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A NOTE ON CONTINUITY OF GREEN'S FUNCTIONS

ON RIEMANN SURFACES

BY MASAHIKO TANIGUCHI

§ 1. Introduction and main results.

Let R be an arbitrary Riemann surface admitting Green's functions, and
denote by g( , r) Green's function with the pole r e R . Also set U(r, M)—
{s^R: g(s, r)>M\ for every r<=i? and positive M. Then we have the following

THEOREM 1. Let q be a point on R. Take a positive constant M so large
that U(q, M) is simply connected. Then it holds that

\\dg( , q')-dg{ , ?)IU-^,3n<β ^ + 4 exp (-£(?', q))

for every qf<^U(q, M-f-4).

Theorem 1 is a corollary of Lemma 2 in § 2, which also gives the following

THEOREM 2. Under the same assumptions as in Theorem 1, it holds that

\ *dg( , q')-\ *dg( , q) ^ ω ^ ^ exp (-£(<?', q))
J d J d

for every l-cycle d on R—U(q, M+4) and q'^U{q, M+4). where λd is the extremal
length of the homology class of d on R.

THEOREM 3. Let p and q be two distinct points on R. Take a positive M so
large that U(q, M) is contained in R—{p} and simply connected. Then it holds
that

(-g(q', q))

for every q'<^U(q, M+4).

The proof of Theorems 1 and 2, 3 are given in § 1 and § 2, respectively.
Here we note the following corollary of Theorem 3.

COROLLARY. Let R be a Riemann surface satisfying the following condition;
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(*) there is a positive constant M such that U(q, M) is simply connected for
every q<=R.

Then Green's functions are locally uniformly Lipschitz-like continuous, i.e. it
holds that

\g{Qi, P)-g(Q2, p)\<5M1<2-eM+* exp(-g(q1, q2))

for every qx and q2 in R—U(p, M) such that g(qu # 2)>M+4.

Next combining Theorem 3 with the comparison theorem in [4], we can
show, in general, the following local Lipschitz-like continuity of Green's func-
tions.

THEOREM 4. Under the same assumption as in Theorem 3, it holds that

\g(Qi, P)-g(q*, ί

for every qx and q2 in U(q, M+CQ), where Co and Cx are suitable absolute con-
stants.

In case that g{q, p) is sufficeintly large, or equΐvalently q is sufficiently near
to q, we can show the following

THEOREM 5. Let p and q be distinct points on R such that M=g(q, p)>C2

and U(q, M—C2) is simply connected with a suitable absolute constant C2. Then it
holds that

for every qx and q2 in U(q, M+C2) with a suitable absolute constant C3.

The proofs of Theorems 4 and 5 are given in § 4. And finally as an appli-
cation of Theorem 1, we will include in § 5 a remark to the remainder terms
of variational formulas in [5].

§2. The proof of Theorem 1.

Let g*{s) be a conjugate harmonic function of g(s, q) on U(q, M), and set
z=Z(s)=eM+2-exp(-g(s, q)-i g*(s)). Then Z(U{q, M+n))=U(ez-n) for every
non-negative n, where we set U(ρ)={z: \z\<p} for every positive p. For
every a in U(l/e), define a mapping fa of R onto itself by setting

ZofaoZ'\z)=z+a on £7(1), and

on U(e)—UΊχj, and by letting fa be the identical mapping on R—U{q, M+ϊ),
where we choose the branch of log(l+a(\z\/z)) so that log 1=0.
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Note that fa is conformal outside of W=U(q, M+Ϊ)—U(q, M+2), and we
can show the following

LEMMA 1. // \a\<(e—2)1 e «l/e), thenfa ts (1+ ka)I'(1 — ka)-quasι'conformal
on R with ka<e-\a\/(e-2).

Proof. Set F(z)=Zofa*Z-\z) on U(e)-ΠJT), then by a simple computation
we have

Since \a\<ί/e, it holds that

a z
z+a\z\

< ^Ί ^ <e\a\/(e-l)<l/(e-l), and

| α |

Hence we have

q. e. d.

Now ήx q'eίU(q, M+4) and set a=Z(q'). Then \a\=eM+2 exp(-g(q', q))<
l/e2<(e—2)/e. Writting φr—dg{-} r)+i*dg ( , r) for every r e i ? , we set ω=
φq'

ofa—φq, where <pq>°fa is the pull-back of φq. by /α . Then we know the
following lemma, which implies the assertion of Theorem 1 (cf. [1, Theorem 5],
[3, Proposition 5]).

LEMMA 2. It holds that

where \\a\\E is the Dinchlet norm of a on a Borel set E.

Proof. For the sake of convenience, we include the proof. Since R e ω e
Γe0(R) and Imω^Γc(R), we have

ίί

where and in the sequel, Γ(R) is the Hubert space of real square integrable
differentials on R, ΓC(R) and Γh(R) are subspaces of Γ(R) consisting of closed
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and harmonic differentials, respectively, Γe0(R) is the orthogonal complement

of Γh(R) in Γe(R), and we set (α, j8)*=Jί a^*β for every α and β in Γ(/?)

and E as above.
Writting ψq<—g{w)dw with a generic local parameter w on 7?, we have

by (*)

\\gofa'(fa)wdlV~φq\\w<\\gofa'(fa)wdw-φq\\R

which implies that

Thus we have

aγ- \\g°fa (fa)wdw\\2

w<2(ka/a-ka)y- \\φq\\*w,

which shows the first inequality. Next, since | | ^ g | | ^ = 4 π and \ka\<e \a\/(e—2)
<l/e(e—2) by Lemma 1, we can see the second inequality. q. e. d.

§ 3. The proofs of Theorems 2 and 3.

Theorems 2 and 3 follows from Lemma 2 by recalling the following facts
(cf. [2, § 3]). Again for the sake of convenience, we include their proofs.

LEMMA 3. Under the same assumptions as in Theorem 2, it holds that

[ *dg{-q')-\ *dg(; f ) = - R e ( ( ωAθd,
Jd Jd JJR

where, letting σd be the differential in Γh(R) such that (a, σd)R =\ a for every
J d

R), we set θd=σd+i*σd.

Proof. Since Reω^Γe0(R) and ImαιeΓc(/?), we have (Reω, *σ d ) Λ =0 and

(Imω, σd)R=\ ω, which implies the assertion. q. e. d.
Jd

LEMMA 4. Under the same assumptions as in Theorem 3, it holds that

gW> P)~g(q, Λ = ^ Γ

Proof. Since U(q, M)^p, we can find a positive N so large that U(p, N—l)
is simply connected and disjoint from U(q, M-f-1). Fix such an N, and let J(s)
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be a smooth function on R such that /(s) = l on U(p, N—1/2) and J(s)=0 on
R-U(p, N-l). Set

then we have ω^ΓgoiRi) with R^R—Uip, N). Hence by Green's formula,
we have

(Reω, Reφl)Rl=(Reω-ω1} dg(-, p))Rl

, q')-g(P, <?))•

Similarly we can see that

(Imω, Imp7)Λ

—Imω=0.

Finally since ω is holomorphic on U(p, N), it holds that \\ ω/\*φv—0,
JJUίp.N)

and we have the desired equation. q. e. d.

Proof of Theorem 2. By Lemma 3, we have

a <\\ω\\R'\\θd\\R.

Since 11̂ 1̂11=2̂ ^ by Accola's theorem, we conclude the assertion by Lemma 2.
q. e. d.

Proof of Theorem 3. Since ω/\*φ=Q on R-W\j{p), we have

Next since W is contained in U(q, M+ϊ) and g( , /?) is positive harmonic on
U(q, M), Harnack's inequality implies that

4e
supS(ΞWg(s, p)-mfSGWg(s, P)<-^γ-g(q, p).

Here recall that \\dg(>, p)\\R-u<P.*n = [ g( , P)*dg(>, p)=2πN for every
J-dUCp, N)

sufficiently large JV (cf. the proof of Lemma 4). And since g(-, p)—t is Green's
function on {r<^R: g(r, p)>t} for every positive t, we can see that
\\dg( , P)\\leR:t<gtr,pxt'}=2π(t'-l) for every t and t' with 0<ί<ί ' . Hence we
conclude that
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An

^ - giq, P)<25g(q, p),

which gives that

\gW, P)-g(q, P)\<5e* g(q, p)1/2-\a\.

The second inequality follows by recalling that g(q, p)<M, for p&U(q, M).
q. e. d.

Remark. The author guess that, incase that g(q, p)<l, we can show that
\\φP\\w<A'(g(q, p))λ with some Λ>l/2 and a constant A (which may depend on
p and R). Note that such λ should not be greater than 1.

§4. The proofs of Theorems 4 and 5.

For the proofs, the following lemma is crucial.

LEMMA 5. There is an absolute constant C such that, for every q and M as
in Theorem 1, and every q'^U(q, M+C), we can find an M{q') such that M<
M(q')<M+C, U(q', M(qf)) is simply connected and

(I) U{q, M+CXUW, M{q>))<M{q} M).

Proof. Set C=B+1 with an absolute constant B in [4, Proposition 2],
and apply [4, Proposition 2] to h(z)=(l/2π)'g(Z-\z), q') on Z(W0) with Wo=
U(q, M+l/4)-U(q, M+C-1/4). Then we have an M{q') such that {s<=R:
g(s, q')=M{q')} is a simple closed curve in Wo separating two boundary com-
ponents of WQ.

Fix such an M(qf), then it is clear that U(q\ M(q')) is simply connected and
satisfies (I). And since, in general, g{-} r)/M is the harmonic measure of
dU(r, M) in R—U(r, M), for every r^R and positive M, we can see that M<
M{q')<M+C. q.e.d.

Proof of Theorem 4. By Lemma 5, we can apply Theorem 3 with ^ e
U(q, M+C) and M+C. Then we have

—g(Qi, ft))

for every q2 in U(qlf M+C+4).
On the other hand, if q^Uiq, M+2C+4), then q^U(qίf M+2C+4) by sym-

metry, and hence again by Lemma 5 we see that U(q, M+2C+4) is contained
in U(qu M+C+4). Hence the assertion holds with C 0=2C+4 and C1=5C ^C+4.

q. e. d.

Next to show Theorem 5, we need the following
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LEMMA 6. Let p and q be distinct points on R such that U(q, M—C) is simply
connected with M=g(q, p) and C given in Lemma 5. Then it holds that

\g(q', P)-g(Q, P)\<C'-eM exp(-g(q'} q))

for every q'^U(q, M+C+4), where O is an absolute constant.

Proof. By Lemma 5 we have

U{q't M-C)ZDU(q, M)Z)U(q', M+C)

for every qf<^U(q, M+C), which implies that

s, p)<M+C, and

s, p)>M-C.

In particular, it holds that \\φp\\ucq,M+c)<^'2C.
Hence by the same argument as in the proof of Theorem 3, we have

\g(Q', P)-g{Q, P)\<*'\\<Pp\\w\a\

(-g(q', q))

for every q't=U(q, M+C+4), i.e., the assertion holds with C'=ec+i-(8πCy2.
q. e. d.

Proof of Theorem 5. Suppose that U(q, M— 3C) is simply connected with
M—g{p, q). Then we can see by Lemma 5 that, for every q^Uiq, M+C), it
holds that M-C<M1=g(qί, p)<M+C and U(qu M-2C) is simply connected.
Hence by Lemma 6 we have

\g(4ι, P)-g(Qu P)\<C' eMi exp(-g(qί, q2))

for every q2^U{qu Mχ+C+4).
Thus as in the proof of Theorem 4, we can show that C 2=3C+4 and Cz—

C'-ec are desired constants. q. e. d.

§5. Another application of Theorem 1.

In this section, we will use the same notation as in [5], and show that the
remainder terms in the formulas (2) and (3) of [5, Theorem 2] can be estimated
locally uniformly on R'o with respect to q and qf. Here we will discuss only
(3), for the treatment of (2) is the same.

Let F(q, q',t) be the remainder term, i.e.,
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F(q, q', t)=g(q, q'' Rt)-g{q, q'\ * o ) - { - y lθ

Then we want to show the following

PROPOSITION. When t tends to 0, F(q, qf, t)/t2 converges to 0 locally uniformly
on R'o with respect to q and q''.

Proof. By the equation [5, §4 (14)], we can see (cf. [5, 293p]) that

F(q, q', O = - ^ - R
Zπ

+ Σ c».,

+ Σ
2

Σ (
n=2

where 0(0,$)= Σ ^ . ^ Γ 1 ^ and φ(0, q')= Σ ncn.μ^dzj on i7/M0) (/=1, 2).
n=l n=l

Integrating over a suitable compact interval in [ί0, exp(—Mo)), we see that

\F(q, q'9 t)\<A{f \\φ{t, q)-φφ, q)\\E'\\φ(O, q')\\Uo

+?\W0,q)\\uo W0,q')\\u1)

with a suitable compact set E in Uo=U1(Mo)VJU2(Mo) and a constant 4̂ depend-
ing only on E.

Here by Theorem 1 (or, as is well-known), ||0(O, ^0ll^o ^s continuous, hence
locally bounded on R'o (as a function of q'). Hence the assertion follows from
the following lemma. q. e. d.

LEMMA 7. Set Ft(q)=\\φ(t, q)—φ(O, q)\\E- Then Ft(q) converges to 0 locally
uniformly on RΌ as t tends to 0.

Proof. First recall that limt^oFt(q)=0 for every q<^R'o which follows by
[5, Theorem 1]. And it suffices to show that, for every qo<^R'o and every posi-
tive ε>0, there is a neighborhood V of q0 in R'Q and a positive T such that
Ft(q)<ε for every q<=V and fe[0, T] .

To show this, note that

t ( . , q)-dgt( , qo)\\s+Ft(qo)

+2\\dgo( ,q)-dgo( ,qo)\\s.
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Since gt(-, q0) converges to go(-, q0) uniformly, at least, in some neighborhood

Vo of q0 by [5, Corollary 1], we can apply Theorem 1 with the same M to both

gt and g0 for every sufficiently small t Hence we conclude that there is a

neighborhood Vλ (CFO) of q0 and a To (>0) such that for every fe[0, To] and

#eVΊ we have

\\dgt( , φ-dgt( , qo)\\E<C".exp(-gt(q, q0))

with a constant C depending only on M, from which the assertion follows

easily. q. e. d.
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