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A NOTE ON CONTINUITY OF GREEN’S FUNCTIONS
ON RIEMANN SURFACES

By MASAHIKO TANIGUCHI

§1. Introduction and main results.

Let R be an arbitrary Riemann surface admitting Green’s functions, and
denote by g(-, ) Green’s function with the pole reR. Also set U(r, M)=
{seR: g(s, ¥)>M} for every r< R and positive M. Then we have the following

THEOREM 1. Let q be a point on R. Take a positive constant M so large
that U(q, M) 1s ssmply connected. Then it holds that

ldg(-, ¢)—dg(-, @)llr-veq 1 <6-e"*-exp (—g(q’, @)
for every ¢'<U(q, M+4).
Theorem 1 is a corollary of Lemma 2 in § 2, which also gives the following

THEOREM 2. Under the same assumptions as in Theorem 1, it holds that
‘Sd*dg(-, q’)—Sd*dg(-, q)’§9(la)”2~e‘““'exp (—glg’, 9)

for every l-cycle d on R—U(q, M+4) and ¢’€U(q, M+4). where 14 is the extremal
length of the homology class of d on R.

THEOREM 3. Let p and q be two distinct points on R. Take a positive M so
large that U(q, M) 1s contained in R—{p} and simply connected. Then it holds
that

lg(q’, p)—glg, p)1<5(g(g, p))'/*-eM**-exp(—g(q’, q))
<SME- M exp(—g(g’, )
for every ¢'cU(q, M+4).

The proof of Theorems 1 and 2, 3 are given in §1 and §2, respectively.
Here we note the following corollary of Theorem 3.

COROLLARY. Let R be a Riemann surface satisfying the following condition;
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(*) there 1s a positive constant M such that U(q, M) 1s stmply connected for

every g R.
Then Green’s functions are locally uniformly Lipschitz-like continuous, t.e. 1t

holds that
1g(q1, D)—8(gs, D) <EM'2-e"*4-exp (—g(gs, ¢))

for every q, and q, in R—U(p, M) such that g(qi, g.)>M+4.

Next combining Theorem 3 with the comparison theorem in [4], we can
show, in general, the following local Lipschitz-like continuity of Green’s func-
tions.

THEOREM 4. Under the same assumption as in Theorem 3, it holds that

1 g(g1, P)—g(gs, P)I <Cy-(MA1)"2- e exp (—g(q1, ¢2))

for every ¢, and g, in U(q, M+C,), where C, and C; are suitable absolute con-
stants.

In case that g(g, p) is sufficeintly large, or equivalently ¢ is sufficiently near
to ¢, we can show the following

THEOREM 5. Let p and q be distinct points on R such that M=g(q, p)>C,
and U(q, M—C,) is simply connected with a suitable absolute constant C,. Then it
holds that

| 8(g1, p)—8(gs, P)| <Cs-e™-exp (—glgy, ¢2)
for every g, and q, in U(g, M+C,) with a suitable absolute constant C,.

The proofs of Theorems 4 and 5 are given in §4. And finally as an appli-
cation of Theorem 1, we will include in §5 a remark to the remainder terms
of variational formulas in [5].

§2. The proof of Theorem 1.

Let g*(s) be a conjugate harmonic function of g(s, g) on U(g, M), and set
z=Z(s)=eM*%-exp (—g(s, ¢)—i-g*(s)). Then ZU(q, M+n))=U(e* ™) for every
non-negative n, where we set U(p)={z: |z|<p} for every positive p. For
every a in U(l/e), define a mapping f, of R onto itself by setting

ZofaoZ-l(z):z+a on U(l), and
=(a|z|+2)-(1+a(|z] /2))tosis!

on U(e)—U(), and by letting f, be the identical mapping on R—U(q, M+1),
where we choose the branch of log (1+a(|z|/z)) so that log 1=0.
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Note that f, is conformal outside of W=U(q, M+1)—U(q, M+2), and we
can show the following

LEMMA 1. If |a|<(e—2)/e (<1/e), then f, 1s (14 k,)/(1—kg)-quasiconformal
on R with ke<e-|a|/(e—2).

Proof. Set F(z2)=Z<f,°Z~%(2z) on U(e)—U(1), then by a simple computation
we have

F_ 1y - _alzl 1z]
7_22<2 (1~loglz)- 220 log(1+a Z)) and
F; 1/ o alzl |z]

—F_—ZE<(1 log|z) z+alz| 10g(1+a z))

Since |a|<1/e, it holds that

]a[ <elal/(e—1)<1/(e—1), and

l alz|

|a
<
Z+a[zl'_ 1—|

|log(l+a(lzl /2| <|al 3 |al"<elal /(e=1)<1/(e~1).

Hence we have

2e
e—1

| B/ P <(<25 1el)/@—2/(e—1)<el el /(e=2) (<1).

q.e.d.

Now fix ¢’€U(q, M+4) and set a=Z(¢’). Then |a|=e¥**-exp(—g(q¢’, <
1/e*<(e—2)/e. Writting ¢.=dg(-, r)+i*dg (-, r) for every r&R, we set w=
Qg °fo—, wWhere ¢@gof, is the pull-back of ¢, by f,. Then we know the
following lemma, which implies the assertion of Theorem 1 (cf. [1, Theorem 5],
[3, Proposition 5]).

LEMMA 2. It holds that

V2-ky
1=k,

where ||a||g is the Dirichlet norm of a on a Borel set E.

lolz< lpgllw<6-¢*-1al,

Proof. For the sake of convenience, we include the proof. Since Rewe
I'w(R) and Im wsl(R), we have

*) SSRw/\6=2i- (Re @, *Im @)z=0,

where and in the sequel, I'(R) is the Hilbert space of real square integrable
differentials on R, I'.(R) and I",(R) are subspaces of I'(R) consisting of closed
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and harmonic differentials, respectively, [ ,(R) is the orthogonal complement
of I'y(R) in I'(R), and we set (a, f)z= SSEa/\*ﬁ for every @ and B in I'(R)

and E as above.
Writting ¢, =g(w)dw with a generic local parameter w on R, we have

by (*)
”g"fa'(fa)wdw'—SDq”Wg ”g"fa'(fa)wdw—@an

=g fur (f)sdiTI5< ka8 Fo- (F)udwlhy
which implies that
lg+fartf dudul < = lodw-
Thus we have
l0lI3=l8*Fo(f)wdw—golhtIg-Fo (f)ad ]
<2ka g far (fa)wdwliy<2(ka/ U=k gl

which shows the first inequality. Next, since ||l¢,|liy=4x and | ko] <e-lal/(e—2)
<1/e(e—2) by Lemma 1, we can see the second inequality. q.e.d.

§3. The proofs of Theorems 2 and 3.

Theorems 2 and 3 follows from Lemma 2 by recalling the following facts
(cf. [2, §3]). Again for the sake of convenience, we include their proofs.

LEMMA 3. Under the same assumptions as in Theorem 2, it holds that
* N\ * . N
[ ragton—{ rda, 9=—Rel{ wrn.,
where, letting o4 be the differential wn I'y(R) such that (a, ad)R:Sda for every
ac,(R), we set 0,=04+1%0 4.
Proof. Since Rewel(R) and Imwel(R), we have (Rew, *04),=0 and

(Im o, ad)R——-de, which implies the assertion. q.e.d.

LEMMA 4. Under the same assumptions as in Theorem 3, it holds that
1
4 - = *,
8l’, 1)—8lg, D= ReSSRw/\ ©p-

Proof. Since U(q, M)® p, we can find a positive N so large that U(p, N—1)
is simply connected and disjoint from U(gq, M+1). Fix such an N, and let J(s)
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be a smooth function on R such that J(s)=1 on U(p, N—1/2) and J(s)=0 on
R—-U(p, N—1). Set
o, =d((1—=J(-)-(g(fa(), ¢)—5(, ),

then we have w,el'.,(R,) with R,=R—U(p, N). Hence by Green’s formula,
we have
(Rew, Re p,)r,=(Re w—w,, dg(-, p))g,

S v (g, g"N—g(-, @)-*dg(-, p)=2r(g(p, ¢)—g(p, 9)).
~dU(p,N)

Similarly we can see that

(Im @, Im ﬂ)’“:g-amp N)—g(-, p)Imo

S —Im w=0.
-aU(p,N)

Finally since w is holomorphic on U(p, N), it holds that ggy( N)w/\*gopzo,
D,
and we have the desired equation. q.e.d.

Proof of Theorem 2. By Lemma 3, we have

<lolz-10alr-

[ rdate, 0= s, o< [ oo,

Since [|#4]|2=24, by Accola’s theorem, we conclude the assertion by Lemma 2.
q.e.d.

Proof of Theorem 3. Since wA*p=0 on R—WU{p}, we have

18, =80, PI</20)|[] 0 A%,

<(1/2x)- |olz: lgslw<e*-lloplw:lal.

=q/2a):|{{ wr*e,

Next since W is contained in U(gq, M+1) and g(-, p) is positive harmonic on
U(g, M), Harnack’s inequality implies that

. 4
supsewg(s, p)—infsewg(s, P)< ez_e 18 D).

Here recall that [dg(-, P)Ilz%-u<p,zv>=g_au(p 80 P)*dg(s, p)=2zN for every

sufficiently large N (cf. the proof of Lemma 4). And since g(-, p)—t is Green’s
function on {reR:g(r, p)>t} for every positive ¢ we can see that
ldg(-, P)becri<ser, m<ey=2m(t’—1) for every t and ¢’ with 0<t<t’. Hence we
conclude that
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loollly<drx- -g(g, P)<25g(q, p),

e
e’—1
which gives that

lglg’, p)—glq, p)|<5e*-g(g, p)''*-|al.

The second inequality follows by recalling that g(q, p)<M, for p&U(q, M).
q.e.d.

Remark. The author guess that, in case that g(g, p)<l, we can show that
loolw<A-(g(g, p))* with some 2>1/2 and a constant A (which may depend on
p and R). Note that such A should not be greater than 1.

§4. The proofs of Theorems 4 and 5.
For the proofs, the following lemma is crucial.

LEMMA 5. There is an absolute constant C such that, for every q and M as
in Theorem 1, and every ¢'€U(gq, M+C), we can find an M(q’) such that M<
Mg <M+C, U(q’, M(q")) is simply connected and

¢9) Ulg, M+C)<U(q’, M(g"))<M(q, M).

Proof. Set C=B+1 with an absolute constant B in [4, Proposition 2],
and apply [4, Proposition 2] to h(z)=(1/2x)-g(Z*(z), ¢’) on Z(W,) with W,=
Ulg, M+1/4)—U(q, M+C—1/4). Then we have an M(q¢’) such that {seR:
g(s, ¢)=M(q¢")} is a simple closed curve in W, separating two boundary com-
ponents of W,.

Fix such an M(q¢’), then it is clear that U(q’, M(q’)) is simply connected and
satisfies (I). And since, in general, g(-, »)/M is the harmonic measure of
oU(r, M) in R—U(r, M), for every »r R and positive M, we can see that M<
Mg <M+C. q.e.d.

Proof of Theorem 4. By Lemma 5, we can apply Theorem 3 with ¢,&
U(g, M+C) and M+C. Then we have

| g(qzy D)—8(q1, D) <5-(M4-C)"2- M +C+4.exp (— g(qs, ¢2))
<5C-eCH(M4-1)"%-e¥ -exp (—g(q1, ¢2))

for every ¢, in U(q,, M+C+4).

On the other hand, if ¢,€U(q, M+2C+4), then ¢q€U(q,, M+2C+4) by sym-
metry, and hence again by Lemma 5 we see that U(q, M+2C+4) is contained
in U(g;, M+C+4). Hence the assertion holds with C,=2C+4 and C,=5C- e+,

q.e.d.

Next to show Theorem 5, we need the following
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LEMMA 6. Let p and q be distinct points on R such that U(q, M—C) is simply
connected with M=g(q, p) and C given in Lemma 5. Then it holds that

lg(g’, p)—glg, p)I<C’-e™-exp(—glg’, ¢))
for every q'€U(q, M+C+4), where C’ is an absolute constant.
Proof. By Lemma 5 we have
Ulg’, M—C)DU(g, M)DU(q’, M+C)
for every ¢’€U(q, M+C), which implies that

SUDsev(q, +0r8(S, PYSMHC, and
infseU(q,M+C)g(s, p)_>_M—C

In particular, it holds that ll¢,ldcg, s+c) <4m-2C.
Hence by the same argument as in the proof of Theorem 3, we have

lg(q’, p)—&(g, pI<e®lgylw-lal
Se‘”c*"(877:C)”2~exp(—g(q’, q))

for every ¢’€U(q, M+C+4), i.e., the assertion holds with C’=e¢+*-(8nC)"%
g.e.d.

Proof of Theorem 5. Suppose that U(q, M—3C) is simply connected with
M=g(p, ¢. Then we can see by Lemma 5 that, for every ¢,€U(q, M+C), it
holds that M—C<M,=g(g,, p)<M+C and U(g,, M—2C) is simply connected.
Hence by Lemma 6 we have

1 g(gs, P)—g(q1, )| <C’-eM1-exp(—g(gs, ¢s))

for every ¢.€U(q,, M;+C+4).
Thus as in the proof of Theorem 4, we can show that C,=3C+4 and C,=
C’-¢° are desired constants. q.e.d.

§5. Another application of Theorem 1.

In this section, we will use the same notation as in [5], and show that the
remainder terms in the formulas (2) and (3) of [5, Theorem 2] can be estimated
locally uniformly on R; with respect to ¢ and ¢’. Here we will discuss only
(3), for the treatment of (2) is the same.

Let F(q, ¢’,t) be the remainder term, i.e.,
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Flg, ¢, D=8, ¢'; R)—g(g, ¢'; R)—{~—log (1) -C(@)- G(¢"
> ’ » ’ ’ ’ 0 2 t

—£-Re [7-(b0,5.1(0)-bo.g7.o(0) b, q.50)-bo.¢ 1 (O)T} .
Then we want to show the following

PROPOSITION. When t tends to 0, F(q, ¢’, t)/t* converges to 0 locally uniformly
on Ry with respect to q and q'.

Proof. By the equation [5, §4 (14)], we can see (cf. [5, 293p]) that

l oo
F(q, ¢, 1)2% 'Re[glcn,l'§“22|=[0'(b3,q,2(22)—bo_q,g(ZZ))'(771‘2/22)7‘de

+ ngl Cn,2* § (bg, @ 1(21)—b0.q. 1(21)) . (.'7112/21)7,‘121

{1211=tp}

+ gz(cn' 1° en,2+Cn,2- en, 1)(27;\/:—1—)(772;2)",] ,

where ¢(0, ¢)= 2 e, 27 'dz, and ¢(0, ¢")= E;)Incn,,-z}“ldz, on UM, (=1, 2).

Integrating over a suitable compact interval in [t,, exp(—M,)), we see that

|F(g, ¢/, DI <A@ 19, )—¢0, 9)le- 160, ¢)lv,
+t4600, Pllv,- 160, ¢)lv,)

with a suitable compact set E in U,=U,(M,)\UU,(M,) and a constant A depend-
ing only on E.

Here by Theorem 1 (or, as is well-known), ||¢(0, ¢")|y, is continuous, hence
locally bounded on Rj (as a function of ¢’). Hence the assertion follows from
the following lemma. q.e.d.

LEMMA 7. Set F,(q)=ll¢t, 9)—¢0, @llz. Then F.(q) converges to 0 locally
uniformly on Rg as t tends to 0.

Proof. First recall that lim,.,F;(¢g)=0 for every g R; which follows by
[5, Theorem 1]. And it suffices to show that, for every ¢, R; and every posi-
tive >0, there is a neighborhood V of ¢, in R; and a positive T such that
F,(g)<e for every gV and t[0, T].

To show this, note that

F(9<2|dg.,(-, 9—dg.(-, g)lz+F:(qo)
+2”dgo(' ’ (])—dgo(‘ s QO)HE .
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Since g,(+, ¢,) converges to g,(-, g,) uniformly, at least, in some neighborhood
Vo of g, by [5, Corollary 1], we can apply Theorem 1 with the same M to both
g: and g, for every sufficiently small z. Hence we conclude that there is a
neighborhood V; (CV,) of ¢, and a T, (>0) such that for every t=[0, T,] and
g€V, we have

ldg:(-, 9)—dg:(-, g)llz<C"-exp(—g.g, g0)

with a constant C” depending only on M, from which the assertion follows
easily. g.e.d.
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