ-
ten as Cg^ag+β with constants a, β then Σ * would be linear. One sees our
inequality of proposition B is worse than that of theorem 4, but our method to
prove proposition B, using Morse function and counting the number of the
critical points, is interesting itself. The author wishes to express his hearty
thanks to Professor S. Tanno for continuous encouragements and valuable sug-



316 SHIGERU KODANI

gestions. He also would like to thank the referee for valuable advices.

2. Notations and definitions.

In this paper, we adopt the following notations and definitions.
(1) For a set (a topological space) A, we denote by *A the number of

elements (resp. components) in A.
(2) Assume that M is orientable, and an orientation is given. If a Morse

function / is given on M, then grad / determines a direction on f~\t) for all
t^R excepting critical points of index 0 or 2 and, for xu x2

(^f~1(t), determines
a directed segment XχX2 in f~λ(t) from xx to x2. For a path τ in M, τ" 1 means
the inversely directed path of τ.

(3) We put

M(t)=f-\t), M p , ί ' ] = / - 1 [ ί , ί ' ] , M[f,oo)=/-ip,oo),

Mx[t, tf~\—the component of M[t, V] containing I G M .

For an arbitrary subset B of M, put

B(t)=M(t)nB, B[t, ί /]=Mp, f]Γ\B, B[t, oo)=M[ί,
and

Bx[t, ί ' ]=the component of B[t, ί'] containing

3. Some preliminaries on finite graphs.

Let G{p be the set of all finite graphs with Euler number — g such that at
each vertex there are three or two edges. Then put

C«>- inf l e n g t h Γ

Ks g 1 1 1 1 j-~t .

/<e0(8) s y s i
Similarly let G^° be the set of all finite graphs with Euler number — g such
that at each vertex there are four or two edges. Then put

C ««= inf
sysΓ

For convienience, we ignore the vertices v of Γ^Gg, #:>1, such that there
meet exactly two edges eu e2 at v and regard ex\Je2 as one edge. Therefore
we can assume that at each vertex of Γ<=Gg there are more than two edges.
In particular, if Γ&Gg

Ό then Γ has 2g vertices and 3g edges, and if Γ^Gg°
then Γ has g vertices and 2g edges. Throughout this section, we use 0<ε, ε'
as sufficiently small numbers. We verify the following.

LEMMA 3.1. For gy g'i^O,

(3.D
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(3.2) CS+1^CS, C'S+1^C'S,

+ g+2, C g> + C g^C g' + g+2.

Proof. First we prove lemma for the cases of Cg. To see (3.1), let us
take Γi^Gg such that lengthΓx/sysΓ^Cg+ε. If there are d(v) edges elf e2, •••,
e<iiv ), d(ι;)^4, at vertex v, then move each edge ex, i=A, •••, d{v), sufficiently
near v so that we get Γ^G^ with C£8) £ length Γι/sysΓι£Cg+ε'. To see
(3.2), let us take Γ2^Gg+1 such that lengthΓ2/sysΓ2^C g + 1+ε } and remove one
edge from Γ2. Then we get Γ2^Gg so that C^+eΞglengthΓί/sysΓί^C*.
To see (3.3), let us take Γ'3(ΞGg>, Γ^Gg such that lengthΓ3/sysΓ3<Cg+ε,
length Γ'3/sysΓ's^Cg>+ε and sysΓ'3=sysΓs. Choose two points pu p2 in Γ3

(qu q2 in Γ3) such that the distance between px and />2 (resp. qx and ^2) is not
less than sysΓs/2. And join px and ĵ (^2 and q2) by adding short edges. Then
we get Γ'ί&Gg+g'+z so that

We can prove the cases of Cg by modifying the above proof as follows:
for (3.1), moving one edge is replaced by moving a pair of two edges. For
(3.2), removing one edge is replaced by removing one vertex, that is making
one vertex with four edges into two vertices at which there meet two edges.
For (3.3), joinning two points by a new short edge is replaced by identifying
the two points. q. e. d.

M. Gromov ([6], p. 63.) constructed a two dimensional Riemannian manifold
of genus g with Area (M)=length ΓsysΓ, sys(M)=sys/7, but with singularities,
from any Γ^Gg%, g^l. Therefore CJΪiiSΣ*, and with (3.1) we get the first
inequalities of theorem A(l), (2).

Remark, For more details, we can verify

Thus (g+2)/2-g/2+CQ^Cg. In fact, take Γ^Gg such that lengthΓ/sysΓ+ε
^ Cg, choose two points plf p2 such that the distance between px and p2 is not
less than sys/72, and join px and p2 by a new edge of length sys Γ/2. Then
we get Γ'^Gg+1 with sysΓ'=sysΓ and

length Γ __ length Γ+sys Γ/2 1
* + 1 = sysΓ' " sysΓ ~ 8+ 2 '

Next, in the proof of (3.2), Γ2 has 3(g+l) edges. Therefore we can remove
an edge whose length is not less than length Γ2/3(g+l), and get Γί with

,
g =

lengthΓί ^ lengthΓ2-lengthΓ2/3(^+l)

sys A' sys A
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LEMMA 3.2. For Γ^G{

8°, g^O,

(1) J 7 /s α wra<?n 0/ simple circuits, and each two simple circuits intersect at
two vertices at most,

(2) the number of simple circuits mentioned above is not less than 1/2+

V^+l/4,

length Γ^ ( I +V^+j) sys Γ

Proof. (1) First we can assume Γ=\J%χC%t where cτ (i—l, •••, m) is a
closed curve in Z1 passing each edge of ct only one time and CiΓ\c3 (iΦj) con-
sists of the vertices of Γ. In fact as such c% we can take an Euler circuit of
Γ, that is a closed curve in Γ passing every edges of Γ exactly one time.
Next, if this \JT=iCi satisfies the conditions of (1) of the lemma then our proof
is completed, but if not then we can increase the number of closed curves keep-
ing the above conditions by the following two types of operations until we get
a desired union of simple circuits.

(i) If c t is self-intersected at vertex v0, then divide c% into two closed
curves at v0.

(ii) If CiίλCj (jφj) contains three vertices vly v2, vz:

then decompose ctKJc3 into three closed curves:

m+u+υ

Finally we get Γ= \J ct satisfying the conditions of (1) of lemma, after u
1 = 1

times of operation (i) and v times of operation (ii).
(2) Since Γ has g vertices and each pair of two simple circuits shares at

most two vertices, the number N of simple circuits satisfies

N(N-ΐ)
2

Next, we consider finite graphs of the following type. Suppose there are
m circles cu c2, , cm (ct=S1) and g intervals Ilf I2> •••, I8 (/,=[0, 1]), and 2g

m

points vaj O'=l, •••, g, α=0, 1) on \Jcτ. Attaching the end points Ij(0), Ij(l) to

v% v), respectively, we get a finite graph Γ<=Gg

z\ Then the next lemma holds.

LEMMA 3.3.

(3.4) Σ length c<+ Σ l e n g t h / ^ C^sysΓ.
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(3.5) Σ length d+2 Σ length /^C'^sysΓ.

We can take integers u, v, w such that

(3.6) Σlength Cί+2 ΣlengthΛ>(m+w+^)sysΓ,
1 = 1 3=1 J

Proof. (1) Since the left term of (3.4) is length Γ, this is nothing but the
definition of Cg.

(2) To see (3.5), let us take a copy 13 of 13 (/=1, 2, •••, g), identify 7/1/2),
7/0), 7/1), 7/0), 7/1) with 7/1/2), S/O), v/1), v/0), v/1), respectively, and
remove vj(jb)Vj(b), where v/fc), vj(b) are points near vj (&=0, 1). Then we get a
finite graph Γ ' e G J 0 with vertices 7/1/2), / = 1 , •••, ̂ r. Since sysΓ^sysΓ—ε,
we get

m 5

lengthΓ r= Σ length ct-ε+2 Σ lengthIj^
1 = 1 ; = 1

(3) By identifying i J with v) in VJ^t; w e get a finite graph Γ"<E:Gψ with

new vertices ι;, ( ; = 1 , •••, g) and through the operations of type ( i ) , (ii) in the
m+u+v \ I 1

proof of lemma 3.2(1), we get Γ"= \J ct, τ n + w + f ^ ~ γ g + — , after u times

of the operation of type (i) and v times of the operation of type (ii), satisfying
the conditions of lemma 3.2(1). Each ct can be written as

where VijViJ+1 is connected in some ct and VijViJ+1UVij+1Vij+2 is not connected in
any ct. Then

is a simple closed curve in Γ. Now we consider the number of jump points
Όi} (?=1, •••, m+u+v, y = l , •••, s(/)) appearing in c<. Since each jump point z;̂
belongs to exactly two closed curves c% and Ci», the total number of jump points
is w=*Σ?Jiu+Όs(i)/2. Since each operation of type (i) creates at most one jump
point and each operation of type (ii) creates at most three jump points, we get

3v)^w. Summing up the length of ct, we obtain
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m+u+vsC.i')
Σ length ct= Σ Σ length vtjvij+1+ Σ Σ length 7*̂

m w

= Σ length Ci+2Σ length 7tf^(τn+M+ι;)sysΓ. q.e.d.
1 = 1 j=l J

4. An approximation of the distance function by a Morse function.

Let M be a closed orientable Riemannian manifold of dimension two with
genus g. For a point p of M, we denote by d—d{pf *) the distance function
from £, by C p the cut locus of p, and by B(p, r) the metric ball of radius r
centered at p. For x^M we denote by π(x) the cut point of p along minimal
geodesic from p to x. We define an ε-neighbarhood of Cp as

We approximate d by a Morse function / = / e as follows,

(4.1) \d-f\£ε on M,

(4.2) | g r a d ύ ί - g r a d / | ^ ε on M\{Op\jB(p, e)}.

Furthermore we can assume that
(*1) / has a critical point of index 0 only at p=p0 with ί0=

:/(ίo)= :0,
(*2) for each critical value t% (U<t%+1,2=1, 2, •••, n) of /, there is exactly

one corresponding critical point pif t%—f{pi).
We denote by Qτ (i=0, 1, 2) the set of all critical points of index i. Then

by the definition of /, we get

(4.3) *Q O =1,

(4.4) i _ _ # ρ l + # ρ 2 ^ 2 - 2 g .

Let us take a small <5>0 such that tι+1—tι>2δ for all /. We assign I{pt)
= ± 1 to each pu if

*{MPilt%9 U+S]\M{U))=*{MVtlU-δ, ί,]\M(ί,)}±l.

Obviously, 7(/>0)=l and 7(^0=—1 for pt<^Q2. We denote by Of the set of all
critical points />* of index 1 with I{pi)—±l. Since M is orientable, we can
verify

(4.5) QXΓλQ-^φ, Q1=Qt\JQτ.

In fact, for pt^Qi, MPi{tι) consists of two two-sided circles c\, c\y and
MPi{ti—δt U+δ~\\MPi(t%) consists of three cylinders. Therefore

(4.6)
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Combining with (4.3), (4.4), (4.5) and (4.6), we get

(4.7) *Qo+*<?i=*Q7+*Q 2,

(4.8) l - * < ? T = * Q 2 - * < ? ί = l - £ ,

(4.9) *QΊ=g.

For the later arguments, we need to remove some disks from M. For
pi^Qu MPi[tt, oo)\MPi(tt) consists of one or two components. If such a com-
ponent D contains only the critical points of Q\ or Q2 then D is a disk and we
remove it from M. Let {Dj}f=1 be the set of all such D's. Put

Qt=MΓ\Qt, dQ$=dMΓΛQt, intQί=intMnQΐ,

where dM (int M) is the boundary (resp. interiour) of M. In this case, we also
get Morse equality,

Calculations similar to (4.7), (4.8) and (4.9) lead us to

m-*Qt=l-g

and therefore

(4.10) * i n t £ t = * 3 Q 7 + ( £ -

For brevity Jlet us put Q+=int<3ί, Q~=Qj, 3Q~=dQ^. Then above argument
shows the following.

LEMMA 4.1.

(4.11) *Q~=g,

(4.12) *Q+=*dQ-+g-l^g.

5. The behavior of the level curves near the cut locus.

Throughout this section we assume that M is a real analytic closed
Riemannian manifold of dimension two whose genus is not less than one. We
fix a point p^M and approximate the distance function d(p, *) from p by a
Morse function f=fε satisfying the conditions (4.1), (4.2).

For fe[0, max/] let Λq be a compoment of f~ιif)Γ\Cε

p which contains
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This section is devoted to prove the following proposition.

PROPOSITION 5.1. Assume that M is real analytic and its genus is not less
than one. Then for a sufficiently small ε>0, we can take α(ε)>0, which goes to
0 as ε goes to 0, such that

AqCB(q,a(ε)),

where a(ε) depends only on ε, M and does not depend on the choice of / e.

S. Myers [8] showed that if M is real analytic, then Cp is a finite graph
and h=d\Cp is analytic on each edge of Cp with respect to arc length parameter
s. Futhermore, M. Berger [3] and J. Hebda [7] showed that, if the genus of
M is not less than one then h is nonconstant and dB(p, t) is an Euler graph
with vertices CpΓ\dB{p, t)={ri(t)}?J1 and real analytic edges. The number m
of the segments of Cp\{at}%x is not less than mt for all t, where {a%}%ι is the
set of all vertices of Cp and all points at which dh/ds(al)=0. In fact, the
analyticyof A on each edge of Cp ensures that on each segment of Cp\{aι}%1

h is strictly monotonous and there exists at most one rS).

We denote by p be the distance on Cp and at q^Cp put

D(q, δ)={q'<ΞCp\p(q, q')£δ}.

CLAIM 5.2. For all e'>0, we can take δlf ε1 — ε1(δ1)<ε/ such that, if \h(s)
t\<ε1 then

Proof. Since h is strictly monotonous on each segment of Cp\{aι}'ϊι=1, the
measure of

Λ-^min h+(k-l)τ, min h+kτ~\ (k=l, 2, ••- , N),

goes to 0 when N goes to oo, where τ=(max/z —min h)/N. Then by taking a
large N, we can choose small εi, di such that
measure of h'^mm h+(k—l)τ, min Λ+£r]<di/10, εj<τ/10
and for all ίe[min h+(k—ΐ)τ, mmh+kτ],

in h+{k-2)τ, min

Ji). q e.c

Proof of Proposition 5.1. We can easily see

AqdCpr\{B{p, t+ε)\B(p, t-ε)}

Cε-neigborhood of CρΓλ{B(p, t+2ε)\B(p, t-2ε)}.

Assume ε<ε2/2, where εlf δlf εf are those given in claim 5.2. Then we have
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C pίΛ{B(p, t+2ε)\B(p, t-2ε)}d\\JD(ri(t), δ,)u \JD(aτ, δ1)\,

and so, at some qf{—n{t) or a})
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where a(ε)=δ1+ε+(2δ1-\-ε)(m+m/). When ε goes to 0, we can choose ε' such
that a(ε) goes to 0. q. e. d.

6. Some finite graphs in M.

Let tt=f(pi), f = l , 2, •••, n, 0<i*<f l +i, be the critical values of / at ^ E
Q+UQ~, as defined in section 4, where n = # O + + # <

LEMMA 6.1. Let us denote by sys(M, p) the length of the shortest noncontrac-
tible closed curve in M passing through p^M. Then

'sys(M, p)
<2ε.

Proof. Since B(p, sys(M, ί)/2-s)DM[0, sys(M, ί)/2-2e] is contractible,
sys(M, p)/2-2ε<tλ. Since J3(ί, sys(M, ί )/2+e)cM[0, sys(M, ί)/2+2ε] is non-
contractible, sys(M, p)/2+2ε>t1. q.e.d.

By (4.1) and (4.2), we see that pi^Cε

p. Since M is assumed to be orientable,
MPi (ft) consists of two circles c\, c\. Let us take a point £j (if) on c\ (resp. c|)
such that p\ (resp. pi)^dCp and τi=j&}/£ (resp. τ?=ϊfΐl), except />} (resp. if), is
contained in Cj,. Let ^ (/=1, 2) be the distance minimizing geodesies from p\
to p. Put

Fig. 1. Fig. 2.
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Put Λ=U?-ir
for 0 < ί < ^ ^ o o . In this section, we consider the next finite graph in M:

Γ(t)=M(t)vΛ[t, oo).

LEMMA 6.2. If t is a regular value of f, then any closed curve cdΓ(t) is
not contractible in M, except Mif) for t<tx.

Proof. Assume c is contractible. Then c divides M into two parts Mu M2

such that />eAfi and M2 is a disk.
case 1 cCZM(ΐ), t>ti. Then M2—M[ty oo) is a disk. But this cannot occur

from the definition of M.
case 2; maxf(c)=ztt=f(pt), pi<^Q+. Then one of c\ and c\ must belong to

M2 and be contractible. But this can not occur.
case 3; maxf(c)=tt~f(pi), pι^Q~. At pi each side of c can be joined by

c\. This is a contradiction. q. e. d.

7. Proof of theorem A (second inequalities) and proposition B.

We prove our results only for the real analytic cases, because we can ap-
proximate a smooth metric by a real analytic one and sys (M), area (M) change
continuously. In section 6, we constructed some finite graphs on M. With (3.4),
(3.5) and (3.6), we can estimate the length of dB(p, t) and, with the co-area
formula, Area(M).

Let τ{ (/=1, 2, •••, n, / = 1 , 2) be a distance minimizing geodesic segment
from pi to pi. Since τ\(ZB{pif α(ε)), by Proposition 5.1, ji[t, oo) is homotopic
to fi[t, oo), which is obtained from γτ by replacing τi to τ{ (/=1, 2), keeping
end points ^(ί) (/=1, 2) fixed, and

(7.1) length ftp, oo)£2(f,-f)+4(e+α(e)).

By the co-area formula, we get

dμ(f)
)/-Ho\cε

p | 7 / | '

where dμ(t) is the meaure of f~\t). Now let ε tend to 0. Then we obtain

(7.2)

by (7.1),

(7.3) length ftp, oo)=2(fi-f),

and by lemma 6.1,

(7.4)
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Proof of theorem A{1) {second inequality). Put

* = 0 , 1, 2, ..., K,

w h e r e K^{tn—tx)/τ>K— 1. W e c a n t a k e gk c r i t ica l po int s p k Λ ( * = 1 , 2, •••, gk)
in M[tι+{k-l)τJ tx+kτ\ such that

If &^2 then by lemma 6.2 any closed curve in

Λ(O=M(θu(Uf*.ift«>)), for ί ε / M ,

is not contractible in M, and so,

(7.5) length M{t)+Σ2(tk>i--t)^CgksysΓk{t)

Integrating (7.5) on each /*_! (&=2, •••, K), we get

[ length M{t)dt+2 Σ ( ( ^ , ί - O Λ ^ C ^ s y s ( M ) τ .

Since

we get

(7.6) Area(M[ί!, oo))^ Σ f length iίf(ί)rfί

Next if >^=1 then M{t)—M{t) (ίe/ 0) is contractible in M, and so, we can
not get (7.5) for fe/ 0 . But, for ί < ί l f fx(t) devides M(t) into two parts σx{t),
σ2(t) and (Ti(ί)Wfip, oo), σ2(f)Ufi[f, oo) are not contractible in M. Take a copy
%[t, oo) of f j[ί, oo) and regard σ^VJfiίt, oo) and σ2{t)\Jγx[t, oo) as disjoint two
closed curves. Then any closed curve in

for ίG/ 0, is not contractible in M. We apply (3.4) and (7.3) to /\(f). Then
we get

(7.5)' length ^
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and integrating on IQ,

(7.6)' Area(M[^-τ, fj)^C g l-Xsys(M)r-6τ 2-3(^-l)r 2

With (7.6) and (7.6)', we get

Proof of theorem A(2) {second inequality). In the above proof, we only need
to replace r=C2^_!sys(M)/6(2g+l) to r=Cίί_1sys(M)/24g and apply (3.5) in-
stead of (3.4). q. e. d.

Proof of proposition B. In this case we put

Ik=lti+(k-l)τ, U+kτ], k=0, 1, - , K,

τ=sys(M)/36.

By applying (3.6), (7.1) and lemma 6.2 to

Γk{t)=M{t)\J\jnj[t, oo), for ί ε / M ,

we get

(7.7) length M(t)+

where s ^ l is the number of the components of M(t). Integrating (7.7) on
we get

(7.8) \ length M(t)dt^(st+ut+vt) sys {M)τ-6wtτ
2

JI k-l

sys(M)2

— 3 g —

3st+2ut+(ut+3vt — wt) St+Ut+Vt) sys(M)
> f 3st+2ut+(ut+3vt — wt) St+Ut+Vt)
=t 6 + 2 36
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Since σi(t)Ufi[t, oo) (/=1, 2), for t<tlf is noncontractible in M, we obtain

length σΐ+lengthfilJ, ί i]^sys(M), 3=1, 2,

and integrating this on [0, £i—τ],

(7.9) f ί l " Γ length M(f)dt^ [ ^ (2 sys (M)-4(t1-t))dt^: %-^ sys (M)2,
Jo Jt1-sysc3ί)/2 648

where we have used (7.4). With (7.8) and (7.9), we obtain

Area(M)^ Σ f lengthM(t)dt+[1~'TlengthM(t)dt
k=ojik Jo

^ sys (M)2K sys (M)2 j, 289

48 72 &=i 648

q. e. c.

Remark. In the proof of proposition B, we need not an argument for the

contractibility of M{t) for t<h as in the proof of theorem A. Recalling the

proof of (3.6) we can verify wt^l and so (7.7) still holds for t<tι.
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