ON ALMOST COMPLEX SURFACES OF THE NEARLY KAEHLER 6-SPHERE II

By F. Dillen ${ }^{*}$), L. Verstraelen and L. Vrancken(*)

Abstract

Let M be a 2 -dimensional almost complex submanifold with Gauss curvature K in the nearly Kaehler unit 6 -sphere $S^{6}(1)$. Then, in case K is constant, either $K=1, K=1 / 6$ or $K=0[S]$. In [D-0-V-V], we proved that for compact M, if $1 / 6 \leqq K \leqq 1$, then either $K=1$ or $K=1 / 6$. In the present paper we prove that for compact M, if $0 \leqq K \leqq 1 / 6$, then either $K=0$ or $K=1 / 6$.

1. Introduction.

On a 6-dimensional unit sphere $S^{6}(1)$, a nearly Kaehler structure J can be constructed in a natural way, making use of the Cayley number system [C]. We recall this construction in Section 3. In this paper we study (connected) almost complex (2-dimensional) surfaces M of $S^{6}(1)$. The basic formulas for such surfaces are given in Section 4. Let K denote the Gaussian curvature of M. In [S], Sekigawa proved that, if K is constant, then $K=1, K=1 / 6$ or $K=0$. In [D-O-V-V] we proved that, if M is compact and $1 / 6 \leqq K \leqq 1$, then either $K=1 / 6$ or $K=1$ (this result follows also from the papers [O] and [D], and the fact that an almost complex surface cannot lie in a totally geodesic $\left.S^{4}(1) \subset S^{6}(1)\right)$. In Section 5 we prove the following result, which solves a problem proposed in [D-O-V-V].

Theorem. Let M be a compact almost complex surface in the nearly Kaehler $S^{6}(1)$. If the Gaussian curvature K of M satisfies the inequality $0 \leqq K \leqq 1 / 6$, then either $K=0$ or $K=1 / 6$.

Examples of almost complex surfaces of $S^{6}(1)$ with $K=0$ or $K=1 / 6$ are given in [S]. The proof of this Theorem essentially uses some integral formulas of Ros, which are stated in Section 2.

[^0]${ }^{*)}$ Aspirant N.F.W.O. (Belgium).

2. Integral formulas.

Let M be a compact Riemannian manifold, $U M$ its unit tangent bundle, and $U M_{p}$ the fiber of $U M$ over a point p of M. Let $d p, d u$ and $d u_{p}$ be respectively the canonical measures on $M, U M$ and $U M_{p}$. For any continuous function $f: U M \rightarrow \boldsymbol{R}$, one has

$$
\int_{U M} f d u=\int_{M}\left(\int_{U M_{p}} f d u_{p}\right) d p
$$

Let T be any k-covariant tensor field on M and let ∇ be the Levi Civita connection of M. Then the integral formulas of Ros $[\mathrm{R}]$ state that

$$
\begin{equation*}
\int_{U M}(\nabla T)(u, u, u, \cdots, u) d u=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{U M} \sum_{i=1}^{n}(\nabla T)\left(e_{\imath}, e_{\imath}, u, \cdots, u\right) d u=0 \tag{2.2}
\end{equation*}
$$

where $\left\{e_{\imath}\right\}_{\imath=1}^{n}$ is an orthonormal basis of $T M$, the tangent bundle over M.

3. The nearly Kaehler $S^{6}(1)$.

Let $e_{0}, e_{1}, \cdots, e_{7}$ be the standard basis of \boldsymbol{R}^{8}. Then each point α of \boldsymbol{R}^{8} can be written in a unique way as

$$
\alpha=A e_{0}+x,
$$

where $A \in \boldsymbol{R}$ and x is a linear combination of $e_{1}, \cdots, e_{7} . \alpha$ can be viewed as a Cayley number, and is called purely imaginary when $A=0$. For any pair of purely imaginary x and y, we consider the multiplication \cdot given by

$$
x \cdot y=\langle x, y\rangle e_{0}+x \times y,
$$

where \langle,$\rangle is the standard scalar product on \boldsymbol{R}^{8}$ and $x \times y$ is defined by the following multiplication table for $e_{\jmath} \times e_{k}$,

j / k	1	2	3	4	5	6	7
1	0	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	e_{7}	$-e_{6}$
2	$-e_{3}$	0	e_{1}	e_{6}	$-e_{7}$	$-e_{4}$	e_{5}
3	e_{2}	$-e_{1}$	0	$-e_{7}$	$-e_{6}$	e_{5}	e_{4}
4	$-e_{5}$	$-e_{6}$	e_{7}	0	e_{1}	e_{2}	$-e_{3}$
5	e_{4}	e_{7}	e_{6}	$-e_{1}$	0	$-e_{3}$	$-e_{2}$
6	$-e_{7}$	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	0	e_{1}
7	e_{6}	$-e_{5}$	$-e_{4}$	e_{3}	e_{2}	$-e_{1}$	0.

For two Cayley numbers $\alpha=A e_{0}+x$ and $\beta=B e_{0}+y$, the Cayley multiplication \cdot, which makes \boldsymbol{R}^{8} the Cayley algebra \mathcal{C}, is defined by

$$
\alpha \cdot \beta=A B e_{0}+A y+B x+x \cdot y
$$

We recall that the multiplication of \mathcal{C} is neither commutative nor associative. The set \mathcal{C}_{+}of all purely imaginary Cayley numbers clearly can be viewed as a 7-dimensional linear subspace \boldsymbol{R}^{7} of \boldsymbol{R}^{8}. In \mathcal{C}_{+}we consider the unit hypersphere which is centered at the origin:

$$
S^{6}(1)=\left\{x \in \mathcal{C}_{+} \mid\langle x, x\rangle=1\right\}
$$

Then the tangent space $T_{x} S^{6}$ of $S^{6}(1)$ at a point x may be identified with the affine subspace of \mathcal{C}_{+}which is orthogonal to x.

On $S^{6}(1)$ we now define a (1,1)-tensor field J by putting

$$
J_{x} U=x \times U
$$

where $x \in S^{6}(1)$ and $U \in T_{x} S^{6}$. This tensor field is well-defined (i. e., $J_{x} U \in T_{x} S^{6}$) and determines an almost complex structure on $S^{6}(1)$, i. e.

$$
J^{2}=-I d
$$

where $I d$ is the identity transformation ([F]). The compact simple Lie group G_{2} is the group of automorphisms of \mathcal{C} and acts transitively on $S^{6}(1)$ and preserves both J and the standard metric on $S^{6}(1)$ ([F-I]).

Further, let G be the $(2,1)$-tensor field on $S^{6}(1)$ defined by

$$
\begin{equation*}
G(X, Y)=\left(\tilde{\nabla}_{X} J\right) Y \tag{3.1}
\end{equation*}
$$

where $X, Y \in \mathscr{X}\left(S^{6}\right)$ and where $\tilde{\nabla}$ is the Levi Civita connection on $S^{6}(1)$. This tensor field has the following properties:

$$
\begin{equation*}
G(X, X)=0 \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
G(X, Y)+G(Y, X)=0 \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
G(X, J Y)+J G(X, Y)=0 \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} G\right)(Y, Z)=\langle Y, J Z\rangle X+\langle X, Z\rangle J Y-\langle X, Y\rangle J Z \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\langle G(X, Y), Z\rangle+\langle G(X, Z), Y\rangle=0 \tag{3.6}
\end{equation*}
$$

$$
\begin{align*}
& \langle G(X, Y), G(Z, W)\rangle=\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Z, Y\rangle \tag{3.7}\\
& \quad+\langle J X, Z\rangle\langle Y, J W\rangle-\langle J X, W\rangle\langle Y, J Z\rangle
\end{align*}
$$

where $X, Y, Z, W \in \mathscr{X}\left(S^{6}\right) \quad([\mathrm{S}],[\mathrm{G}])$. We recall that (3.2) means that the structure J is nearly Kaehler, i. e. that $\forall X \in \mathscr{X}\left(S^{6}\right):\left(\tilde{\nabla}_{X} J\right) X=0$.
4. Almost complex surfaces of $S^{6}(1)$.

A submanifold M of the nearly Kaehler $S^{6}(1)$ is called almost complex if $J\left(T_{p} M\right) \subseteq T_{p} M$ for every $p \in M$, where $T_{p} M$ denotes the tangent space to M at p. On an almost complex submanifold the almost complex structure of $S^{6}(1)$ naturally induces an almost Kaehler structure, which we also denote by J. Therefore any almost complex submanifold must be even-dimensional. Gray [G2] showed that there are no 4-dimensional almost complex submanifolds in $S^{6}(1)$.

In the following, M always denotes a (2-dimensional) almost complex surface of $S^{6}(1)$. It is clear that the almost Kaehler structure J on M actually determines a Kaehler structure with respect to the induced metric. The Levi Civita connection of M will be denoted by ∇.

The formulas of Gauss and Weingarten for M in $S^{6}(1)$ are respectively given by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)
$$

and

$$
\tilde{\nabla}_{x} \xi=-A_{\xi} X+D_{x} \xi
$$

where ξ is a local normal vector field on M in $S^{6}(1)$ and $X, Y \in \mathscr{X}(M) . \quad h$ is called the second fundamental form, A_{ξ} a second fundamental tensor and D the normal connection of M in $S^{6}(1) . \quad h$ and A_{ξ} are related by

$$
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle
$$

whereby \langle,$\rangle denotes the metric on S^{6}(1)$ as well as the induced metric on M. From these formulas, it follows easily that

$$
\begin{align*}
& h(X, J Y)=J h(X, Y) \tag{4.1}\\
& A_{J \xi}=J A_{\xi}=-A_{\xi} J \tag{4.2}
\end{align*}
$$

and that

$$
\begin{equation*}
D_{X}(J \xi)=G(X, \xi)+J D_{X} \xi \tag{4.3}
\end{equation*}
$$

We recall that M is minimal, as follows from (4.1). The equation of Gauss is given by

$$
K=1-2\|h(v, v)\|^{2},
$$

where K denotes the Gaussian curvature of M, and v is a unit vector tangent to M.

The equation of Codazzi states that

$$
(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)
$$

where $X, Y, Z \in \mathscr{X}(M)$ and ∇h is defined by

$$
(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

The equation of Ricci is given by

$$
R^{D}(v, J v) \xi=2(\langle h(v, J v), \xi\rangle h(v, v)-\langle h(v, v), \xi\rangle h(v, J v))
$$

where v is a unit vector tangent to M, ξ is a normal vector field, and R^{D} is the normal curvature tensor corresponding to the normal connection D, i.e. $R^{D}(X, Y)=\left[D_{X}, D_{Y}\right]-D_{[X, Y]}$.

The second and third derivative $\nabla^{2} h$ and $\nabla^{3} h$ of h are defined by

$$
\begin{aligned}
\left(\nabla^{2} h\right)(X, Y, Z, W)= & D_{X}(\nabla h)(Y, Z, W)-(\nabla h)\left(\nabla_{X} Y, Z, W\right) \\
& -(\nabla h)\left(Y, \nabla_{X} Z, W\right)-(\nabla h)\left(Y, Z, \nabla_{X} W\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla^{3} h\right)(X, Y, Z, V, W)= & D_{X}\left(\nabla^{2} h\right)(Y, Z, V, W)-\left(\nabla^{2} h\right)\left(\nabla_{X} Y, Z, V, W\right) \\
& -\left(\nabla^{2} h\right)\left(Y, \nabla_{X} Z, V, W\right)-\left(\nabla^{2} h\right)\left(Y, Z, \nabla_{X} V, W\right) \\
& -\left(\nabla^{2} h\right)\left(Y, Z, V, \nabla_{X} W\right)
\end{aligned}
$$

Then we have the following Ricci identities:

$$
\begin{aligned}
\left(\nabla^{2} h\right)(X, Y, Z, W)= & \left(\nabla^{2} h\right)(Y, X, Z, W)+R^{D}(X, Y) h(Z, W) \\
& -h(R(X, Y) Z, W)-h(Z, R(X, Y) W)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla^{3} h\right)(X, Y, Z, V, W)= & \left(\nabla^{3} h\right)(Y, X, Z, V, W)+R^{D}(X, Y)(\nabla h)(Z, V, W) \\
& -(\nabla h)(R(X, Y) Z, V, W)-(\nabla h)(Z, R(X, Y) V, W) \\
& -(\nabla h)(Z, V, R(X, Y) W)
\end{aligned}
$$

5. Proof of the Theorem.

In the following v always denotes a unit tangent vector at some point p of M, and also a unit local vector field around p such that $\nabla_{v} v=0$ at p.

Lemma 1. (a) $(\nabla h)(v, J v, v)=J(\nabla h)(v, v, v)+G(v, h(v, v))$.
(b) $(\nabla h)(J v, J v, J v)=-(\nabla h)(J v, v, v)$.

LEMMA 2. (a) $\left(\nabla^{2} h\right)(v, J v, J v, v)=-\left(\nabla^{2} h\right)(v, v, v, v)$
(b) $\left(\nabla^{2} h\right)(J v, v, J v, v)=-\left(\nabla^{2} h\right)(v, v, v, v)+(3 K-1) h(v, v)$.
(c) $\left(\nabla^{2} h\right)(J v, v, v, v)=\left(\nabla^{2} h\right)(v, J v, v, v)+(1-3 K) h(J v, v)$
(d) $\left(\nabla^{2} h\right)(v, J v, v, v)=J\left(\nabla^{2} h\right)(v, v, v, v)+2 G(v,(\nabla h)(v, v, v))$ $-J h(v, v)$.

Proofs.
1(a). We know that

$$
\begin{aligned}
(\nabla h)(v, J v, v) & =D_{v} h(J v, v) \\
& =D_{v} J h(v, v) \\
& =G(v, h(v, v))+J D_{v} h(v, v),
\end{aligned}
$$

where we have used (4.1) and (4.3).
1 (b) and 2(a) follow straightforwardly from the minimality of M.
2(b) and 2(c). From the equations of Gauss and Ricci and the Ricci identities it follows that

$$
\begin{aligned}
& \left(\nabla^{2} h\right)(J v, v, J v, v) \\
& =\left(\nabla^{2} h\right)(v, J v, J v, v)+R^{D}(J v, v) h(J v, v)-h(R(J v, v) J v, v)-h(J v, R(J v, v) v) \\
& =\left(\nabla^{2} h\right)(v, J v, J v, v)-(1-K) h(v, v)+2 K h(v, v) \\
& =-\left(\nabla^{2} h\right)(v, v, v, v)+(3 K-1) h(v, v)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla^{2} h\right)(J v, v, v, v) & =\left(\nabla^{2} h\right)(v, J v, v, v)+R^{D}(J v, v) h(v, v)-2 h(R(J v, v) v, v) \\
& =\left(\nabla^{2} h\right)(v, J v, v, v)+(1-3 K) h(J v, v) .
\end{aligned}
$$

2(d). From 1(a), (4.3), (3.1) and (3.5) it follows that

$$
\begin{aligned}
\left(\nabla^{2} h\right)(v, J v, v, v)= & D_{v}(\nabla h)(J v, v, v) \\
= & D_{v}(J(\nabla h)(v, v, v)+G(v, h(v, v))) \\
= & G(v,(\nabla h)(v, v, v))+J\left(\nabla^{2} h\right)(v, v, v, v) \\
& +\left(\tilde{\nabla}_{v} G\right)(v, h(v, v))+A_{G(v, h(v, v))}+G(v,(\nabla h)(v, v, v)) \\
= & J\left(\nabla^{2} h\right)(v, v, v, v)+2 G(v,(\nabla h)(v, v, v))-J h(v, v)
\end{aligned}
$$

since $A_{G(v, h(v, v))}=0$ because $G(v, h(v, v))$ is perpendicular to $\operatorname{im}(h)$ (which is a consequence of (3.2), (3.4) and (3.6)).

Lemma 3. $x \cdot K=-4\langle(\nabla h)(x, v, v), h(v, v)\rangle$.
Proof. This follows directly from the equation of Gauss.
Define covariant tensor fields T_{1}, T_{2} and T_{3} by

$$
\begin{aligned}
& T_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\left\langle h\left(X_{1}, X_{2}\right), h\left(X_{3}, X_{4}\right)\right\rangle \\
& T_{2}\left(X_{1}, X_{2}, \cdots, X_{7}, X_{8}\right)=\left\langle h\left(X_{1}, X_{2}\right), h\left(X_{3}, X_{4}\right)\right\rangle\left\langle h\left(X_{5}, X_{6}\right), h\left(X_{7}, X_{8}\right)\right\rangle
\end{aligned}
$$

and

$$
T_{3}\left(X_{1}, X_{2}, \cdots, X_{6}, X_{7}\right)=\left\langle\left(\nabla^{2} h\right)\left(X_{1}, X_{2}, X_{3}, X_{4}\right),(\nabla h)\left(X_{5}, X_{6}, X_{7}\right)\right\rangle .
$$

Since the measure of $U M$ is invariant with respect to J, the first integral formula of Section 2 implies that

$$
\begin{equation*}
\int_{U M}\left(\nabla^{2} T_{1}\right)(v, v, v, v, v, v)+\left(\nabla^{2} T_{1}\right)(J v, J v, J v, J v, J v, J v)=0 \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{U M}\left(\nabla^{2} T_{2}\right)(v, v, \cdots, v)+\left(\nabla^{2} T_{2}\right)(J v, J v, J v, \cdots, J v)=0 \tag{5.2}
\end{equation*}
$$

and the second integral formula implies that

$$
\begin{equation*}
\int_{U M}\left(\nabla T_{3}\right)(v, v, v, \cdots, v)+\left(\nabla T_{3}\right)(J v, J v, v, \cdots, v)=0 \tag{5.3}
\end{equation*}
$$

By Lemma 1 and 2 we know that

$$
\begin{aligned}
&\left(\nabla^{2} T_{1}\right)(v, v, \cdots, v)+\left(\nabla^{2} T_{1}\right)(J v, J v, \cdots, J v) \\
&= 2\left\langle\left(\nabla^{2} h\right)(v, v, v, v)+\left(\nabla^{2} h\right)(J v, J v, v, v), h(v, v)\right\rangle \\
&+2\|(\nabla h)(v, v, v)\|^{2}+2\|(\nabla h)(J v, v, v)\|^{2} \\
&= 2(3 K-1)\|h(v, v)\|^{2}+\|J(\nabla h)(v, v, v)+(\nabla h)(J v, v, v)\|^{2} \\
&+\|(\nabla h)(J v, v, v)-J(\nabla h)(v, v, v)\|^{2} \\
&=(3 K-1)(1-K)+\| 2 J(\nabla h)(v, v, v)+G\left(v, h(v, v)\left\|^{2}+\right\| G(v, h(v, v)) \|^{2}\right. \\
&=(3 K-1)(1-K)+s(v)+\|h(v, v)\|^{2} \\
&=(3 K-1 / 2)(1-K)+s(v),
\end{aligned}
$$

where we have used the Gauss equation, the parallelogram law, and (3.7), and where we have put

$$
\begin{equation*}
s(v)=\|2 J(\nabla h)(v, v, v)+G(v, h(v, v))\|^{2} . \tag{5.4}
\end{equation*}
$$

Then (5.1) yields

$$
\begin{equation*}
\int_{U M}(1-K)(3 K-1 / 2)+\int_{U M} s(v)=0 \tag{5.5}
\end{equation*}
$$

Note that, if $1 / 6 \leqq K \leqq 1$, (5.5) implies $K=1$ or $K=1 / 6$.
Again by Lemma 1 and 2, we obtain similarly that

$$
\begin{aligned}
& \left(\nabla^{2} T_{2}\right)(v, v, \cdots, v)+\left(\nabla^{2} T_{2}\right)(J v, J v, \cdots, J v) \\
& =8\left(\langle(\nabla h)(v, v, v), h(v, v)\rangle^{2}+\langle(\nabla h)(J v, v, v), h(v, v)\rangle^{2}\right) \\
& \quad+4\|h(v, v)\|^{2}\left(\|\nabla h(v, v, v)\|^{2}+\|\nabla h(J v, v, v)\|^{2}\right) \\
& \quad+4\|h(v, v)\|^{2}\left(\left\langle\left(\nabla^{2} h\right)(v, v, v, v)+\left(\nabla^{2} h\right)(J v, v, J v, v), h(v, v)\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& =8 t(v)+(1-K)\left(s(v)+\frac{1}{2}(1-K)\right)+(3 K-1)(1-K)^{2} \\
& =8 t(v)+(1-K) s(v)+(1-K)^{2}(3 K-1 / 2)
\end{aligned}
$$

where we have put

$$
t(v)=\langle(\nabla h)(v, v, v), h(v, v)\rangle^{2}+\langle(\nabla h)(J v, v, v), h(v, v)\rangle^{2} .
$$

Then (5.2) yields

$$
\begin{equation*}
\int_{U M}(1-K)^{2}(3 K-1 / 2)+\int_{U M}(1-K) s(v)+8 \int_{U M} t(v)=0 \tag{5.6}
\end{equation*}
$$

Subtracting (5.5) and (5.6) implies

$$
\begin{equation*}
3 \int_{U M}(1-K)(1 / 6-K) K-\int_{U M} K s(v)+8 \int_{U M} t(v)=0 . \tag{5.7}
\end{equation*}
$$

Finally we know that

$$
\begin{align*}
&\left(\nabla T_{3}\right)(v, v, v, \cdots, v)+\left(\nabla T_{3}\right)(J v, J v, v, \cdots, v) \tag{5.8}\\
&=\left\langle\left(\nabla^{3} h\right)(v, v, v, v, v)+\left(\nabla^{3} h\right)(J v, J v, v, v, v),(\nabla h)(v, v, v)\right\rangle \\
&+\left\|\left(\nabla^{2} h\right)(v, v, v, v)\right\|^{2}+\left\|\left(\nabla^{2} h\right)(J v, v, v, v)\right\|^{2} . \\
&=\left\langle\left(\nabla^{3} h\right)(v, v, v, v, v)+\left(\nabla^{3} h\right)(J v, J v, v, v, v),(\nabla h)(v, v, v)\right\rangle \\
&+\frac{1}{2}\left\|\left(\nabla^{2} h\right)(J v, v, v, v)+J\left(\nabla^{2} h\right)(v, v, v, v)\right\|^{2} \\
&+\frac{1}{2} \|\left(\nabla^{2} h\right)(J v, v, v, v)-J\left(\nabla^{2} h(v, v, v, v) \|^{2} .\right.
\end{align*}
$$

Next, we need some more lemmata.
Lemma 4. $\left(\nabla^{3} h\right)(J v, J v, v, v, v)+\left(\nabla^{3} h\right)(v, v, v, v, v)$

$$
\begin{aligned}
= & 14\langle(\nabla h)(J v, v, v), h(v, v)\rangle h(J v, v) \\
& -14\langle(\nabla h)(v, v, v), h(v, v)\rangle h(v, v)-(2-9 K)(\nabla h)(v, v, v) .
\end{aligned}
$$

Proof.
By Lemma 1, 2 and 3, we know that

$$
\begin{align*}
\left(\nabla^{3} h\right)(J v, J v, v, v, v)= & D_{J v}\left(\nabla^{2} h\right)(J v, v, v, v) \tag{5.9}\\
= & D_{J v}\left(\left(\nabla^{2} h\right)(v, J v, v, v)+(1-3 K) h(J v, v)\right) \\
= & \left(\nabla^{3} h\right)(J v, v, J v, v, v)-(1-3 K)(\nabla h)(v, v, v) \\
& +12\langle(\nabla h)(J v, v, v), h(v, v)\rangle h(J v, v) .
\end{align*}
$$

Using the Ricci identities, the equation of Ricci, and Lemma 1, 2 and 3 we also obtain that

$$
\begin{align*}
&\left(\nabla^{3} h\right)(J v, v, J v, v, v) \tag{3.10}\\
&=\left(\nabla^{3} h\right)(v, J v, J v, v, v)+R^{p}(J v, v)(\nabla h)(J v, v, v) \\
&-(\nabla h)(R(J v, v) J v, v, v)-2(\nabla h)(J v, R(J v, v) v, v) \\
&= D_{v}\left(\nabla^{2} h\right)(J v, J v, v, v)+2\langle h(v, v),(\nabla h)(J v, v, v)\rangle h(J v, v) \\
&-2\langle h(J v, v),(\nabla h)(J v, v, v)\rangle h(v, v)+3 K(\nabla h)(v, v, v) \\
&=-\left(\nabla^{3} h\right)(v, v, v, v, v)-12\langle(\nabla h)(v, v, v), h(v, v)\rangle h(v, v) \\
&+(3 K-1)(\nabla h)(v, v, v)+2\langle h(v, v),(\nabla h)(J v, v, v)\rangle h(J v, v) \\
&-2\langle h(v, v),(\nabla h)(v, v, v)\rangle h(v, v)+3 K(\nabla h)(v, v, v) \\
&=-\left(\nabla^{3} h\right)(v, v, v, v, v)-14\langle h(v, v),(\nabla h)(v, v, v)\rangle h(v, v) \\
&+2\langle h(v, v),(\nabla h)(J v, v, v)\rangle h(J v, v)+(6 K-1)(\nabla h)(v, v, v) .
\end{align*}
$$

The combination of (5.9) and (5.10) yields the proof of this lemma.
Lemma 5. $\left\|\left(\nabla^{2} h\right)(J v, v, v, v)-J\left(\nabla^{2} h\right)(v, v, v, v)\right\|^{2}$

$$
=4\|(\nabla h)(v, v, v)\|^{2}+\frac{9}{2} K^{2}(1-K)+12 K\langle G(v, h(v, v)), J(\nabla h)(v, v, v)\rangle .
$$

Proof. $\left\|\left(\nabla^{2} h\right)(J v, v, v, v)-J\left(\nabla^{2} h\right)(v, v, v, v)\right\|^{2}$

$$
\begin{aligned}
& =\|2 G(v,(\nabla h)(v, v, v))-3 K h(J v, v)\|^{2} \\
& =4\|(\nabla h)(v, v, v)\|^{2}+\frac{9}{2} K^{2}(1-K)-12 K\langle G(v,(\nabla h)(v, v, v)), h(J v, v)\rangle \\
& =4\|(\nabla h)(v, v, v)\|^{2}+\frac{9}{2} K^{2}(1-K)+12 K\langle G(v, h(v, v)), J(\nabla h)(v, v, v)\rangle,
\end{aligned}
$$

where we have used the equation of Gauss, Lemma 2, (3.4), (3.6), (3.7) and (4.1).
Lemma 6.

$$
\begin{aligned}
& \text { (a) } 4 \int_{U M} K\|(\nabla h)(v, v, v)\|^{2}=\int_{U M} K s(v)+\frac{1}{2} \int_{U M} K(1-K) . \\
& \text { (b) } 4 \int_{U M} K\langle G(v, h(v, v)), J(\nabla h)(v, v, v)\rangle+\int_{U M} K(1-K)=0 .
\end{aligned}
$$

Proof. Since J preserves the measure of $U M$, we know that

$$
\int_{U M} K\|(\nabla h)(v, v, v)\|^{2}=\int_{U M} K\|(\nabla h)(J v, J v, J v)\|^{2} .
$$

Consequently,

$$
\begin{aligned}
4 \int_{U M} K\|(\nabla h)(v, v, v)\|^{2} & =\int_{U M} K\left(2\|(\nabla h)(v, v, v)\|^{2}+2\|(\nabla h)(J v, v, v)\|^{2}\right) \\
& =\int_{U M} K s(v)+\frac{1}{2} \int_{U M} K(1-K),
\end{aligned}
$$

which proves (a).
On the other hand, we have that

$$
\begin{aligned}
& \int_{U M} K\|(\nabla h)(v, v, v)\|^{2} \\
& =\int_{U M} K\|(\nabla h)(J v, v, v)\|^{2} \\
& =\int_{U M} K\|J(\nabla h)(v, v, v)+G(v, h(v, v))\|^{2} \\
& =\int_{U M} K\|(\nabla h)(v, v, v)\|^{2}+2 \int_{U M} K\langle J(\nabla h)(v, v, v), G(v, h(v, v))\rangle \\
& \quad+\frac{1}{2} \int_{U M}(1-K) K,
\end{aligned}
$$

which proves (b).
Integrating (5.8) and using (5.3), Lemma 4, 5 and 6 , we obtain that

$$
\begin{aligned}
0= & -14 \int_{U M}\left[\langle(\nabla h)(J v, v, v), h(v, v)\rangle^{2}+\langle(\nabla h)(v, v, v), h(v, v)\rangle^{2}\right] \\
& -\int_{U M}(2-9 K)\|(\nabla h)(v, v, v)\|^{2} \\
& +\frac{1}{2} \int_{U M}\left\|\left(\nabla^{2} h\right)(J v, v, v, v)+J\left(\nabla^{2} h\right)(v, v, v, v)\right\|^{2} \\
& +2 \int_{U M}\|(\nabla h)(v, v, v)\|^{2}+\frac{9}{4} \int_{U M} K^{2}(1-K)-\frac{3}{2} \int_{U M} K(1-K) \\
= & -14 \int_{U M} t(v)+\frac{9}{4} \int_{U M} K s(v)+\frac{9}{4} \int_{U M} K(1-K)\left(K+\frac{1}{2}-\frac{2}{3}\right)+\frac{1}{2} \int_{U M} r(v) .
\end{aligned}
$$

Thus we find that

$$
\begin{equation*}
0=-\frac{56}{9} \int_{U M} t(v)+\int_{U M} K s(v)+\int_{U M} K(1-K)\left(K-\frac{1}{6}\right)+\frac{2}{9} \int_{U M} r(v), \tag{5.11}
\end{equation*}
$$

where we have put

$$
r(v)=\left\|\left(\nabla^{2} h\right)(J v, v, v, v)+J\left(\nabla^{2} h\right)(v, v, v, v)\right\|^{2} .
$$

Adding (5.11) and (5.7) implies

$$
\begin{equation*}
2 \int_{U M} K(1-K)\left(\frac{1}{6}-K\right)+\frac{16}{9} \int_{U M} t(v)+\frac{2}{9} \int_{U_{M}} r(v)=0 . \tag{5.12}
\end{equation*}
$$

If we suppose that $0 \leqq K \leqq \frac{1}{6}$, then all terms on the left hand side in (5.12) are non negative, and consequently zero.

In particular we obtain that

$$
\int_{U M} K(1-K)\left(\frac{1}{6}-K\right)=0
$$

Since $K(1-K)\left(\frac{1}{6}-K\right)$ is a positive function under the assumption $0 \leqq K \leqq \frac{1}{6}$, it follows that either $K=0$ or $K=\frac{1}{6}$.

References

[C] E. Calabi, Construction and properties of some 6-dimensional almost complex manifolds, Trans. A.M. S., 87 (1958), 407-438.
[D] F. Dillen, Minimal immersions of surfaces into spheres, Arch. Math., 49 (1987), 94-96.
[D-0-V-V] F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken, On almost complex surfaces of the nearly Kaehler 6 -sphere, to appear in Collection of Scientific Papers, Faculty of Science, Univ. of Kragujevac., 8 (1987), 5-13.
[F] A. Frölicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann., 129 (1955), 50-95.
[F-I] T. Fukami, S. Ishihara, Almost Hermitian structure on S^{6}, Tôhoku Math. J., 7 (1955), 151-156.
[G] A. Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 12 (1965), 273-287.
[G2] A. Gray, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc., 20 (1969), 277-279.
[0] T. Ogata, Minimal surfaces in a sphere with Gaussian curvature not less than 1/6, Tôhoku Math. J., 37 (1985), 553-560.
[R] A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math., 121 (1985), 377-382.
[S] K. Sekigawa, Almost complex submanifolds of a 6 -dimensional sphere, Kōdai Math. J., 6 (1983), 174-185.

Katholieke Universiteit Leuven
Dept. Wiskunde
Celestijnenlaan 200B
B-3030 Leuven
Belgium.

[^0]: Received December 1, 1986

