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ON COEFFICIENT INEQUALITIES IN THE CLASS Σ

BY SEIJI KONAKAZAWA AND MITSURU OZAWA

§ 0. Introduction. Let Σ denote the class of functions

f(z)=z+ Σ b,z-,
n=i

analytic and univalent in | z | > l . In this paper we shall prove the following
theorems.

THEOREM 1. (i) // - 1 / 3 ^ < 1 , then

Equality occurs if and only if

where b2 is real and \b2\ ̂ (l/3)min{2+6^, 2(l-^)3 / 2}, with Άτg{bλ-λ)=π (mod. 2π)
and 0^\b1-λ\^a/2)mm{[(2+6λ)+3b2]

2/\ ί(2+6λ)-3b2γ
/3}, or with

= π / 3 , -π/3 (mod. 2π) and 0 ^ \bx-λ\ ^ (
-3b2γ<η.

(ii) If l^λ, then

Equality occurs if and only if

where bλ is real and —l^b^l.

THEOREM 2.

Extremal functions must satisfy
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Duren [2] proved the inequality in Theorem 1 (i) when λ=0. And Kubota
[4] proved the inequality in Theorem 2 when bγ is real.

Our proofs depend on Schiffer's variational method [6], and our key lemmas
are that the extremal functions omit the value 0 in \z\>l, which are proved
by making use of Bombieri's theorem [1],

§ 1. Proof of Theorem 1.

1.1. SOME LEMMAS. Firstly we assume that —l/3g>

LEMMA 1.1. Every extremal function f(z) omits the value 0 in |>2-| >1 .

Proof. Applying Schiffer's variational method to this problem, we find the
associated quadratic differential

Q(w)dw2=w2(w2-2(b1-λ))dw2.

Assume first that bx—λφQ. Put bλ—λ— \bι—λ\eιβ. It is clear that the tra-
jectories of Q{w)dw2 are symmetric with respect to the origin. Let Δ denote
the critical trajectories of Q(w)dw2. Assume that βΦnπ/3. On the ray Jx—

Hence by Bombieri's theorem [1] J1 meets a component of Δ which goes through
the origin only at the origin. The same fact is true for —Jx—iite1^2: —oo<ί<0}.
On J^{te^'2

lm{Q(te^/2)(d(teι^2))2}=t2(t2-2\b1-λ|) sin3β(dt)2Φθ.

Hence J2 meets one component of Δ at most at the origin and another com-
ponent at most at the critical point (2φί—λ))1/2. The similar fact holds for
-Λ. On JΛ={tet^:(2\b1-λ\)lft<t<oo}t

\m{Q{te^l2){d{te^12))2} =t2it2-2\ bx-λ \) sin3β(dt)2Φθ.

Hence /3 meets Δ at most at the critical point (2(bι-—λ))1'2, because three critical
trajectories must meet at (2(b1—λ))1/2 with equal angles. The similar fact holds
for —Js. Furthermore, on the short segments Ja — {teuβ+a)/2: 0<t<ε}f

=t2(t2 sin (3β+3a)-2 \ bx-λ \ sin (3β-\-2a))(dt)2Φθ

for all sufficiently small a and ε. Thus none of the four trajectories which
tend to the origin can be tangential along /2. The same fact holds along —/2.
Hence by the fact that the four trajectories meet at the origin with equal



216 SEIJI KONAKAZAWA AND MITSURU OZAWA

angles, we know that each of them remains in each of the quadrants divided
by Λ+Λ, Ju ( -/ 2 )+(-/s ) and -Λ.

Assume that β=0. Then

Q(w)dw2=w\w2-2 \bx-λ\ )dw2.

In this case Δ has three components and is symmetric with respect to the real
axis. In the case of β=2nπ/3, the shape of Δ is the rotated one of Δ in the
case of β=0.

Assume that β — π. Then

Q(w)dw*=w\w*+2 \b,-X\ )dw2.

In this case Δ has only one component and is symmetric with respect to the
real axis. In the case of β~(2n + l)π/3, the shape of Δ is the rotated one of
Δ in the case of β=π.

Now assume that b1—λ=Q. Then

Q(w)dw2=w*dw2.

In this case Δ consists of six rays meeting at the origin with equal angles.
We denote the image of \z\=l by the extremal function f(z) by Γ. Γ is

on the trajectories of Q{w)dw2. So Γ must be on Δ and go through the origin,
because the conformal centre

This completes the proof.

We prepare two more lemmas. The next one is a special case of Jenkins'
general coefficient theorem.

LEMMA 1.2. (Jenkins, e.g. [5, Theorem 8.12.]) Let

be univalent and admissible for the quadratic differential

Q(w)dw2={Aow
i+A1w*+A2w

2+A3w)dw2

Then

If equality holds, then

LEMMA 1.3. // - 1 / 3 ^ ^ 1 , then
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bl)}S

for all odd functions f(z) in Σ. Equality occurs if and only if

with arg(^-A)=τr (mod. 2π) and 0 ^ \bx-λ\ ^(l/2)(2-f-6Λ)2/3, or with
= 7r/3, -τr/3(mod. 2π) and 0^1^-ΛI ^2~l'\l-X).

Proof. F r o m a n y o d d f u n c t i o n f(z)=z+b1z~1+b3z~s+bδz~~5+ ••• in Σ, w e
obtain the univalent function

where cl—2bz

J

rb\ and c2=2(b6+b1bs). Hence

b l ) (

By this relation and Jenkins' results ([3], Lemma 3 and Corollary 10), we obtain
the desired result.

1.2. SCHIFFER'S DIFFERENTIAL EQUATION. We denote the extremal func-

tion by

Put
ψ(w)=~f(-f-1(w))=w-2b2w-2-(2bi+4b1b2)w-4-4b2

2w-5+ •••.

Because Γ=f(\z\=l) is on the critical trajectories of the quadratic differential
Q(w)dw2=w2(w2-2(b1-λ))dw2

f we have

φ(w)2(φ(w)2-2(bί-λ))φ\w)2=w2(w2-2(b1-λ))

by making use of Lemma 1.2. Expanding the left hand side and comparing the
coefficients, we have

Hence the extremal function f(z) satisfies Schiffer's differential equation

(1)

We denote the right hand side by q(z). Then

on \z\=l.

1.3. Proof of Theorem l(i). Suppose that bλ—X—O-. Then Schiffer's dif-
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ferential equation (1) becomes

U
by Lemma 1.1. Comparing coefficients, we have A—C—E=Q, B—λ, F2—l,
DF=λ, D=-b3~λ2 and -3(b6+b1b8+bl+(2/3)λ(2bs+bl))=F+λD. It follows that
F-—1, D——λ and bz—λ—λ2 by the fact that <?O)̂ ;0 on | * | = 1 . Hence we have

And the extremal function w=f(z) must satisfy

By solving this differential equation we have

where b2 is real and |Z?2| ̂ (1/3) min {2+6^, 2(1 -λf12}.
Now assume that bλ—λφO and put b1—λ=\bί—λ\eιβ as before.

Case a). Suppose that β=(2n+l)π/3 and that Γ=f(\z\—1) contains both
of critical points ±(2(b1—λ))1/2. Then we know as above that

and that the extremal function must satisfy

w2(w2-2(b1-λ))zs(dw/dz)2=[_zG+λzA-λz2-iγ.

By solving this differential equation we have

where b2 is real and \b2\ ̂ (1/3) min{2+β/ί, 2(l-λ)3/2}, with arg(b1-λ)=π
(mod. 2π) and 0< \b1-λ\ ^(1/2) min{[(2+6^)+3^2]

2 / 3, [(2+β^)-3ό2]
2 / 3}, or with

&i-;0=ff/3, - π / 3 (mod. 2τr) and 0< 16X—Λ| rg(

Case b). Suppose that β=(2n-\-l)π/3 and Γ contains exactly one of the
critical points ±(2(b1—λ))1/2. Because q{—z)—q(z) we have

in \z\>l. If f(zo)=(2(b1-λ))1/2 for some z0, \zo\>l, then

/(-z o )=O or /(-Zo)=
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By Lemma 1.1 we have /(—^ 0 )= —(2(b1—λ))1/2. But this contradicts the assump-
tion. Hence this case cannot occur.

Case c). Now suppose that Γ does not contain the critical points ±(2(b1—λ))1/\
By Lemma 1.1 and the fact that q(—z)=q(z) we can put

for some real a3 0 = 1 , 2, 3) and r > l . Putting w=f(z), we have

w(w2-2φ1-λ))1/2dw

^z-\z2-e2ιai)(z2-e2ιaή((z2-r2e2ιaή(z2-r-2e2ιaψ/2d

Hence

w{w2-2{b1-λ))ιl2dw

[
Jre'ίa3

and

S
fd-eioci)

w{w2-2{b1-λ))ι

- ( 2 ( δ ! - ^ ) ) l / 2
l2dw

The integrand in the right hand side is a single-valued odd function on the

domain D, the complement of the slits (oo, — reιaή, (—el0Cs/r, eιa*/r) and

(reιas, oo). Taking the integral path γ in D from reιa* to <?ιαi and — γ from

—rβ t α s to —e1"1, it follows that

( 2 ( 6 1 - - ί ) ) l /

Thus we have

Hence

/(e-i) = -/(_0-i).

By a similar calculation we also have

Hence Γ is symmetric with respect to the origin. So the extremal function
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f(z) must be an odd function. This case is contained in Lemma 1.3. This
completes the proof of Theorem 1 (i).

1.4. Proof of Theorem 1 (ii). It follows from Theorem 1 (i) that

Re(ftβ+

By making use of the inequality

which is one of Grunsky's inequalities, we have

for all λ^l. Equality occurs only for the functions which satisfy Re(2bs+bt)
= 1 . These are

where bλ is real and —l^&i^l. In fact these functions satisfy
+λ{2bs-\-bϊ)}=λ. Hence we obtain the desired result.

§ 2. Proof of Theorem 2.

2.1. A LEMMA. We start again the following

L E M M A 2.1. Every extremal function f(z) omits the value 0 in \z\>l.

Proof. The associated quadratic differential of this problem is

Q(w)dw2=w(w2-b1)dw2.

Take an extremal function f(z)=z+b1z~1+b2z""2+bsz~s+b4lz'"i+ •••. We can put
bι=\bx\exa with 0<Ja:<4;r/5 by rotation. The local structure of critical trajec-
tories of Q{w)dw2 around the critical points 0, (6i)1/2, — (6j)1/2 and oo is well
known. Let us denote the critical trajectories of Q(w)dw2 by Δ. If fri=0 then
Δ consists of ήve rays joining at the origin with equal angles. We suppose
that biΦO.

Case a). a=0. A is symmetric with respect to the real axis. Let / be
the imaginary axis {it: — cχ><ί<oo}. Along /

lm{Q(w)dw2} =t{t2+



ON COEFFICIENT INEQUALITIES IN THE CLASS Σ 221

for tΦO. Hence by Bombieri's theorem / meets the component of A which goes
through the origin only at the origin. So we can conclude that Γ—f{\z\—l)
contains the origin because the conformal centre

Case b). a=π/5. Let Jx be {teπι/1°: 0<t<oo}. Along Jx

lm{Q(w)dw2}=t(t2-\b1\)(dt)2Φθ

for tφ\b1\
112. Hence Jλ meets one component of Δ at most at the origin and

the other component at most at (&i)1/2. The similar fact holds along —Jλ. Let
J2 be {ite*t/1Q: 0<ί<oo}. Along J2

Q(w)dw2=-t(t2+\b1\)(dt)2.

Hence J2 is an orthogonal trajectory and — J2 is a critical trajectory. Thus Γ
passes through the origin by

Case c). 0<a<π/5 or π/5<α<2π/5. Let Jλ be {teιa/2: 0<ί<oo}. Along Jx

for tΦ\bx\
112. Hence ]λ meets two components of Δ at most at the origin and

at (£i)1/2 respectively. The similar fact holds along —Jlm On /2—
{te-πt/5:0<t<oo},

lm{Q(w)dw2} = ί I bx \ sin (a+2π/5)(dί)2Φθ.

Hence J2 meets the component of Δ which passes through the origin only at
the origin. The same is true for —/2. The similar considerations can be
applyed to the lines {teπt/5: — oo<ί<oo} and {it: — oo<ί<oo}. Now we can
readily prove that Γ goes through the origin by the above facts, the local
structure of critical trajectories of Q(w)dw2 around the critical points and

C a s e d ) . 2 π / 5 £ a < i π / 5 . B y t h e r o t a t i o n w = e~Aπιl% w(wbάdw
ζ(ζ2—b1e~2πi/δ)dζ2. It means that this case is essentially included in the above
three cases. This completes the proof.

2.2. Proof of Theorem 2. L e t f(z)=z+b1z-1-\-b2z-2+b3z-3-i-b4z-4Jr ••• be a n
extremal function. We can take its square-root transformation g(z)=f(z2)1/2 by
Lemma 2.1. Let F6(w) be the fifth Faber polynomial of g(z) defined by
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) Σ
n=i

Then Grunsky's inequality says that

and especially

I f l β β l ^ l .

Because aδδ=(5/2)(bi+b1b2) in this case, we obtain

If equality holds then | α 5 5 ] = l and therefore α 6 n = 0 for n ^ 5 . Hence we have
Fδ(g(z))=z5jreiθz~5. Since F5(w)—w5—(5/2)b1w in this case, we obtain the
desired relation

Expanding the left hand side of this relation, we have b2—0. It means that
#2—0 for each extremal function. Thus we can deduce that | & 4 + W J 2 | < 2 / 5 if
b2Φb. Moreover, it follows directly from Theorem 2 that if 62=0 then
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