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Abstract

Let M be a 2-dimensional almost complex submanifold with Gauss curva-
ture K in the nearly Kaehler unit 6-sρhere S 6(l) Then, in case K is con-
stant, either K=l, K=l/6 or /Γ=0 [S]. In [D-O-V-V], we proved that for
compact M, if 1/β^iC^l, then either K=l or K=l/6. In the present paper
we prove that for compact M, if O^K^l/6, then either K=0 or K=l/6.

1. Introduction.

On a β-dimensional unit sphere S6(l), a nearly Kaehler structure J can be
constructed in a natural way, making use of the Cay ley number system [C].
We recall this construction in Section 3. In this paper we study (connected)
almost complex (2-dimensional) surfaces M of S6(l). The basic formulas for
such surfaces are given in Section 4. Let K denote the Gaussian curvature of
M. In [S], Sekigawa proved that, if K is constant, then K=l, K=l/6 or
K=0. In [D-O-V-V] we proved that, if M is compact and l/6£K^l, then
either K=l/6 or K—l (this result follows also from the papers [0] and [D],
and the fact that an almost complex surface cannot lie in a totally geodesic
S4(1)CS6(1)). In Section 5 we prove the following result, which solves a prob-
lem proposed in [D-O-V-V].

THEOREM. Let M be a compact almost complex surface in the nearly Kaehler
S6(l). // the Gaussian curvature K of M satisfies the inequality 0^/ί5^1/6, then
either K=0 or #=1/6.

Examples of almost complex surfaces of S6(l) with K=0 or A=l/6 are given
in [S]. The proof of this Theorem essentially uses some integral formulas of
Ros, which are stated in Section 2.
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2. Integral formulas.

Let M be a compact Riemannian manifold, UM its unit tangent bundle,
and UMp the fiber of UM over a point £ of M. Let dp, du and dwp be respec-
tively the canonical measures on M, UM and UMP. For any continuous function
/ : UM->R, one has

fdu = [ (\ fdup)dp.

Let T be any &-covariant tensor field on M and let 7 be the Levi Civita con-
nection of M. Then the integral formulas of Ros [R] state that

(2.1) f (VT)(w, w, u, •••, u)du=0

and

(2.2) ί Έ^T){el1eι, u, •••, κ)</κ=0,
Ji7Λf 1=1

where {̂ t}?=i is an orthonormal basis of TM, the tangent bundle over M.

3. The nearly Kaehler S6(l).

Let e0, e1} •••, e7 be the standard basis of R8. Then each point a of R8

can be written in a unique way as

where A(=R and x is a linear combination of elf •••, β7. α can be viewed as
a Cay ley number, and is called purely imaginary when ^4=0. For any pair of
purely imaginary x and y, we consider the multiplication given by

x-y—{x, yyβoΛ-xXy,

where <,> is the standard scalar product on R8 and xXy is defined by the
following multiplication table for βjXek,
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For two Cayley numbers a—Ae^x and β—Bβo+y, the Cayley multiplication ,
which makes R8 the Cayley algebra C, is defined by

We recall that the multiplication of C is neither commutative nor associative.
The set C+ of all purely imaginary Cayley numbers clearly can be viewed as a
7-dimensional linear subspace RΊ of Rs. In C+ we consider the unit hypersphere
which is centered at the origin:

Then the tangent space TXS
6 of S6(l) at a point x may be identified with the

affine subspace of C+ which is orthogonal to x.
On S6(l) we now define a (1, l)-tensor field / by putting

jxu=χχu,

where I G S 6 ( 1 ) and U<=TXS
6. This tensor field is well-defined (i.e., JXU<=ΞTXS

6)
and determines an almost complex structure on S6(l), i. e.

where Id is the identity transformation ([F]). The compact simple Lie group
G2 is the group of automorphisms of C and acts transitively on S6(l) and
preserves both / and the standard metric on S6(l) ([F-I]).

Further, let G be the (2, l)-tensor field on 56(1) defined by

(3.1) G(X,Y)=$ZJ)Y,

where X, Fe.2?(S6) and where V is the Levi Civita connection on S6(l). This
tensor field has the following properties:

(3.2) G(X,X)=0,

(3.3) G(X, Y)+G(Y, X)=0,

(3.4) G(X, JY)+JG(X, Y)=0,

(3.5) (VxGXY, Z)=<Y, JZyX+iX, Z-yJY-iX, Y}JZ,

(3.6) <G(Z, Y), Z}+<G(X, Z), F>=0,

(3.7) <G(X, Y), G(Z, W)}=<X, ZXY, W>-<X, WXZ, Y>

+<jx, zxY, jwy-ijx, WXY, jz>,

where X, Y, Z, WeιX(Se) ([S], [G]). We recall that (3.2) means that the
structure / is nearly Kaehler, i.e. that VZs3f(S 6): (VX/)X=O.
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4. Almost complex surfaces of S6(l).

A submanifold M of the nearly Kaehler S6(l) is called almost complex if
J(TpM)ζzTpM for every p(=M, where TPM denotes the tangent space to M at
p. On an almost complex submanifold the almost complex structure of S6(l)
naturally induces an almost Kaehler structure, which we also denote by /.
Therefore any almost complex submanifold must be even-dimensional. Gray
[G2] showed that there are no 4-dimensional almost complex submanifolds in

S6(l).
In the following, M always denotes a (2-dimensional) almost complex surface

of S6(l). It is clear that the almost Kaehler structure J on M actually deter-
mines a Kaehler structure with respect to the induced metric. The Levi Civita
connection of M will be denoted by 7.

The formulas of Gauss and Weingarten for M in S6(l) are respectively
given by

ΊxY^χY+h{X, Y)
and

where ξ is a local normal vector field on M in S6(l) and X, Y^DC{M). h is
called the second fundamental form, Aς a second fundamental tensor and D the
normal connection of M in S6(l). h and Aξ are related by

whereby <, > denotes the metric on 56(1) as well as the induced metric on M.
From these formulas, it follows easily that

(4.1) h(X, JY)=Jh{X, Y),

(4.2) AJξ=JAξ=-AξJ

and that

(4.3)

We recall that M is minimal, as follows from (4.1). The equation of Gauss is
given by

K=l-2\\h(v,vψ,

where K denotes the Gaussian curvature of M, and v is a unit vector tangent
to M.

The equation of Codazzi states that

(VA)CY, Y, Z)=(7A)(F, X, Z),

where X, Y, Z^T(M) and Ih is defined by
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, Y, Z)=Dxh(Y, Z)-h{ΊxY, Z)-h(Y, 1XZ).

The equation of Ricci is given by

R
D
(v, Jv)ξ=2«h(v, Jv), ξ>h(v, v)-<h(v, v), ξ>h(v, Jv)),

where v is a unit vector tangent to M, ξ is a normal vector field, and RD is
the normal curvature tensor corresponding to the normal connection D, i. e.

The second and third derivative Ψh and Ψh of h are defined by

(Ψh)(X, Y, Z, W)=DxC7h)(Y, Z, W)-{lh){lxY, Z, W)

, z,
and

(73/z)(Z, y, Z, V, W0=£>z(72/0(r, Z, 7, W)-(Ψh)(!xY, Z, F, if)

-(72/z)(F, 7 X Z, F, ̂ )-(72/z)(F, Z, 7^F, W)

-{Ψh){Y,Z,V,lxW).

Then we have the following Ricci identities:

(Ψh)(X, Y, Z, W)=(Ψh)(Y, X, Z, W)+RD(X, Y)h(Zy W)

-h(R(X, Y)Z, W)-h(Z, R(X, Y)W)
and

(Ψh)(X, Y, Z, V, W)=(Ψh)(Y, X, Z, V, W)+RD(X, F)(7A)(Z, V, W)

-φh)(R(X, Y)Z, V, W)-{lh){Z, R(X, Y)V, W)

-φh)(Z,V,R(X,Y)W).

5. Proof of the Theorem.

In the following υ always denotes a unit tangent vector at some point p
of M, and also a unit local vector field around p such that VΌv=0 at p.

LEMMA 1. (a) (7Λ)(v, Jv, v)=/(7A)(v, v, v)+G{v, h(v, v)\

(b) (7A)(/i7, > , Jv)=-(lh){Jv, v, v).

LEMMA 2. (a) (72/ι)(?;, yv, yv, v)=-(Ψh)(v, v, v, v)

(b) (Ψh)(Jv, v, Jv, v)=-(Ψh)(v, v, v, v)+(3K-l)h(v, v).

(c) {Ψh){Jv, v, v, v)=(Ψh)(v, Jv, v, v)+a-3K)h(Jv, v)

(d) (Ψh)(v, Jv, v, v)=J(Ψh)(v, v, v, v)+2G(v, (7A)(v, v, v))

-JKv,v).
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Proofs.
l(a). We know that

(VA)(w, Jv, v)=Dυh(Jv, v)

=DJh(v, v)

=G(v, h{v,v))+JDvh{v,v),

where we have used (4.1) and (4.3).

l(b) and 2(a) follow straightforwardly from the minimality of M.
2(b) and 2(c). From the equations of Gauss and Ricci and the Ricci identities it
follows that

{Ψh){Jv, υ, Jv, v)

=(Ψh)(v, Jv, Jv, v)+RD(Jv, v)h{Jv, v)-h{R{Jv, v)Jv, v)-h(Jv, R(Jv, v)v)

=(Ψh)(v, Jv, Jv, v)-{l-K)h{v, v)+2Kh(v, v)

= -(Ψh)(v, υ, v, v)+(3K-l)h(v, v)

and

{Ψh)(Jv, v, v, v)=(Ψh)(v, Jv, v, v)+RD(Jv, v)h{v, v)-2h(R(Jv, v)v, v)

=(Ψh)(v, Jv, v, v)+(X-3K)h(Jv, v).

2(d). From l(a), (4.3), (3.1) and (3.5) it follows that

(Ψh){v, Jv, v, v)=Dυ{lh)(Jv, v, v)

=Dυ(JC7h)(v, v, v)+G(v, h(v, v)))

=G{v, (7Λ)(w, v, v))+J(Ψh){v, v, v, v)

+(%G)(v, h{v, υ))+Aeι*nv,*»v+G(υ, {lh){v, v, v))

=J(Ψh)(v, v, v, v)+2G(v, (7A)(v, v, v))-Jh(v, v),

since A0(.v,k(.υ>v»=0 because G(v, h(v, v)) is perpendicular to im(ft) (which is a
consequence of (3.2), (3.4) and (3.6)). •

LEMMA 3. x K—— 4<(VΛ)(*, v, v), h(v, v)>.

Proof. This follows directly from the equation of Gauss. •

Define covariant tensor fields Tlt T2 and Ts by

TiiXu Xt, X,, Xύ=<h{Xlf X,), h{Xs, X^>,

T,(Λi, Xt, - , X7, Xs)=<h(Xu Xύ, h{X%, XJXh(Xit X,), h{XΊ, Xs)>

and

i, Xt, - , Xt, Xτ)=({Ψh){Xu Xt, Xt, X,), CJh)(.Xt, Xt, X,)>.
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Since the measure of UM is invariant with respect to /, the first integral
formula of Section 2 implies that

(5.1) ( {ΨT1){v) v, v, v, v, t;)+(7 2T 1)(>, Jv, Jv, Jv, Jv, Jv)=0
J UM

and

(5.2) [τJ
ψTz)(v, v, - , v)+(ΨT,)(Jv, Jv, Jv, - , » = 0

J U M

and the second integral formula implies that

(5.3) [ {lT,){v, v, v, - , v)+CJTt)(Jυ, Jv, v, - , i/)=0.
jUM

By Lemma 1 and 2 we know that

(ΨT^v, v, - , v)+{ΨT1){Jv, Jv, - , Jv)

=2<(Ψh)(v, v, v, v)+{Ψh){Jv, Jv, v, v), h(v, v)>

;, v, ̂ )||2+2||(7Λ)(>) v, v)ψ

=2(3JC—l)I|A(t;, f)||2+||/(VΛ)(v, v, v)+CJh)(Jv, v, v)f

+ \\m)(Jv,v,v)-JC7h)(v,v,vW

=(3K-l)(l-K)+\\2J(Vh)(v, v, v)+G(v, h(v, t;))||2+||G(t;, h(v, v)ψ

=(3K-l)a-K)+s(v)+]\h(v, v)Γ

=&K-l/2)a-K)+s(p),

where we have used the Gauss equation, the parallelogram law, and (3.7), and
where we have put

(5.4) s(v)=\\2J{lh)(v, v, v)+G(v, h{v, v))\\\

Then (5.1) yields

(5.5) ί a-K)(ZK-l/2)+\ s(v)=0.
J UM J UM

Note that, if 1/6<K£1, (5.5) implies K=l or ΛΓ=l/6.

Again by Lemma 1 and 2, we obtain similarly that

(ΨT,)(v, v, - , f)+(V 2 r 2 )(>, Jv, - , Jv)

=8«(7A)(t;, v, v), h(v, v)>2+(φh)(Jv, v, v), h(v, v)>*)

v, v, v)\\*+mUv, v, v)\\*)

(t;, v, v, v)+(Ψh)(Jv, v, Jv, v), h{v, v)»
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where we have put

t{v)=<(lh)(v, v, v), h(v, υ)y+({lh){Jv, v, υ), h(v, v)Y.

Then (5.2) yields

(5.6) ( (l-K)\ZK-l/2) + \ (1-A")S(W)+8[ t{v)=O.
J U M J U M j U M

Subtracting (5.5) and (5.6) implies

(5.7) 3( {\-K){lβ-K)K-\ Ks(v)+8\ ί(w)=O.
JVM JVM JVM

Finally we know that

(5.8) (TΓiKv, v, v, •••, v)+(7Γ,)(/t>, Jυ, v, •••, v)

=<(Ψh)(v, v, v, v, v)+(Ψh)(Jv, Jv, v, v, υ), (7A)(υ, v, v)>

+ ||(72/ι)(v, v, v, v)f+\Wh){Jv, υ, v, υ)f.

=<(Ψh)(.v, v, v, v. v)+(Ψh)(Jv, Jv, v, v, v), (7A)(w, v, υ)>

\\(Ψh)(Jv, v, v, v)+J(Ψh)(v, v, v, v)f

+ j\\(Ψh)(Jv, v, v, v)-J{Ψh{v, v, v, v)\\K

Next, we need some more lemmata.

LEMMA 4. (Ψh)(Jv, Jv, v, v, v)+(Ψh)(v, v, v, v, v)

=14<(7A)(/w, v, v), h(v, v)}h(Jv, v)

(v, v, v), h{v, v)}h(v, v)-(2-9K)(Vh)(v, v, v).

Proof.
By Lemma 1, 2 and 3, we know that

(5.9) (Ψh)(Jv, Jv, v, v, v)=DJV(Ψh)(Jv, υ, v, v)

=DJV((Ψh)(v, Jv, v, v)+a-3K)h(.Jv, υ))

=(VIA)(>, v, Jv, v, w)-(l-3JD(VA)(i/, υ, v)

> , v, v), h(v, v)>h(Jv, v).

Using the Ricci identities, the equation of Ricci, and Lemma 1, 2 and 3 we
also obtain that
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(3.10) (Ψh)(Jv,v,Jv,v,v)

=(Ψh)(v, Jv, Jv, v, v)+RDUv, v){lh){Jv, v, v)

-C7h)(R(Jv, v)Jυ, v, v)-2{lh){Jv, R(Jv, v)v, v)

=DΏ(Ψh)(Jv, Jv, v, v)+2<h(v, v), (VA)(/ι>, v, v)>h(Jv, v)

-2{h(Jv, v), {lh){Jv, v, v)>h(v, v)+3K(lh){v, v, v)

= -(Ψh)(v, v, v, v, υ)-12<(VA)(υ, v, v), h(v, v)>h(v, v)

+&K-l)C7h)(v, v, v)+2<h(v, v), C7h)(Jv, v, v)}h(Jv, v)

-2<A(w, v), (7A)(v, v, v)>h(v, υ)+3K(lh)(v, v, v)

= -(Ψh)(v, v, v, v, v)-U(.h(v, v), C7h)(v, v, v)>h(v, v)

+2(h{v, v), CthXJv, v, v)}h(Jv, w)+(6/f-l)(7A)(i;, v, v).

The combination of (5.9) and (5.10) yields the proof of this lemma. •

LEMMA 5. \\(Ψh)(Jv, υ, υ, v)-J(Ψh)(v, v, v, vψ

=4||(7A)(t>, v, v)\\*+jK*(l-K)+12K<G(v, h(v, υ)), J{lh){υ, v, v)>.

Proof. \\(Ψh)(Jv, v, v, v)-J(Ψh)(v, v, v, v)f

= \\2G(v, (7A)(t>, v, v))-3Kh(Jv, vψ

=4||C7A)(t;, v, v)\\2+jK2(l-K)-l2K<G(v, {lh){v, v, v)), h{Jv, v)>

=4||(7A)(t;, v, vψ+jK*(.l-K)+l2K<G(v, h(v, v)), J{lh){υ, v, v)>,

where we have used the equation of Gauss, Lemma 2, (3.4), (3.6), (3.7) and (4.1).

LEMMA 6. (a) i\ K\\(lh)(v, v, v)V=\ Ks(v)+^r\ KQ.-K).
jUM JUM άi JUM

(b) 4f K<Q(v, h(v, v)), J{lh){v, v, v)}+\ K(l-K)=0.
JUM JUM

Proof, Since / preserves the measure of UM, we know that

K\\C7h)(v, v, vψ=\ K\\φh)Vv,Jv,Jv)\\*.
UM JUM

Consequently,

v, v, vW=^vMK(2\\(Vh)(v, v, v)f+2\\φh){Jv, v, v)\\s)

= \ Ks(v)+^\ KQ.-K),
JUM 2 JUM
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which proves (a).

On the other hand, we have that

ί K\\{lh){v, υ, v)f
JUM

' v>v)r

, v, v)+G(v, h(v, v)ψ

, v, v)\\2+2^uMK<J(lh)(v, v, υ), G(v, h{v, v)))

which proves (b). •

Integrating (5.8) and using (5.3), Lemma 4, 5 and 6, we obtain that

0 = - 1 4 ( [<(7λ)(/ι/f v, υ), h(v, z;)>2+<(V/ι)(ι;, v, v), h(v, z;)>2]
JUM

, υ, v)f

Thus we find that

(5.11) 0=—ξ-f W + [ Ks(v)+\ Ka-K)(K-~) + ~\ r(v),
9 JUM JUM JUM \ 6 / 9 JUM

where we have put

r(ί;) = ||(V2/i)O, v, vy v)+J(Ψh)(v, v, v, v)\\\

Adding (5.11) and (5.7) implies

(5.12) 2[ K(l-K)(~-K)+^-\ t(v)+%\ r(v)=0.
JUM \6 / 9 JUM 9 JUM

If we suppose that O ^ X ^ - T Γ , then all terms on the left hand side in (5.12) are
b

non negative, and consequently zero.
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In particular we obtain that

JUM

Since K(l—K)(——K) is a positive function under the assumption 0^K< —,

it follows that either K—0 or K= — .
Ό
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