C.-G. LIU KODAI MATH. J. 10 (1987), 223-230

A NOTE ON POISSON APPROXIMATION IN MULTIVARIATE CASE

BY CHENG-GEE LIU

0. Introduction.

It has been studied in recent years to show the Poisson approximation for the sum of independent Bernoulli random variables which may or may not be identically distributed (see [1], [2], [4]).

In paper [3], K. Kawamura has derived sufficient conditions of a Poisson approximation for the sum of independent identically multivariate Bernoulli random variables. In this paper, we are going to extend the result of paper [2] and generalize the result of paper [3] to the multivariate case.

1. Notations and Definitions.

a. Suffix and *n*-dimensional vectors.

- 1. j, k, m, n: positive integers,
- 2. λ_i : parameter of Poisson distribution for every $i \in E$,
- 3. e_1, e_2, \dots, e_n : base of *n*-dimensional vectors,
- 4. $E = \{0, 1\}^n \{O\}$ and $EO = \{0, 1\}^n$,
- 5. O: n-dimensional zero vector.
- 6. $i = (i_1, i_2, \dots, i_n)$: *n*-dimensional vector belonging to E,
- 7. $\mathbf{k} = (k_1, k_2, \dots, k_n)$: *n*-dimensional vector belonging to \mathbf{E} ,
- 8. $s = (s_1, s_2, \dots, s_n)$: *n*-dimensional vector with nonnegative integer components.

b. Sum of Bernolli vectors.

1. $\{X_{kj}=(X1_{kj}, X2_{kj}, \dots, X_{n_{kj}}), j=1, 2, \dots, n_k, k \ge 1\}$ be a sequence of independent multivariate Bernoulli vectors with

$$P_{kj}(\mathbf{i}) = P(\mathbf{X}_{kj} = \mathbf{i}), \quad \text{for all } \mathbf{i} \in \mathbf{EO},$$

where

$$\sum_{\boldsymbol{i}\in\boldsymbol{E}\boldsymbol{0}}P_{kj}(\boldsymbol{i})=1,$$

2. $P_j(i)$: $P_{kj}(i)$ expressed in the notation b.1. will be replaced by $P_j(i)$ for simplicity if we don't need any information about fixed k,

Received December 12, 1986

- 3. $S_k = \sum_{j=1}^{n_k} X_{kj}$: the sum of Bernoulli vectors,
- 4. n_k : positive integer with $\lim_{k \to \infty} n_k = \infty$.

c. Probability of the sum of Bernoulli vectors.

- 1. α_i : frequence of the observation i in n_k trials of $\{X_{kj}=(X1_{kj}, X2_{kj}, \dots, Xn_{kj}), j=1, 2, \dots, n_k, k \ge 1\}$,
- 2. $\boldsymbol{\alpha} = (\alpha_{e_1}, \alpha_{e_2}, \cdots, \alpha_i, \cdots, \alpha_{e_1+\cdots+e_n}): 2^n 1$ dimensional vector,
- 3. $i \cdot e_r$: inner product of i and e_r ,
- 4. $[C] = [\boldsymbol{\alpha}; \sum_{i \cdot e_r = 1} \alpha_i = s_r, r = 1, 2, \cdots, n, i \in E]$, where [C] is a set of $\boldsymbol{\alpha}$ uniquely defined by the given vector \boldsymbol{s} ,
- 5. $f_t(i)$: trial number for the *t*-th occurrence of observation i in n_k trials with $f_t(i) \in \{1, 2, \dots, n_k\}$ and $t=1, 2, \dots, \alpha_i$,
- 6. $F_i = \{(f_1(i), f_2(i), \dots, f_{\alpha_i}(i)); 1 \leq f_1(i) < f_2(i) < \dots < f_{\alpha_i}(i) \leq n_k\}$
- 7. G_i : the set of integers expressed in $(f_1(i), f_2(i), \dots, f_{\alpha_i}(i))$ belonging to F_i , with $G_i = \{f_1(i), f_2(i), \dots, f_{\alpha_i}(i)\},\$
- 8. $T(i) = i_1 \cdot 2^\circ + i_2 \cdot 2' + \dots + i_m \cdot 2^{m-1} + \dots + i_n \cdot 2^{n-1}$: one to one correspondence on E and S^n , where $S^n = \{1, 2, \dots, 2^n 1\}$,

9.
$$\mathbf{i}' < \mathbf{i} \in \mathcal{T}(\mathbf{i}') < T(\mathbf{i})$$
,

- 10. $H_i = \bigcup_{i' \leq i} G_{i'}$ where i' < i is defined in the notation c.9.,
- 11. $Q_t(i) = P_{f_t(i)}(i)$ for simplicity,
- 12. $Q'_t(i) = P_{f_t(i)}(i) / P_{f_t(i)}(0)$ for simplicity,

13.
$$P[S_{k}=s] = \sum_{[C]} \{\sum_{Fe_{1}} \prod_{i=1}^{ae_{1}} Q_{i}(e_{1}) \cdots \sum_{\substack{Fi_{i} \\ Gi\cap H i=\emptyset}} \prod_{l=1}^{ai_{1}} Q_{l}(l) \cdots \sum_{\substack{Fi_{l}=1, \dots + e_{n} \\ Ge_{1}+\dots + e_{n} \cap He_{1}+\dots + e_{n}=\emptyset}} \prod_{l=1}^{ae_{1}+\dots + e_{n}} Q_{l}(e_{1}+\dots + e_{n})\} \prod_{\substack{j=1 \\ j \notin \bigcup Gi \\ i \in E}} P_{j}(O)$$

 $P[S_k=s]$ will appear in section 2 in detail.

d. Variation forms of the probability $P[S_k=s]$

Let us express two variation forms of $P[S_k=s]$ for the proof of Poisson approximation.

1. Let us put

$$B_{n_k}(\boldsymbol{a}) = \sum_{F_{\boldsymbol{e}_1}} \prod_{i=1}^{\alpha_{\boldsymbol{e}_1}} Q_t(\boldsymbol{e}_1) \cdots \sum_{F_i} \prod_{\substack{\ell=1\\G_i \cap H_i = \emptyset}}^{\alpha_i} Q_t(\boldsymbol{i}) \cdots$$
$$\sum_{\substack{F_{\boldsymbol{e}_1} + \dots + \boldsymbol{e}_n\\G_{\boldsymbol{e}_1 + \dots + \boldsymbol{e}_n} \cap H_{\boldsymbol{e}_1} + \dots + \boldsymbol{e}_n = \emptyset}} \prod_{\substack{\ell=1\\H_i = \emptyset}}^{\alpha_{\boldsymbol{e}_1} + \dots + \boldsymbol{e}_n} Q_t(\boldsymbol{e}_1 + \dots + \boldsymbol{e}_n)\},$$

then we have from notation c.13.

$$P[\mathbf{S}_{k}=\mathbf{s}] = \sum_{[C]} \{B_{n_{k}}(\mathbf{a})\} \prod_{\substack{j=1\\j \in UG_{i}\\i \in E}}^{n_{k}} P_{j}(\mathbf{0})$$

2. Let us put

$$A_{n_k}(\boldsymbol{a}) = \sum_{F_{\boldsymbol{e}_1}} \prod_{t=1}^{\alpha_{\boldsymbol{e}_1}} \boldsymbol{o}'_t(\boldsymbol{e}_1) \cdots \sum_{F_i} \prod_{t=1}^{\alpha_i} Q'_t(\boldsymbol{i}) \cdots$$
$$\sum_{\substack{G_{\boldsymbol{i}} \cap H_{\boldsymbol{i}} = \emptyset}} \prod_{t=1}^{\alpha_{\boldsymbol{e}_1} + \dots + \boldsymbol{e}_n} Q'_t(\boldsymbol{e}_1 + \dots + \boldsymbol{e}_n) \},$$

then we have

$$P[\mathbf{S}_{k}=\mathbf{s}] = \sum_{j=1}^{n_{k}} \{A_{n_{k}}(\mathbf{a})\} \prod_{j=1}^{n_{k}} P_{j}(\mathbf{O}),$$

because $P[S_k=s]$ (see notation c.13.) can be rewritten by

$$P[\mathbf{S}_{k}=\mathbf{s}] = \sum_{[C]} \left\{ \sum_{F_{e_{1}}} \prod_{i=1}^{\alpha_{e_{1}}} Q'_{i}(e_{1}) \cdots \sum_{F_{i}} \sum_{t=1}^{\alpha_{i}} Q'_{i}(i) \cdots \right.$$

$$\sum_{\substack{G_{i} \cap H_{i}=\emptyset}} \prod_{l=1}^{\alpha_{e_{1}}+\dots+e_{n}} Q'_{i}(e_{1}+\dots+e_{n}) \right\} \prod_{j=1}^{n_{k}} P_{j}(\mathbf{0}),$$

3. Let us denote $C_{n_k}(\alpha)$ from $B_{n_k}(\alpha)$ by removing all the restriction in the sums (see notation d.1.) as follows,

$$C_{n_{k}}(\alpha) = \sum_{F_{e_{1}}} \prod_{t=1}^{\alpha_{e_{1}}} Q_{t}(e_{1}) \cdots \sum_{F_{i}} \prod_{t=1}^{\alpha_{i}} Q_{t}(i) \cdots \sum_{F_{e_{1}}+\dots+e_{n}} \prod_{t=1}^{\alpha_{e_{1}}+\dots+e_{n}} Q_{t}(e_{1}+\dots+e_{n}) \}.$$

2. Conditions sufficient for Poisson approximation.

Let $\{X_{kj}=(X1_{kj}, X2_{kj}, \dots, Xn_{kj}), j=1, 2, \dots, n_k, k \ge 1\}$ be a sequence of independent multivariate Bernoulli vectors with

$$P_{kj}(i) = P(X_{kj} = i), \quad \text{for all} \quad i \in EO,$$

where

$$\sum_{\boldsymbol{i}\in\boldsymbol{E}\boldsymbol{0}}P_{kj}(\boldsymbol{i})=1$$

and denote the sum of multivariate Bernoulli vectors by $S_k = \sum_{j=1}^{n_k} X_{kj}$. In the following discussion, $P_{kj}(i)$ expressed in notation b.1. will be replaced by $P_j(i)$ for simplicity and we can easily see that

CHENG-GEE LIU

$$P[\mathbf{S}_{k}=\mathbf{s}] = \sum_{[C]} \left\{ \sum_{F_{e_{1}}} \prod_{i=1}^{\alpha_{e_{1}}} Q_{i}(e_{1}) \cdots \sum_{F_{i}} \prod_{t=1}^{\alpha_{i}} Q_{i}(i) \cdots \right\}$$
$$\sum_{\substack{F_{e_{1}}+\dots+e_{n} \\ G_{e_{1}}+\dots+e_{n} \cap H_{e_{1}}+\dots+e_{n} = \emptyset}} \prod_{l=1}^{\alpha_{e_{1}}+\dots+e_{n}} Q_{i}(e_{1}+\dots+e_{n}) \right\} \prod_{\substack{j=1 \\ j \notin \cup G_{i} \\ i \in E}}^{n_{k}} P_{j}(O)$$

THEOREM. If the following relations (2.1) and (2.2) are satisfied for the sequence of independent n-variate Bernoulli distribution which may or may not be identically distributed, that is, for every $i \in E$

 $\begin{array}{lll} (2.1) & \sum\limits_{j=1}^{n_k} P_{kj}(\boldsymbol{i}) \to \lambda_{\iota} & as \ k \to \infty, \\ \\ (2.2) & \min\limits_{1 \le j \le n_k} P_{kj}(\boldsymbol{i}) \to 1 & as \ k \to \infty, \end{array}$

then we have

(2.3)
$$\lim_{k \to \infty} P[S_k = s] = \sum_{[C]} [\prod_{i \in E} (\lambda_i^{\alpha_i} / \alpha_i!)] \exp(-\sum_{i \in E} \lambda_i)$$

for all s ($s \ge 0$), where [C] is uniquely defined by the vector s as

$$[C] = [\boldsymbol{a}; \sum_{i:e_r=1}^{n} \alpha_i = s_r, r=1, 2, \cdots, n, i \in \boldsymbol{E}].$$

In order to prove the theorem, we are going to show lemma 1, lemma 2 and lemma 3.

LEMMA 1. If the conditions (2.1) and (2.2) are satisfied then we have

$$\sum_{g=1}^{n_k} P_g(O) \to \exp\left(-\sum_{\iota \in E} \lambda_\iota\right) \quad as \quad k \to \infty.$$

Proof. Consider the inequality

$$1+y \leq \exp(y), \quad y \in [-1, \infty),$$

putting y=-x and y=x/(1-x) with $x \in [0, 1]$ we obtain

$$\exp(-x/(1-x)) \le 1 - x \le \exp(-x), x \in [0, 1).$$

Now putting $\Delta_g = \sum_{i \in E} P_g(i) = 1 - P_g(O)$,

where $0{\leq}\Delta_g{<}1\,({\rm by}~(2.2))$ for sufficiently large $k\,(1{\leq}g{\leq}n_k),$ and using the last inequality, we get

$$\exp\left[-\left(\sum_{g=1}^{n_k} \Delta_g\right)/\min_g P_g(O)\right] \leq \prod_{g=1}^{n_k} P_g(O) \leq \exp\left(-\sum_{g=1}^{n_k} \Delta_g\right),$$

and from (2.1), (2.2) we can prove that

(2.4)
$$\sum_{g=1}^{n_k} P_g(O) \to \exp\left(-\sum_{i \in E} \lambda_i\right)$$
 as $k \to \infty$.

LEMMA 2. If the conditions (2.1) and (2.2) are satisfied then we have

(2.5)
$$C_{n_k}(\boldsymbol{a}) \to \prod_{\boldsymbol{\iota} \in \boldsymbol{E}} (\lambda_{\boldsymbol{\iota}}^{\alpha_{\boldsymbol{\iota}}} / \alpha_{\boldsymbol{\iota}}!) \quad as \quad k \to \infty.$$

Proof. It is sufficient to prove that

$$(2.5.1) \quad \sum_{F_i} \left[\prod_{t=1}^{\alpha_i} P_{f_t(i)}(i) \right] \to \lambda_i^{\alpha_i} / \alpha_i \, !, \quad \text{for every} \quad i \in E \, .$$

The proof of (2.5.1) is given by induction with respect to α_i .

(1) $\alpha_i = 1$. It is obvious by (2.1) that

$$\sum_{f_1(i)=1}^{n_k} P_{f_1(i)}(i) \to \lambda_i \quad \text{as} \quad k \to \infty.$$

(2) $\alpha_i = 2$. By (2.1) and (2.2), we have

$$\sum_{f_1(i) < f_2(i)} P_{f_1(i)}(i) P_{f_2(i)}(i) \to (\lambda_i)^2/2!$$

because

$$0 \leq \sum_{j=1}^{n_k} P_j^2(\mathbf{i}) \leq \left[1 - \min_j P_j(\mathbf{0})\right] \sum_{j=1}^{n_k} P_j(\mathbf{i})$$

and by (2.1), (2.2) the right hand side of the inequality tends to 0, so we have

$$\sum_{f_1(i) < f_2(i)} P_{f_1(i)}(i) P_{f_2(i)}(i) = \left[\sum_{j=1}^{n_k} P_j(i)\right]^2 - \sum_{j=1}^{n_k} P_j(i) \to \lambda_i^2 \quad \text{as} \quad k \to \infty.$$

(3) Assume that (2.5.1) is correct as $\alpha_i = m-1$, that is,

$$\sum_{f_1(i) < \cdots < f_{m-1}(i)} \prod_{t=1}^{m-1} P_{f_t(i)}(i) \to (\lambda_i)^{m-1}/(m-1)! \text{ as } k \to \infty.$$

In order to finish the induction, let us prove (2.5.1) to be also true as $\alpha_i = m$. Multiply the left hand side of the last relation by $\sum_{f_m(i)=1}^{n_k} P_{f_m(i)}(i)$ which tends to λ_i (by (2.1)), we obtain

(2.5.2)

$$\sum_{f_{1}(i) < \cdots < f_{m-1}(i)} P_{f_{1}(i)}(i) \prod_{l=1}^{m-1} P_{f_{l}(i)}(i) + \cdots + \sum_{f_{1}(i) < \cdots < f_{m-1}(i)} P_{f_{2}(i)}(i) \prod_{l=1}^{m-1} P_{f_{l}(i)}(i) + \cdots + \sum_{f_{1}(i) < \cdots < f_{m-1}(i)} P_{f_{m-1}(i)}(i) \prod_{l=1}^{m-1} P_{f_{l}(i)}(i) + \sum_{f_{m}(i) < f_{1}(i) < \cdots < f_{m-1}(i)} \prod_{l=1}^{m} P_{f_{l}(i)}(i)$$

CHENG-GEE LIU

$$+ \sum_{f_{1}(i) < f_{m}(i) < f_{2}(i) < \cdots < f_{m-1}(i)} \prod_{t=1}^{m} P_{f_{t}(i)}(i) + \cdots$$

$$+ \sum_{f_{1}(i) < \cdots < f_{m-1}(i) < f_{m}(i)} \prod_{t=1}^{m} P_{f_{t}(i)}(i)$$

Each of the first (m-1) terms of (2.5.2) may be nonnegative and estimated by

$$[1 - \min P_{J}(O)] \sum_{f_{1}(i) < \dots < f_{m-1}(i)} \prod_{t=1}^{m-1} P_{f_{t}(i)}(i)$$

which is an upper bound of these terms and by (2.2) tends to 0, that is,

 $0 \leq [\text{each of the first } (m-1) \text{ terms of } (2.5.2)]$

$$\leq [1 - \min P_{j}(\mathbf{0})] \sum_{f_{1}(i) < \cdots < f_{m-1}(i)} \prod_{t=1}^{m-1} P_{f_{t}(i)}(i)$$

So each of the first (m-1) terms tends to 0, and each of the last *m* terms has the same value, then we can obtain the limiting value of (2.5.2) to be

$$m \sum_{f_1(i) < \cdots < f_{m-1}(i)} \prod_{j=1}^m P_{f_i(i)}(i) \to \lambda_i(\lambda_i)^{m-1}/(m-1)!,$$

that is, (2.5.1) is correct as $\alpha_i = m$ and we finish the proof of (2.5.1) by induction. Then by (2.5.1), we have

(2.5)
$$C_{n_k}(\boldsymbol{a}) \to \prod_{\boldsymbol{i} \in \boldsymbol{E}} (\lambda_{\boldsymbol{i}}^{\alpha_{\boldsymbol{i}}} / \alpha_{\boldsymbol{i}}!)$$
 as $k \to \infty$.

this is the result of lemma 2.

LEMMA 3. Three values (defined in the notation d.) $A_{n_k}(\boldsymbol{a})$, $B_{n_k}(\boldsymbol{a})$ and $C_{n_k}(\boldsymbol{a})$ have the same limiting value, that is,

$$(2.8) \quad B_{n_k}(\boldsymbol{a}) \to \prod_{\boldsymbol{i} \in \boldsymbol{E}} (\lambda_{\boldsymbol{i}}^{\alpha_{\boldsymbol{i}}} / \alpha_{\boldsymbol{i}} !) \quad as \quad k \to \infty,$$

and

(2.9)
$$A_{n_k}(\boldsymbol{a}) \to \prod_{\boldsymbol{i} \in \boldsymbol{E}} (\lambda_{\boldsymbol{i}}^{\alpha_{\boldsymbol{i}}} / \alpha_{\boldsymbol{i}}!) \quad as \quad k \to \infty.$$

Proof. For the proof of lemma 3, we consider the following three steps. (step 1) Let us define

$$\operatorname{Rem}(\mathbf{i}) = \sum_{F_i} \prod_{t=1}^{a_i} P_{f_t(i)}(\mathbf{i}) - \sum_{F_i} \prod_{t=1}^{a_i} P_{f_t(i)}(\mathbf{i}),$$
$$= \sum_{F_i} \prod_{t=1}^{a_i} P_{f_t(i)}(\mathbf{i}),$$
$$G_i \cap H_i \neq \emptyset$$

for every $i \in E - \{e_i\}$. In this step, we are going to prove that

(2.6)
$$\operatorname{Rem}(\mathbf{i}) \to 0$$
 as $k \to \infty$,

for every $i \in E - \{e_1\}$.

Proof of (2.6): It is easy to see that

(2.7)
$$\sum_{F_i} \prod_{t=1}^n P_{f_t(i)}(i) \leq \left[\sum_{f_t(i)=1}^{n_k} P_{f_t(i)}(i)\right]^n \leq (\lambda_i + \varepsilon)^n$$

It is obvious that $\operatorname{Rem}(i)$ is nonnegative and estimated as follows:

$$\operatorname{Rem}(i) \leq \sum_{r=1}^{d(i)} \sum_{s=1}^{\alpha_i} P_{f_s(i)}(i) \sum_{F_i} \prod_{\substack{t=1\\t\neq s}}^{\alpha_i} P_{f_t(i)}(i)$$
$$\leq d(i) \alpha_i [1 - \min_j P_j(O)] (\lambda_i + \varepsilon)^{\alpha_i - 1}$$

with $f_s(i) = f_r(k)$, where $d(i) = \sum_{i < k} \alpha_k$.

By (2.2) and (2.7) for $n = \alpha_i - 1$ the right hand side of the last inequality tends to zero as $k \to \infty$, and we finish step 1.

(step 2) By the definition of $C_{n_k}(\boldsymbol{a})$ we can obtain

$$C_{n_{k}}(\boldsymbol{a}) = \prod_{i \in E} \sum_{F_{i}} \prod_{t=1}^{\alpha_{i}} P_{f_{t}(i)}(i)$$

= $\sum_{F_{e_{1}}} \prod_{t=1}^{\alpha_{e_{1}}} P_{f_{t}(e_{1})}(e_{1}) \{ \prod_{i \in E^{-}(e_{1})} [\operatorname{Rem}(i) + \sum_{F_{i}} \prod_{t=1}^{\alpha_{i}} P_{f_{t}(i)}(i)] \}$

and by the definitions of $\operatorname{Rem}(i)$, $B_{nk}(\boldsymbol{\alpha})$ and using (2.6), we can obtain that $B_{n_k}(\boldsymbol{\alpha})$ and $C_{n_k}(\boldsymbol{\alpha})$ have the same limiting value as $k \to \infty$. Then from lemma 2, we have

(2.8)
$$B_{n_k}(\boldsymbol{a}) \to \prod_{i \in \boldsymbol{E}} (\alpha_i^{\alpha_i} / \alpha_i!)$$
 as $k \to \infty$.

(step 3) It is easy to see by the definition of $A_{n_k}(\boldsymbol{\alpha}), B_{n_k}(\boldsymbol{\alpha})$ that

$$B_{n_k}(\boldsymbol{a}) \leq A_{n_k}(\boldsymbol{a}) \leq (1/\min P_j(\boldsymbol{O}))^h B_{n_k}(\boldsymbol{a}),$$

where $h = \sum_{i \in \mathbf{R}} \alpha_i$ and by (2.2), (2.8), we have

(2.9)
$$A_{n_k}(\boldsymbol{a}) \to \prod_{i \in \boldsymbol{F}} (\lambda_i^{\alpha_i} / \alpha_i !)$$
 as $k \to \infty$.

Proof of the theorem.

Summarize lemma 1 and lemma 3, we finish the theorem.

Acknowledgement.

The author is grateful to Professor K. Kawamura for sending him copies of K. Kawamura (1979) and M. Polak (1982).

CHENG-GEE LIU

The author has great pleasure in thanking K. Kawamura for his helpful guidance and the referee for his useful comments.

References

- [1] M. POLAK, Poisson approximation for sums of independent bivariate Bernoulli vectors, Kodai Math. J., 5 (1982), 408-415.
- [2] C. LIU, Necessary and sufficient conditions for a Poisson approximation (trivariate case), kodai Math. J. 9(3) (1986), 368-384.
- [3] K. KAWAMURA, The structure of multivariate Poisson distribution, Kodai Math J. 2(3) (1979), 337-345.
- [4] A. W. MARSHALL AND I. OLKIN, A family of bivariate distributions generated by the bivariate Bernoulli distribution, Journal of the A.S.A., (June 1985), 332-338.

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo