S. KONAKAZAWA AND M. OZAWA KODAI MATH. J. 10 (1987), 214-222

ON COEFFICIENT INEQUALITIES IN THE CLASS \mathcal{I}

By Seiji Konakazawa and Mitsuru Ozawa

§0. Introduction. Let Σ denote the class of functions

$$f(z)=z+\sum_{n=1}^{\infty}b_nz^{-n},$$

analytic and univalent in |z| > 1. In this paper we shall prove the following theorems.

Theorem 1. (i) If $-1/3 \leq \lambda < 1$, then

$$\operatorname{Re}\{b_{5}+b_{1}b_{3}+b_{2}^{2}+\lambda(2b_{3}+b_{1}^{2})\} \leq \frac{1}{3}(1+3\lambda^{2}-\lambda^{3}).$$

Equality occurs if and only if

$$f(z) = z \{ (1+3\lambda z^{-2}+3b_2 z^{-3}+3\lambda z^{-4}+z^{-6})^{2/3}+2(b_1-\lambda) z^{-2} \}^{1/2}$$

where b_2 is real and $|b_2| \leq (1/3) \min \{2+6\lambda, 2(1-\lambda)^{3/2}\}$, with $\arg(b_1-\lambda) = \pi \pmod{2\pi}$ and $0 \leq |b_1-\lambda| \leq (1/2) \min \{ [(2+6\lambda)+3b_2]^{2/3}, [(2+6\lambda)-3b_2]^{2/3} \}$, or with $\arg(b_1-\lambda) = \pi/3$, $-\pi/3 \pmod{2\pi}$ and $0 \leq |b_1-\lambda| \leq (1/2) \min \{ [2(1-\lambda)^{3/2}+3b_2]^{2/3}, [2(1-\lambda)^{3/2}-3b_2]^{2/3} \}$.

(ii) If $1 \leq \lambda$, then

$$\operatorname{Re}\{b_{5}+b_{1}b_{3}+b_{2}^{2}+\lambda(2b_{3}+b_{1}^{2})\} \leq \lambda.$$

Equality occurs if and only if

$$f(z) = z \{1 + 2b_1 z^{-2} + z^{-4}\}^{1/2}$$

where b_1 is real and $-1 \leq b_1 \leq 1$.

THEOREM 2.

$$\operatorname{Re}\{b_4 + b_1 b_2\} \leq 2/5$$
.

Extremal functions must satisfy

$$f(z^2)^{5/2} - \frac{5}{2}b_1f(z^2)^{1/2} = z^5 + e^{i\theta}z^{-5}.$$

Received November 27, 1986

Duren [2] proved the inequality in Theorem 1 (i) when $\lambda=0$. And Kubota [4] proved the inequality in Theorem 2 when b_1 is real.

Our proofs depend on Schiffer's variational method [6], and our key lemmas are that the extremal functions omit the value 0 in |z| > 1, which are proved by making use of Bombieri's theorem [1].

§1. Proof of Theorem 1.

1.1. Some LEMMAS. Firstly we assume that $-1/3 \leq \lambda < 1$.

LEMMA 1.1. Every extremal function f(z) omits the value 0 in |z| > 1.

Proof. Applying Schiffer's variational method to this problem, we find the associated quadratic differential

$$Q(w)dw^2 = w^2(w^2 - 2(b_1 - \lambda))dw^2$$

Assume first that $b_1 - \lambda \neq 0$. Put $b_1 - \lambda = |b_1 - \lambda| e^{i\beta}$. It is clear that the trajectories of $Q(w)dw^2$ are symmetric with respect to the origin. Let Δ denote the critical trajectories of $Q(w)dw^2$. Assume that $\beta \neq n\pi/3$. On the ray $J_1 = \{ite^{i\beta/2}: 0 < t < \infty\}$,

$$\operatorname{Im} \{Q(ite^{i\beta/2})(d(ite^{i\beta/2}))^2\} = -t^2(t^2+2|b_1-\lambda|)\sin 3\beta(dt)^2 \neq 0.$$

Hence by Bombieri's theorem [1] \bar{J}_1 meets a component of Δ which goes through the origin only at the origin. The same fact is true for $-J_1 = \{ite^{i\beta/2}: -\infty < t < 0\}$. On $J_2 = \{te^{i\beta/2}: 0 < t < (2|b_1-\lambda|)^{1/2}\}$,

$$\operatorname{Im} \{Q(te^{i\beta/2})(d(te^{i\beta/2}))^2\} = t^2(t^2 - 2|b_1 - \lambda|) \sin 3\beta(dt)^2 \neq 0.$$

Hence \bar{J}_2 meets one component of Δ at most at the origin and another component at most at the critical point $(2(b_1-\lambda))^{1/2}$. The similar fact holds for $-J_2$. On $J_3 = \{te^{i\beta/2}: (2|b_1-\lambda|)^{1/2} < t < \infty\}$,

$$\operatorname{Im} \{Q(te^{i\beta/2})(d(te^{i\beta/2}))^2\} = t^2(t^2 - 2|b_1 - \lambda|) \sin 3\beta(dt)^2 \neq 0.$$

Hence \overline{J}_3 meets Δ at most at the critical point $(2(b_1 - \lambda))^{1/2}$, because three critical trajectories must meet at $(2(b_1 - \lambda))^{1/2}$ with equal angles. The similar fact holds for $-J_3$. Furthermore, on the short segments $J_{\alpha} = \{te^{i(\beta+\alpha)/2} : 0 < t < \varepsilon\}$,

$$\operatorname{Im} \{ Q(te^{i(\beta+\alpha)/2})(d(te^{i(\beta+\alpha)/2}))^2 \}$$

= $t^2(t^2\sin(3\beta+3\alpha)-2|b_1-\lambda|\sin(3\beta+2\alpha))(dt)^2 \neq 0$

for all sufficiently small α and ε . Thus none of the four trajectories which tend to the origin can be tangential along J_2 . The same fact holds along $-J_2$. Hence by the fact that the four trajectories meet at the origin with equal

angles, we know that each of them remains in each of the quadrants divided by J_2+J_3 , J_1 , $(-J_2)+(-J_3)$ and $-J_1$.

Assume that $\beta = 0$. Then

$$Q(w)dw^2 = w^2(w^2 - 2|b_1 - \lambda|)dw^2$$

In this case Δ has three components and is symmetric with respect to the real axis. In the case of $\beta = 2n\pi/3$, the shape of Δ is the rotated one of Δ in the case of $\beta = 0$.

Assume that $\beta = \pi$. Then

$$Q(w)dw^2 = w^2(w^2 + 2|b_1 - \lambda|)dw^2$$
.

In this case Δ has only one component and is symmetric with respect to the real axis. In the case of $\beta = (2n+1)\pi/3$, the shape of Δ is the rotated one of Δ in the case of $\beta = \pi$.

Now assume that $b_1 - \lambda = 0$. Then

$$Q(w)dw^2 = w^4 dw^2$$

In this case Δ consists of six rays meeting at the origin with equal angles.

We denote the image of |z|=1 by the extremal function f(z) by Γ . Γ is on the trajectories of $Q(w)dw^2$. So Γ must be on Δ and go through the origin, because the conformal centre

$$\frac{1}{2\pi}\int_0^{2\pi}f(e^{i\theta})d\theta=0.$$

This completes the proof.

We prepare two more lemmas. The next one is a special case of Jenkins' general coefficient theorem.

LEMMA 1.2. (Jenkins, e.g. [5, Theorem 8.12.]) Let

$$\psi(w) = w + a_2 w^{-2} + a_3 w^{-3} + a_4 w^{-4} + a_5 w^{-5} + \cdots$$

be univalent and admissible for the quadratic differential

$$Q(w)dw^{2} = (A_{0}w^{4} + A_{1}w^{3} + A_{2}w^{2} + A_{3}w)dw^{2}.$$

Then

 $\operatorname{Re}(A_{0}a_{5}+A_{1}a_{4}+A_{2}a_{3}+A_{3}a_{2}+A_{0}a_{2}^{2}) \leq 0.$

If equality holds, then

$$\frac{Q(\psi(w))}{Q(w)}\psi'(w)^2 \equiv 1.$$

LEMMA 1.3. If $-1/3 \leq \lambda \leq 1$, then

$$\operatorname{Re}\{b_{5}+b_{1}b_{3}+\lambda(2b_{3}+b_{1}^{2})\} \leq \frac{1}{3}(1+3\lambda^{2}-\lambda^{3})$$

for all odd functions f(z) in Σ . Equality occurs if and only if

$$f(z) = z \{ (1 + 3\lambda z^{-2} + 3\lambda z^{-4} + z^{-6})^{2/3} + 2(b_1 - \lambda) z^{-2} \}^{1/2}$$

with $\arg(b_1 - \lambda) = \pi \pmod{2\pi}$ and $0 \le |b_1 - \lambda| \le (1/2)(2 + 6\lambda)^{2/3}$, or with $\arg(b_1 - \lambda) = \pi/3$, $-\pi/3 \pmod{2\pi}$ and $0 \le |b_1 - \lambda| \le 2^{-1/3}(1 - \lambda)$.

Proof. From any odd function $f(z)=z+b_1z^{-1}+b_3z^{-3}+b_5z^{-5}+\cdots$ in Σ , we obtain the univalent function

$$f(z^{1/2})^2 = z + c_0 + c_1 z^{-1} + c_2 z^{-2} + \cdots$$

where $c_1 = 2b_3 + b_1^2$ and $c_2 = 2(b_5 + b_1b_3)$. Hence

$$b_5 + b_1 b_3 + \lambda (2b_3 + b_1^2) = \frac{1}{2} (c_2 + 2\lambda c_1).$$

By this relation and Jenkins' results ([3], Lemma 3 and Corollary 10), we obtain the desired result.

1.2. SCHIFFER'S DIFFERENTIAL EQUATION. We denote the extremal function by

$$f(z) = z + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4} + b_5 + z^{-5} + \cdots$$

Put

(1)

$$\psi(w) = -f(-f^{-1}(w)) = w - 2b_2 w^{-2} - (2b_4 + 4b_1b_2)w^{-4} - 4b_2^2 w^{-5} + \cdots$$

Because $\Gamma = f(|z|=1)$ is on the critical trajectories of the quadratic differential $Q(w)dw^2 = w^2(w^2 - 2(b_1 - \lambda))dw^2$, we have

$$\psi(w)^{2}(\psi(w)^{2}-2(b_{1}-\lambda))\psi'(w)^{2}=w^{2}(w^{2}-2(b_{1}-\lambda))\psi'$$

by making use of Lemma 1.2. Expanding the left hand side and comparing the coefficients, we have

$$b_4 + b_1 b_2 + \lambda b_2 = 0.$$

Hence the extremal function f(z) satisfies Schiffer's differential equation

$$f(z)^2(f(z)^2-2(b_1-\lambda))z^2f'(z)^2$$

$$=z^{6}+2\lambda z^{4}-(2b_{3}+b_{1}^{2})z^{2}-6\left(b_{5}+b_{1}b_{3}+b_{2}^{2}+\frac{2}{3}\lambda(2b_{3}+b_{1}^{2})\right)-(2\bar{b}_{3}+\bar{b}_{1}^{2})z^{-2}+2\lambda z^{-4}+z^{-6}.$$

We denote the right hand side by q(z). Then

$$q(z) \leq 0$$
 on $|z| = 1$.

1.3. Proof of Theorem 1(i). Suppose that $b_1 - \lambda = 0$. Then Schiffer's dif-

217

ferential equation (1) becomes

$$f(z)^{4}z^{8}f'(z)^{2} = z^{6}q(z)$$

= $\left[\prod_{j=1}^{6} (z - e^{i\alpha_{j}})\right]^{2} = [z^{6} + Az^{5} + Bz^{4} + Cz^{3} + Dz^{2} + Ez + F]^{2},$

by Lemma 1.1. Comparing coefficients, we have A=C=E=0, $B=\lambda$, $F^2=1$, $DF=\lambda$, $D=-b_3-\lambda^2$ and $-3(b_5+b_1b_3+b_2^2+(2/3)\lambda(2b_3+b_1^2))=F+\lambda D$. It follows that F=-1, $D=-\lambda$ and $b_3=\lambda-\lambda^2$ by the fact that $q(z)\leq 0$ on |z|=1. Hence we have

$$b_5 + b_1 b_3 + b_2^2 + \lambda (2b_3 + b_1^2) = \frac{1}{3} (1 + 3\lambda^2 - \lambda^3)$$
.

And the extremal function w = f(z) must satisfy

$$w^{4}z^{8}(dw/dz)^{2} = [z^{6} + \lambda z^{4} - \lambda z^{2} - 1]^{2}$$
.

By solving this differential equation we have

$$w = z(1+3\lambda z^{-2}+3b_2 z^{-3}+3\lambda z^{-4}+z^{-6})^{1/3}$$

where b_2 is real and $|b_2| \leq (1/3) \min \{2+6\lambda, 2(1-\lambda)^{3/2}\}.$

Now assume that $b_1 - \lambda \neq 0$ and put $b_1 - \lambda = |b_1 - \lambda| e^{i\beta}$ as before.

Case a). Suppose that $\beta = (2n+1)\pi/3$ and that $\Gamma = f(|z|=1)$ contains both of critical points $\pm (2(b_1-\lambda))^{1/2}$. Then we know as above that

$$b_5 + b_1 b_3 + b_2^2 + \lambda (2b_3 + b_1^2) = \frac{1}{3} (1 + 3\lambda^2 - \lambda^3)$$

and that the extremal function must satisfy

$$w^{2}(w^{2}-2(b_{1}-\lambda))z^{8}(dw/dz)^{2}=[z^{6}+\lambda z^{4}-\lambda z^{2}-1]^{2}.$$

By solving this differential equation we have

$$w = z \{ (1 + 3\lambda z^{-2} + 3b_2 z^{-3} + 3\lambda z^{-4} + z^{-6})^{2/3} + 2(b_1 - \lambda) z^{-2} \}^{1/2}$$

where b_2 is real and $|b_2| \leq (1/3) \min\{2+6\lambda, 2(1-\lambda)^{3/2}\}$, with $\arg(b_1-\lambda) = \pi$ (mod. 2π) and $0 < |b_1-\lambda| \leq (1/2) \min\{[(2+6\lambda)+3b_2]^{2/3}, [(2+6\lambda)-3b_2]^{2/3}\}$, or with $\arg(b_1-\lambda) = \pi/3$, $-\pi/3$ (mod. 2π) and $0 < |b_1-\lambda| \leq (1/2) \min\{[2(1-\lambda)^{3/2}+3b_2]^{2/3}, [2(1-\lambda)^{3/2}-3b_2]^{2/3}\}$.

Case b). Suppose that $\beta = (2n+1)\pi/3$ and Γ contains exactly one of the critical points $\pm (2(b_1-\lambda))^{1/2}$. Because q(-z)=q(z) we have

$$f(-z)^2(f(-z)^2 - 2(b_1 - \lambda))f'(-z)^2 = f(z)^2(f(z)^2 - 2(b_1 - \lambda))f'(z)^2 - 2(b_1 - \lambda))f'(z)^2 - 2(b_1 - \lambda)f'(z)^2 - 2(b_1$$

in |z| > 1. If $f(z_0) = (2(b_1 - \lambda))^{1/2}$ for some z_0 , $|z_0| > 1$, then

$$f(-z_0)=0$$
 or $f(-z_0)=-(2(b_1-\lambda))^{1/2}$.

218

By Lemma 1.1 we have $f(-z_0) = -(2(b_1 - \lambda))^{1/2}$. But this contradicts the assumption. Hence this case cannot occur.

Case c). Now suppose that Γ does not contain the critical points $\pm (2(b_1 - \lambda))^{1/2}$. By Lemma 1.1 and the fact that q(-z) = q(z) we can put

$$f(z)^{2}(f(z)^{2}-2(b_{1}-\lambda))z^{8}f'(z)^{2}=z^{6}q(z)$$

=[(z^{2}-e^{2i\alpha_{1}})(z^{2}-e^{2i\alpha_{2}})]^{2}(z^{2}-r^{2}e^{2i\alpha_{3}})(z^{2}-r^{-2}e^{2i\alpha_{3}})

for some real α_j (j=1, 2, 3) and r>1. Putting w=f(z), we have

$$w(w^{2}-2(b_{1}-\lambda))^{1/2}dw$$

= $z^{-4}(z^{2}-e^{2i\alpha_{1}})(z^{2}-e^{2i\alpha_{2}})((z^{2}-r^{2}e^{2i\alpha_{3}})(z^{2}-r^{-2}e^{2i\alpha_{3}}))^{1/2}dz$

Hence

1

$$= \int_{re^{i\alpha_{3}}}^{e^{i\alpha_{1}}} w(w^{2} - 2(b_{1} - \lambda))^{1/2} dw$$
$$= \int_{re^{i\alpha_{3}}}^{e^{i\alpha_{1}}} z^{-4} (z^{2} - e^{2i\alpha_{1}})(z^{2} - e^{2i\alpha_{2}})((z^{2} - r^{2}e^{2i\alpha_{3}})(z^{2} - r^{-2}e^{2i\alpha_{3}}))^{1/2} dz$$

and

$$\int_{-(2(b_1-\lambda))^{1/2}}^{f(-e^{i\alpha_1})} w(w^2 - 2(b_1 - \lambda))^{1/2} dw$$

=
$$\int_{-re^{i\alpha_3}}^{-e^{i\alpha_1}} z^{-4}(z^2 - e^{2i\alpha_1})(z^2 - e^{2i\alpha_2})((z^2 - r^2 e^{2i\alpha_3})(z^2 - r^{-2} e^{2i\alpha_3}))^{1/2} dz.$$

The integrand in the right hand side is a single-valued odd function on the domain D, the complement of the slits $(\infty, -re^{i\alpha_3})$, $(-e^{i\alpha_3}/r, e^{i\alpha_3}/r)$ and $(re^{i\alpha_3}, \infty)$. Taking the integral path γ in D from $re^{i\alpha_3}$ to $e^{i\alpha_1}$ and $-\gamma$ from $-re^{i\alpha_3}$ to $-e^{i\alpha_1}$, it follows that

$$\int_{(2(b_1-\lambda))^{1/2}}^{f(e^{i\alpha_1})} w(w^2-2(b_1-\lambda))^{1/2} dw = \int_{-(2(b_1-\lambda))^{1/2}}^{f(-e^{i\alpha_1})} w(w^2-2(b_1-\lambda))^{1/2} dw .$$

Thus we have

$$\frac{1}{3}(f(e^{i\alpha_1})^2 - 2(b_1 - \lambda))^{3/2} = \frac{1}{3}(f(-e^{i\alpha_1})^2 - 2(b_1 - \lambda))^{3/2}.$$

Hence

$$f(e^{i\alpha_1}) = -f(-e^{i\alpha_1}).$$

By a similar calculation we also have

$$f(e^{i\alpha_2}) = -f(-e^{i\alpha_2}).$$

Hence \varGamma is symmetric with respect to the origin. So the extremal function

f(z) must be an odd function. This case is contained in Lemma 1.3. This completes the proof of Theorem 1 (i).

1.4. Proof of Theorem 1 (ii). It follows from Theorem 1 (i) that

 $\operatorname{Re}(b_5+b_1b_3+b_2^2+2b_3+b_1^2) \leq 1$.

By making use of the inequality

$$\operatorname{Re}(2b_3+b_1^2) \leq 1$$

which is one of Grunsky's inequalities, we have

$$\begin{aligned} &\operatorname{Re}\{b_{5}+b_{1}b_{3}+b_{2}^{2}+\lambda(2b_{3}+b_{1}^{2})\}\\ &=\operatorname{Re}(b_{5}+b_{1}b_{3}+b_{2}^{2}+2b_{3}+b_{1}^{2})+(\lambda-1)\operatorname{Re}(2b_{3}+b_{1}^{2})\\ &\leq 1+(\lambda-1)=\lambda\end{aligned}$$

for all $\lambda \ge 1$. Equality occurs only for the functions which satisfy $\operatorname{Re}(2b_3+b_1^2)$ =1. These are

$$f(z) = z(1+2b_1z^{-2}+z^{-4})^{1/2}$$

where b_1 is real and $-1 \leq b_1 \leq 1$. In fact these functions satisfy $\operatorname{Re}\{b_5+b_1b_3+b_2^2+\lambda(2b_3+b_1^2)\}=\lambda$. Hence we obtain the desired result.

§2. Proof of Theorem 2.

2.1. A LEMMA. We start again the following

LEMMA 2.1. Every extremal function f(z) omits the value 0 in |z| > 1.

Proof. The associated quadratic differential of this problem is

$$Q(w)dw^2 = w(w^2 - b_1)dw^2$$

Take an extremal function $f(z)=z+b_1z^{-1}+b_2z^{-2}+b_3z^{-3}+b_4z^{-4}+\cdots$. We can put $b_1=|b_1|e^{i\alpha}$ with $0\leq \alpha<4\pi/5$ by rotation. The local structure of critical trajectories of $Q(w)dw^2$ around the critical points $0, (b_1)^{1/2}, -(b_1)^{1/2}$ and ∞ is well known. Let us denote the critical trajectories of $Q(w)dw^2$ by Δ . If $b_1=0$ then Δ consists of five rays joining at the origin with equal angles. We suppose that $b_1\neq 0$.

Case a). $\alpha = 0$. Δ is symmetric with respect to the real axis. Let J be the imaginary axis $\{it: -\infty < t < \infty\}$. Along J

$$\operatorname{Im}\{Q(w)dw^{2}\} = t(t^{2} + b_{1})(dt)^{2} \neq 0$$

221

for $t \neq 0$. Hence by Bombieri's theorem \overline{f} meets the component of Δ which goes through the origin only at the origin. So we can conclude that $\Gamma = f(|z|=1)$ contains the origin because the conformal centre

$$\frac{1}{2\pi}\int_0^{2\pi}f(e^{i\theta})d\theta=0.$$

Case b). $\alpha = \pi/5$. Let J_1 be $\{te^{\pi i/10}: 0 < t < \infty\}$. Along J_1

$$\operatorname{Im}\{Q(w)dw^{2}\} = t(t^{2} - |b_{1}|)(dt)^{2} \neq 0$$

for $t \neq |b_1|^{1/2}$. Hence \overline{J}_1 meets one component of Δ at most at the origin and the other component at most at $(b_1)^{1/2}$. The similar fact holds along $-J_1$. Let J_2 be $\{ite^{\pi i/10}: 0 < t < \infty\}$. Along J_2

$$Q(w)dw^2 = -t(t^2 + |b_1|)(dt)^2$$

Hence J_2 is an orthogonal trajectory and $-J_2$ is a critical trajectory. Thus Γ passes through the origin by

$$\frac{1}{2\pi}\int_0^{2\pi}f(e^{i\theta})d\theta=0.$$

Case c). $0 < \alpha < \pi/5$ or $\pi/5 < \alpha < 2\pi/5$. Let J_1 be $\{te^{i\alpha/2} : 0 < t < \infty\}$. Along J_1

$$\operatorname{Im}\{Q(w)dw^{2}\} = t(t^{2} - |b_{1}|)\sin(5\alpha/2)(dt)^{2} \neq 0$$

for $t \neq |b_1|^{1/2}$. Hence \overline{J}_1 meets two components of Δ at most at the origin and at $(b_1)^{1/2}$ respectively. The similar fact holds along $-J_1$. On $J_2 = \{te^{-\pi t/5}: 0 < t < \infty\}$,

$$Im\{Q(w)dw^{2}\}=t|b_{1}|\sin(\alpha+2\pi/5)(dt)^{2}\neq0.$$

Hence J_2 meets the component of Δ which passes through the origin only at the origin. The same is true for $-J_2$. The similar considerations can be applyed to the lines $\{te^{\pi i/5}: -\infty < t < \infty\}$ and $\{it: -\infty < t < \infty\}$. Now we can readily prove that Γ goes through the origin by the above facts, the local structure of critical trajectories of $Q(w)dw^2$ around the critical points and

$$\frac{1}{2\pi}\int_0^{2\pi}f(e^{i\theta})d\theta=0$$

Case d). $2\pi/5 \leq \alpha < 4\pi/5$. By the rotation $w = e^{-4\pi i/5}\zeta$, $w(w^2-b_1)dw^2 = \zeta(\zeta^2-b_1e^{-2\pi i/5})d\zeta^2$. It means that this case is essentially included in the above three cases. This completes the proof.

2.2. Proof of Theorem 2. Let $f(z)=z+b_1z^{-1}+b_2z^{-2}+b_3z^{-3}+b_4z^{-4}+\cdots$ be an extremal function. We can take its square-root transformation $g(z)=f(z^2)^{1/2}$ by Lemma 2.1. Let $F_5(w)$ be the fifth Faber polynomial of g(z) defined by

$$F_5(g(z)) = z^5 + \sum_{n=1}^{\infty} a_{5n} z^{-n}$$
.

Then Grunsky's inequality says that

$$\sum_{n=1}^{\infty} n |a = a_{5n}|^{2} \leq 5$$

and especially

 $|a_{55}| \leq 1$.

Because $a_{55} = (5/2)(b_4 + b_1b_2)$ in this case, we obtain

 $|b_4+b_1b_2| \leq 2/5$.

If equality holds then $|a_{55}|=1$ and therefore $a_{5n}=0$ for $n \neq 5$. Hence we have $F_5(g(z))=z^5+e^{i\theta}z^{-5}$. Since $F_5(w)=w^5-(5/2)b_1w$ in this case, we obtain the desired relation

$$f(z^2)^{5/2} - \frac{5}{2} b_1 f(z^2)^{1/2} = z^5 + e^{i\theta} z^{-5}.$$

Expanding the left hand side of this relation, we have $b_2=0$. It means that $b_2=0$ for each extremal function. Thus we can deduce that $|b_4+b_1b_2|<2/5$ if $b_2\neq 0$. Moreover, it follows directly from Theorem 2 that if $b_2=0$ then $|b_4|\leq 2/5$.

References

- [1] BOMBIERI, E., A geometric approach to some coefficient inequalities for univalent functions, Ann. Scoula Norm. Sup. Pisa 22 (1968), 377-397.
- [2] DUREN, P.L., Applications of the Garabedian-Schiffer inequality, J. Analyse Math. 30 (1976), 141-149.
- [3] JENKINS, J. A., On certain coefficients of univalent functions, Analytic Functions, Princeton Univ. Press (1960), 159-194.
- [4] KUBOTA, Y., On the fourth coefficient of meromorphic univalent functions, Kodai Math. Sem. Rep. 26 (1975), 267-288.
- [5] POMMERENKE, Ch., Univalent Functions (with a chapter on quadratic differentials by G. Jensen), Vandenhoeck & Ruprecht, Göttingen, 1975.
- [6] SCHIFFER, M., A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.

Department of Mathematics Science University of Tokyo Noda, Chiba, Japan

222