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SOME ESTIMATES OF TOTAL TENSION AND

THEIR APPLICATIONS

BY BANG-YEN CHEN

Abstract

In this note, we give two best possible estimates of the total tension for
a smooth map. Such estimates are established in terms of order of the map.
Applications of such estimates to isometric immersions and to spectral geo-
metry are given by applying an inequality obtained in [3].

1. Introduction.

Let M be a compact submanifold of a Euclidean ra-space Em. By applying
the induced metric on M, the author introduced in [2] the notion of order of
the submanifold. The notion of order is known to be closely related with the
differential geometry of the submanifold (cf. [4]). In [5, 6] such notion was
generalized to smooth maps of a compact Riemannian manifold into Em. Some
relations between the total tension and the order were obtained in [5, 6].

In this note, we will obtain two more relations between the total tension
and the order of a map. Such relations are applied to obtain a best possible
estimate of the total mean curvature of a spherical submanifold. By using a
best possible inequality derived in [3], such relations were then applied to ob-
tain some best possible eigenvalue estimates for minimal submanifolds in rank-
one symmetric spaces.

2. Order of a Map.

Let M be a compact n-dimensional Riemannian manifold and Δ the Laplacian
of M acting on the space C°°(M) of smooth functions. Then Δ has an infinite
discrete sequence of eigenvalues:

0 = ^ o < ^ < ^ 2 < ••• <λk< ••• T°°.

For each k (k=0, 1,2, —), the eigenspace Vk={f^C0O(M):Af=λkf} is finite-

dimensional. With respect to the inner product (/, g)=\ fgdV on C°°{M), the
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decomposition ^ΣkVk is orthogonal and dense in C°°(M). Therefore, for each
/eC°°(M), / = / 0 + Σ ί ^ i / ί , where f0 is a constant and ft is the projection of /
into Vt.

For a smooth map x: M->£m, we can apply the above decomposition to
each coordinate function of M in Em. Thus, we obtain the following spectral
decomposition of the £m-valued function x :

(O Λ\ r _ _ r ι _ V r
ί = l

where ;c0 is a constant vector which is the center of mass of x and xt a vector
with Axt~λtxt.

If x is a non-constant map, then there exists a positive integer p such that
xpφ0 and %=JCO+Σί^p^ί. If there are infinitely many nonzero xt's in the
decomposition (2.1), we put q—co. Otherwise, we let q be the largest integer
such that xqφ0 in the decomposition (2.1). In both cases we have

/O O\ - γ I "VΛ γ

We call \_p, q~\ the order of the map x. The map is said to be of finite type
if q is finite. Otherwise, the map is said to be of infinite type. More precisely,
the map x is said to be of k-type (k<=Nu{oo}) if there exist exactly k nonzero
*β's (f^l) in the decomposition (2.2) (cf. [1, 2, 4]).

If x : M->Em is an immersion and M equipped with the induced metric,
then the submanifold M is said to be of &-tyρe if the immersion does.

3. Total Tension.

If σ: M-+N is a map between Riemannian manifolds, then the energy e{σ)
of σ is the real-valued function on M given by

(3.1) e(σ) = 1 trace (**#'),

where g' is the metric on N. The energy E(σ) of σ is defined by

(3.2) E(σ)=\ e(σ)dV.

The Euler-Lagrange operator associated with E shall be written r(<x)=div (dσ)
and called the tension field of a. A map σ is harmonic if its tension field
vanishes identically. The total tension of the map a is defined by

(3.3) £Γ(<J)=( I M I W .
JM

For a map x: M-^Em, the moment of Λ: is given by
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(3.4) M(x)=\ <x-x0, x-xo>dV.

It is easy to verify that the moment of x is independent of the choice of the
Euclidean coordinate system on Em.

In this section, we give two best possible estimates of the total tension of
a map x : M->Em.

The following result gives a best possible lower bound of total tension.

THEOREM 1. Let x : M->Em be a smooth non-constant map from a compact
n-dimensional Riemannian manifold M into Em. Then we have

(3.5)

Equality sign holds if and only if x is either of 1-type and of order [1, 1] or of
order [2, 2] or x is of 2-type and of order [1, 2].

Proof. Let x : M->Em be a smooth non-constant map from M into Em.
Then we have

(3.6) x=χo+Έxt,
t=p

where \_p, q] is the order of the map x. Since Δ is self-ad joint, we have
Uί, xs)—0 for tΦs. Thus, (3.6) gives

(3.7) JH(x) = (x-x0, x-xo)=[ <x-x0, x-xo>dV^ Σ (xt, xt).

Moreover, from (3.1), (3.2) and (3.6), we find

(3.8) 2E(x)=(dx} dx)=(x, ddx)^(x, Ax),

which implies

(3.9) 2E(x)=%Xt(xt,xt).
t=p

From the definition of tension field one may prove (cf. [7])

(3.10) Ax = -τ(x).

Thus, by applying (3.3), (3.6) and (3.10), we find

(3.11) £r(x)=(Δz, Δ*)= Σ λ\(xt, xt).

Combining (3.7), (3.9) and (3.11), we obtain
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(3.12)

This implies

(3.13) 2"(*)S2tfp+λ p + ι)E{x)-λ pλ p + 1M{x).

Since £ is always greater than or equal to one, (3.13) gives inequality (3.5). If
the equality sign of (3.5) holds, then (3.12) becomes an equality with p—1.
Thus, from (3.12), we see that all of the xu t>0, vanish except t=l, 2. If
either x1—0 or x 2 =0, x is of 1-tyρe and of order [2, 2] or [1, 1]. Otherwise,
x is of 2-type with order [1, 2]. This completes the proof of the theorem.

Remark 1. Given a compact Riemannian manifold M, there exist infinitely
many smooth non-constant maps from M into Em which satisfy equality sign
of (3.5).

If x is of finite type, we also have the following best possible upper bound
of total tension.

THEOREM 2. If x: M->Em is a smooth non-constant map of finite type, then
we have

(3.15) \ \\τ\\2dV^2(λp+λq)E(x)-λpλq<3l(x).

Equality sign holds if and only if x is of l-type (p—q) or of 2-type.

Since this theorem can be proved in a way similar to that of Theorem 1,
so we omit the proof.

4. Some Applications.

In this section we give some applications of Theorem 1. The following
result gives a best possible estimate of total mean curvature for spherical sub-
manifolds.

THEOREM 3. Let x : M->Sm~ 1(r)c£m be an isometric immersion of a compact
n-dimensional Riemannian manifold M into a hyper sphere Sm~1(r) of radius r.
Then the mean curvature vector H of M in Em satisfies

(4.1) \M\H

Equality sign holds if and only if M has constant mean curvature \H\ and M is
of order [1, 1], [1, 2] or [2, 2] aud M is mass-symmetric.
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Proof. Let x : M->Sm~ 1(r)cEw be an isometric immersion. Then we have

(4.2) Ax = -nH.

Thus, by combining with (3.10), we find

(4.3) <τ, τ>=n\H, H> .

On the other hand, since x is isometric, the energy E(x) of x is given by

(4.4) 2£(x) = «vol(M).

Therefore, by Theorem 1, (4.3) and (4.4), we obtain

(4.5) n2\ \H\2dV'^n(λι+λ2)vo\(M)-λ1λ2M{x).
JM

Without loss of generality, we may assume that the hypersphere Sm"1(r) is
centered at the origin of Em. Since M is immersed in S7""1^), we have

(4.6) JH(x)=\ <x,x}dV-\ <x0,
J M J M

equality holding if and only if xo=0. From (4.5) and (4.6), we get inequality
(4.1).

If the equality sign of (4.1) holds, then both equality signs of (4.5) and (4.6)
hold. Thus, x is of order [1, 1], [1, 2] or [2, 2] and xo=O i.e., M is mass-
symmetric in S"1"1^).

If x is of order [1, 1], we have x—xx. Thus, (4.2) gives —nlί—λxx which
implies n2(H, H}=λ2r2. Thus, M has constant mean curvature. Similarly, if
x is of order [2, 2], we have n2(H, Hy—λ\r2 which also shows that M has con-
stant mean curvature.

If x is of order [1, 2], then we have x=x1-\-x2. Thus, A2x=(λ1+λz)Ax—λ1λ2x
= — n{λ1+λ2)H—λ1λ2x. On the other hand, since M lies in Sm~\r), we also
have H=Hf—{l/r)x, where Hf denotes the mean curvature vector of M in
Sm-\r). Therefore, we find

(4.7) <A2x, xy^nriλ.+λ^-λ^r2

which is a constant. On the other hand, by applying Lemma 4.2 of [4, p. 273],
we also have

(4.8) <Δ2*, xy=-(nAH, x} = n2(H, H}/r2.

Thus, from (4.7) and (4.8), we see that the mean curvature of M in Em is also
constant.

The converse follows easily from Theorem I, (4.3), (4.4), (4.5) and (4.6).
This completes the proof of Theorem 3.

In the following, F denotes the field R of real numbers, the field C of com-
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plex numbers, or the field H of quaternions. We put d=l, 2 or 4 according
to F—R} C or H, respectively. We denote by FPm the ra-dimensional projec-
tive space over F, and of constant sectional curvature 1 if F—R} of constant
holomorphic sectional curvature 4 if F=C, and of constant quaternionic sec-
tional curvature 4 if F^=H, respectively.

By applying Theorem 3 and an inequality derived in [3], we have the fol-
lowing eigenvalue inequality for compact minimal submanifolds in projective
spaces.

THEOREM 4. Let M be a compact n-dimensional Riemannian manifold. If
M admits an isometric minimal immersion into FPm, then we have

(4.9) Γ

// F=H, then the equality holds if and only if n=4m and M=HPm. If F=C,
then the equality holds if and only if M is one of the following Einstein Hermitian
symmetric spaces: CPk"(4), CP*(2), Q\ CP*(4)xCP*(4), U(k+2)/U(k)xU(2) (k>2),
SO(10)/£/(5), and £6/Spin(10)xT, with an appropriate metric, and m is given by
k, k{k+3)/2, k+1, k{k+2), k(k+3)/2, 15, and 26, respectively.

Proof. Let z=\z0> •••, zm)^Fm+1. We denote by H(m+1;F) the space
of all ( m + l ) x ( m + l ) Hermitian matrices over F. On H(m+1;F) we define an
inner product < , > by <A, JB>=(1/2) Re tr (ΛB). On Fm+1 we consider the metric
<2r, 27>=Re (^z'), *( ) denotes the transpose. Let S ( m + 1 ) c ί-1 denote the unit hy-
persphere of Fm+1 defined by {z<^Fm+1: (z, z>—l}. Then the projective m-
space FPm can be regarded as the quotient space of the unit hypersphere ob-
tained by identifying t(z0, •••, zm) with t(cz0, •••, czm) with c^F and | c | = l .

Define a mapping p: S ( m + 1 ) ί *-W/(ra+l; F) by

(4.10) p{z)=zz*,

where z^—ιz. If F=Ry p defines an isometric immersion of Sm into H(m+1 R)
and it induces an isometric imbedding p of RPm into H(m+1; R). If F—C or
jfiΓ, p induces an isometric imbedding p of FPm into H(m+1; F).

If M admits a minimal isometric immersion into FPm, then by regarding
FPm as a submanifold of H(m+1; F) via p, we have the following best pos-
sible inequality of the mean curvature of M in H(m+1 F) (Lemma 2 of [3] or
Lemma 6.5 of [4, p. 152]):

(4.11) \H\

where H denotes the mean curvature vector of M in H(m+1;F). Moreover,
from Lemma 2 of [3], we know that equality sign of (4.11) holds if and only
if M is a quaternion submanifold if F—H\ M is a complex submanifold if
F=C; and if F=R, then the equality sign of (4.11) holds automatically. On
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the other hand, it is known that FPm is imbedded in a hypersphere of H(m+1 F)

with radius r=Vm/2(m+l) via p ([12] or cf. [3, 4]). Thus, by applying Theo-
rem 3 and inequality (4.11), we may obtain

(4.12) ™

This implies (4.9).
If F~H and the equality sign of (4.9) holds, then the equality sign of

(4.11) holds. Hence, Lemma 2 of [3] shows that M is a quaternionic submani-
fold of HPm. Because the only quaternionic submanifolds of HPm are quater-
nionic totally geodesic submanifolds. Thus, we conclude that M is a HPnlA.
Now, since λ1 and λ2 of HPk are given by S(k+ΐ) and 8(2&+3), respectively.
Thus, we obtain n=4m. The converse of this is easy to verify.

If F—C and the equality sign of (4.9) holds, then the equality sign of (4.11)
holds. Thus, Lemma 2 of [3] implies that M is a Kaehler submanifold of CPm.
Moreover, from Theorem 3, we see that either M is of 1-type in H(m+1; C)
or M is of 2-tyρe and of order [1, 2]. If M is of 1-type, then by a result of
Ros [10], we know that M i s a totally geodesic CPk (2k —n). Since λx and λ2

of CPk are given by 4(&+l) and 8(&+2), respectively, we find n—2m. If Mis
of 2-type and of order [1, 2], then we may apply a result of Ros-Udagawa
[10, 13] about the classification of compact Kaehler submanifolds of CPm of
order [1, 2], Such submanifolds are exactly non-totally geodesic Kaehler sub-
manifolds which are Einsteinian and with parallel second fundamental form (cf.
Proposition 3 of [13]). Furthermore, such Kaehler submanifolds were classified
by Nakagawa and Takagi [9] ; they are CPk(2), Q\ CP*(4)xCP*(4), U(k+2)/
U(k)xU(2) (k>2), SO(10)/U(5) and £6/Spin (10)xT which lie fully in CPm with
m given respectively by k(k+3)/2, k+1, k(k+2), k(k+3)/2, 15 and 26, respec-
tively. Conversely, if M is one of Einstein Hermitian symmetric spaces and m
is the corresponding integer, then by the known values of λλ and λ2 of these
spaces (see Table 1 below), we see that the equality sign of (4.9) holds. This
completes the proof.

Remark 2. If F—R and the equality sign of (4.9) holds, then M is of order
[1, 2] in H(m+1; R) by Theorem 3. If M is a projective space FPk or the
Cayley plane and if σ: M-^SN is the first standard imbedding of M, then it is
clear that the composite immersion p°σ : M-^SN-^H(nJ

Γl R) is of order [1, 2].
Moreover, if σ is full, then the equality sign of (4.9) holds. In view of Theo-
rem 4 and [1], it seems to be interesting to classify all compact minimal sub-
manifolds of RPm which satisfy the equality sign of (4.9).

From Theorem 4 we also have the following.

COROLLARY 1. If M is a compact n-dimensional minimal submanif old of
5m(l), then we have
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(4.13) mλ1λ2^2n(m+l){λ1+λ2-2n-2}.

Proof. If M admits a minimal isometric immersion into Sm(l), then it
admits a minimal isometric immersion into RPm. Thus, (4.13) follows immedi-
ately from Theorem 4.

Remark 3. Ros [11] obtain a best possible inequality between λx and λ2

similar to (4.13) with an additional assumption that M admits an order 1 minimal
immersion in a sphere (see, also [8]).

Remark 4. In [10, 13], the Einstein Hermitian symmetric spaces given in
Table 1 were characterized by their spectrum among all compact Kaehler sub-
manifolds of CPm. By applying Theorem 4, we see that these manifolds can
be characterized by their spectrum among all compact minimal submanifolds of
CPm.

Table 1.

Submanifold

CP*(4)

CP\2)

Qh

CP*(4)xCP*(4)

U(k+2)/U(k)xU(2) k>2

SO(10)/C/(5)

£6/Sρin(10)xT

n

2k

2k

2k

4k

46

20

32

m

k

jk(k+3)

k+l

4(6+2)

y6(6+3)

15

26

4(6+1)

2(6+1)

46

4(6+1)

4(6+2)

32

48

8(6+2)

4(6+2)

4(6+2)

8(6+1)

8(6+1)

48

72
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