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ON UNIQUE FACTORIZABILITY OF COMPOSITE
ENTIRE FUNCTIONS

BY GUODONG SONG

1. Introduction and main results.

There is a fundamental problem on the factorization theory of entire and
meromorphic functions which is so-called "unique factorizability" of composite
functions. So far only few results in this topic are known, which are mostly
concerned with the unique factorizability theorems for several special types of
entire functions (See, e.g., [3], [4]). For example, Ozawa [3] proved the
following result.

THEOREM A. Let go(z) be a prime transcendental entire function of finite
order, which has infinitely many zeros. Assume that almost all zeros of go{z) lie
in ReZ^x for every x. Then go(z)2 is uniquely factorizable into two primes.

We shall not state here some basic notions in the factorization theory such
as prime, E-prime, pseudo-prime, left or right factor, two factorizations of a
function being equivalent, etc. One may find the definitions of these notions
in references of this paper. However, it seems to be necessary to give some
definitions for convenience.

DEFINITION 1. Let fQ be a non-linear meromorphic function, g0 a non-linear
entire function, both are prime. The composite function F=fo(go) is called
uniquely factorizable if every non-trivial factorization of the form F=f(g) is
equivalent to foigo), where / is meromorphic and g entire (g may be mero-
morphic when / is rational).

DEFINITION 2. Let f0 and g0 be two non-linear prime entire functions. The
composite function F=fQ(g0) is called ^-uniquely factorizable if every non-trivial
factorization of the form F=f(g) with entire functions / and g is equivalent
to

Our theorem 1 below gives a criterion that under what condition an E~
uniquely factorizable entire function is uniquely factorizable. It is interesting
that the criterion is quite similar to one obtained by Gross [2] concerning the
connection between £-prime and prime of an entire function.
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THEOREM 1. Let f0 be a non-linear prime entire function, and gQ a prime
transcendental entire function. If f0 and F=fo(go) are both non-periodic, then F
is uniquely factorizable if and only if F is E-uniquely factonzable.

The next theorem gives an extension of theorem A.

THEOREM 2. Let p^3 be a prime number. Let go(z) be a prime non-periodic
transcendental entire fuuction, which has at least two different zeros such that
there are no p zeros of go(z) being equally distributed on a circle centred at a
zero of go(z). Then F(z)=go(z)p is uniquely factorizable into two primes.

Remark 1. The following examples

F(z)=(z expzp)p=(w exppw)°zp

and
G(z)=(z(zp-l)expzp)p=(w(w-l)pexvpw)°zp

show that the assumptions about zeros of go(z) can not be dropped. Here go(z)
—zzxpzp and go(z)—z(zp—l)expzp are prime (see Song [5, theorem 4]).

We generalize theorem 2 by considering F(z)=P(go(z)) with a polynomial
P(w) instead of go(z)p, and give the following

THEOREM 3. Let P(w) be a prime {in the sense of composition) polynomial
of degree^!, and go(z) a prime transcendental entire function such that F{z) —
P(go(z)) is E-right-prime (i, e. every factorization of the form F—f{g) with
transcendental entire function f implies that g is linear) and non-periodic. Then
F(z) is uniquely factorizable.

Up to now, when we are talking about the unique factorizability, the
function F considered has been the composition of two prime functions, f0 and
go, say. We shall discuss the more general situation when one of f0 and gQ,
/o say, is not necessarily prime. In this case we shall first modify the notion
" uniquely factorizable " by the following

DEFINITION 3. Let F(z) be a transcendental composite function. F(z) is
called left-uniquely factorizable, if there exists a non-trivial factorization
F=fo(go) with a meromorphic function f0 and a prime entire function g0 such
that every non-trivial factorization of the form F—f{g) implies that either f{g)
is equivalent to fo(go) or / is a left factor of /0.

Similarly, we may define F{z) to be right-uniquely factorizable.
For the special case when fo(w) is ew, we obtain the following

THEOREM 4. Let go(z) be a prime entire function which is not pseudo-periodic
mod any non-zero constant. Then F{z)—egQiz>> is left-uniquely factorizable.

Remark 2. A meromorphic function f(z) is called pseudo-periodic mod τ
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with period σ if there are constants a (Φθ) and τ such that

f(z+σ)-f(z)=τ V^eC.

Remark 3. The example

F(z)=exp(e'+z)=wew°e*

shows that the main assumption of theorem 4 can not be removed. In this
example, the prime entire function go(z)=e*+z is pseudo-periodic mod 2πi.

2. Proof of theorem 1.

Let F—f(g). We discuss two cases.
(a) / is really meromorphic and g transcendental entire. Then f(w) has

exactly one finite pole, w0 say, which g doesn't take. Hence

f(w)=(w-woy
nf*(w) and g(z)=wo+eMcz>,

where f*(w) is entire with f*{wo)Φθ, n is a positive integer, and M(z) is non-
constant entire. Therefore

or
/o * (*)=/i M(z), (1)

where f1{w)=e-nwf{w0+ew).
Since F is ^-uniquely factorizable, it follows from (1) that either M(z) is

linear which would imply that F is periodic, or fo(go) is equivalent to Λ(M)
which would imply that f0 is periodic.

(b) f(w) is really rational and g(z) is really meromorphic. Then f(w) has
at most two different poles. We discuss two subcases.

(i) f(w)=^(w—wo)~n(w—w1)~niQ(w) with a polynomial Q of
and positive integers n, nλ. Then

with an entire function L(z). Put

and f*(w)=f°X~\w). Then Z ^ ^ / * 0 ^ * . Hence this case reduces to case (a).
(ii) f(w)—{w—Wo)~nQ(w) with a polynomial Q of degree^n and positive

integer n. Then



288 GUODONG SONG

with entire functions h(z) and L{z). Put

and f*(w)=f°λ~1(w). Then f°g—/*°g*. Hence this case also reduces to case
(a). q. e. d.

3. Proof of theorem 2.

We shall need the following lemma, which is a corollary to Nevanlinna's
second fundamental theorem.

LEMMA 1. Let f{z) be an entire function. Then

Σ ( ! _ 1
α*oΛ via)

v(α) stands /6>r the least order of almost all a-points of f(z). Especially,
there is at most one number a such that

In proving theorem 2 we notice first that it suffices to verify ^-unique
factorizability of F(z) by theorem 1. Let F=f(g) with entire functions / and
g. We deal with three cases.

(a) / and g are both transcendental. Then, by lemma 1, among zeros of
f(w) there is at most one zero with order n such that (n, p)—l. Hence 2
cases may occur.

(i) f(w)=(w — wo)
nh(w)p and g(z)=wo+s(z)p with transcendental entire

functions h and s. Then

or

go(z)=7]s(z)nh(wo+s(z)η (ηp=l). (2)

But this is impossible, since go(z) is prime.

(ϋ) f(w)=h(w)p (3)

with an entire function h. Then go(z)=ηh(g(z)). Again impossible.
(b) / is a polynomial. Then we'll obtain (2) or (3) with h being a poly-

nomial. But (2) holds only if n=l and h is a constant, which implies that /
is linear. While (3) holds only if h is linear, so that f(g) is equivalent to gp.

(c) g is a polynomial. Then
(i) (2) holds with s being a polynomial, so that s(z) must be linear.

Therefore, we may write
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where k and kλ are constants. By the assumption go(z) has a zero other than
z0, hence h(w) has a zero, wx say. Obviously WXΦWQ. NOW the equation

has p roots which are equally distributed on the circle

This violates the assumption.
(ii) (3) holds. We'll deduce that g(z) is linear. q.e.d.

4. Proof of theorem 3.

In proving theorem 3 two lemmas are needed as follows

LEMMA 2 (Picard's theorem, see [1]). Let R{u, v) be an irreducible poly-
nomial in the 2-dimension complex plane C\_u,v~\. If there are non-constant entire
functions f(z) and g(z) such that

then the Riemann surface defined by R(u, v)=0 is of genus 0.

By a similar method used in [1], the following result can be derived.

LEMMA 3. Let f(z), g(z) be non-constant entire functions, and P, Q non-
constant polynomials. Then the identity

P°f{z) = Q>g{z), V ^ G C (4)

implies that there exist rational functions U, V and an entire function s{z) such
that

) , g(z)=V{s(z)).

Proof. Factorize P(u) — Q(v) into irreducible factors in C[w, v~\. From (4),
we see that one of these irreducible factors, R(u, v) say, satisfies

R{f{z), g(z))=0.

By lemma 2, the Riemann surface X defined by R{u, v)=0 is of genus 0.
Hence X is conformally equivalent to the Riemann sphere, S say, i. e. its points
can be put into 1—1 correspondence with a parameter s ranging over the
Riemann sphere S. That is to say that the points (u, v) of X are in 1—1 cor-
respondence with the points s of S by
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with rational functions U and V. By a fractional linear transformation T of
s (then U and V are changed into UiX'1) and ViT'1), respectively), we may
assume that s=oo corresponds to a point with w=oo.

Except at a set of finite number of branch points of X, which is denoted
by By we may use u as local uniformizing parameter, so that s is a holomorphic
function of u, h{u) say, near all points of X except those in B. Put

s(z) = h(f(z)),

then s(z) is holomorphic near all z except perhaps those for which (/O), g{z))^B.
These values of z form a discrete set E. Clearly, if z-+z*^E, then s(z) tends
to a finite value, which is denoted by s(z*). Therefore, z* is a removable
singularity of s{z). Hence s(z) is entire.

Now on X u=U(s), v=V(s), so that

f(z)=U(s(z))9 g(z)=V(s(z)),

and the lemma follows.
Return to the proof of theorem 3. We notice first that by theorem 1, it

suffices to show that F is E-uniquely factorizable. Also, since F is E-ήght
prime, the only situation to deal with is F=Q°g with a polynomial Q of
degree ^ 2 and an entire function g{z).

It follows from the equation Pigώ—Qίg) and lemma 3 that there exist
rational functions U, V and an entire function s(z) such that

go{z)=U{s{z)), g(z)=V(s(z)).

Since g0 is prime, U must be (fractional) linear, and s(z)—U~1(g0(z)). Thus

which implies P^QCViU'1)). Since P is prime, we conclude that ViU'1) must
be linear, so that Q(g) is equivalent to P(g0). The proof is then complete.

5. Proof of theorem 4.

Let F=f°g. Three cases will be treated,
(a) / is meromorphic, and g entire, both transcendental,
(i) / has exactly one finite zero or pole, w0 say, which g doesn't take,

so that

(w-Wo)neUw> and g ( z ) = o ,

where L and M are entire, nφO is an integer. Therefore

F(z)=exρgo(z)=exρ{nM(z)+L(wo+eMW)},

which implies
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Hence M(z) must be linear, and

go(z)=az+L(wo+ebz+ci)+c2 (5)

with constants a (Φθ), b (Φθ), cλ and c2. It is evident from (5) that go(z) is
pseudo-periodic with a non-zero constant, which contradicts the assumption.

(ii) / has no zeros or poles. Then f(w)—eL(iw:> with an entire function
L(w). Hence F(z)=e8°™=eLcsi*», which implies that L must be linear. Thus
F=f°g is equivalent to expgo(z).

(b) / is rational, and g meromorphic. Then the total number of different
poles and zeros of / (including possibly oo) is exactly two which g doesn't
take, and which may be assumed to be 0 and oo by a linear transformation.
We have f(w)—cwn and g(z)=eMCZ'> with an entire function M(z) and an integer
n (Φ—l, 0, 1). But f(w)=cwn is a left-factor of e\

(c) / is entire and g is a polynomial. Then / has no zeros, so that
f(w)=eh<iw\ which implies go(z)=h(g(z))+c. Therefore g(z) must be linear.

q. e. d.
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