K. AZUKAWA KODAI MATH. J. 10 (1987), 83-92

THE INVARIANT PSEUDO-METRIC RELATED TO NEGATIVE PLURISUBHARMONIC FUNCTIONS

Dedicated to Professor Tadashi Kuroda on his 60th birthday

By Kazuo Azukawa

Introduction.

In [1], using a family of negative plurisubharmonic functions on a complex manifold M, the author defined an invariant pseudo-metric P^{M} on M whose indicatrices are always pseudoconvex domains in the holomorphic tangent spaces. On the other hand, Klimek [5] defined an extremal plurisubharmonic function g_{p}^{M} with pole at a given point p of M.

The aim of the present note is to clarify the relationship between $P^{\mathcal{M}}$ and $g_p^{\mathcal{M}}$ (Proposition 2.4), and to simplify the original construction of $P^{\mathcal{M}}$ in [1] (Lemma 2.1, Corollary 2.5). We also show that $P^{\mathcal{M}}$ is a higher-dimensional generalization of the pseudo-metric $c_{\beta}^{z}|dz|$ induced from the capacity $c_{\beta}^{z} = \exp(-k_{\beta}^{z})$ on an open Riemann surface M (cf. [11]), where $k_{\beta}^{z}(p)$ is the Robin constant at a point p of M with respect to a local coordinate z around p (Proposition 3.1). Finally, we derive some results related to the pseudo-metric $P^{\mathcal{M}}$ for Riemann surfaces M.

§1. Klimek's extremal plulisubharmonic functions.

Let p be a point of a complex manifold M. We denote by $PS^{M}(p)$ the family of all $[-\infty, 0)$ -valued plurisubharmonic functions f on M such that the function $f-\log ||z||$ is bounded from above in a deleted neighborhood of p for some holomorphic local coordinate z with z(p)=0. We note that every $f \in PS^{M}(p)$ takes the value $-\infty$ at p, and that $PS^{M}(p)$ always contains the constant function $-\infty$. The definition of the family $PS^{M}(p)$ does not depend on the choice of the coordinate z with z(p)=0. According to Klimek [5], we define the extremal function g_{p}^{M} on M by

$$g_p^M(q) = \sup \{f(q); f \in PS^M(p)\}$$

for $q \in M$.

We quote from [5] some results on g_p^M . In [5], Klimek dealt with the case when M is a domain in C^m . However, one can see that these assertions hold also for prescribed manifolds M.

Received July 9, 1986

KAZUO AZUKAWA

LEMMA 1.1 ([5; Theorem 1.1]). (Decreasing property) If $\Phi: M \to M'$ is a holomorphic mapping between complex manifolds M and M', then $g_{\Phi'(p)}^{M'} \circ \Phi \leq g_p^M$ on M for any $p \in M$.

LEMMA 1.2 ([5; Corollary 1.3]). For every point p of a complex manifold M, the function g_p^M belongs to $PS^M(p)$.

LEMMA 1.3 ([5; Theorem 1.5]). If $g=g_p^M \in L^{\infty}_{loc}(M-\{p\})$, then g satisfies the homogeneous Monge-Ampère equation $(dd^cg)^m=0$ in $M-\{p\}$, where $d^c=i(\bar{\partial}-\bar{\partial})$ and m is the dimension of a complex manifold M (cf. [2]).

In one complex variable, the Monge-Ampère equation is reduced to the Laplace equation, so that when M is one-dimensional the conclusion of Lemma 1.3 means that g_p^M is harmonic in $M - \{p\}$.

LEMMA 1.4 ([5; Proposition 1.6]). If M is a pseudoconvex, relatively compact domain of a Stein manifold with C¹-boundary, then $g_p^M \in L^{\infty}_{loc}(M - \{p\})$, and $g_p^M(q) \rightarrow 0$ if q approaches any boundary point of M (cf. [4]).

We note that every open Riemann surface is a Stein manifold, and that every domain of an open Riemann surface is pseudoconvex.

§2. Invariant pseudo-metrics.

For a holomorphic tangent vector $X \in T_p(M)$ at a point p of a complex manifold M, we denote by LHC(X) the totality of local holomorphic curves contacting with X at p, that is, $\varphi \in LHC(X)$ if and only if φ is a holomorphic mapping from $\varepsilon U = \{\lambda \in C; |\lambda| < \varepsilon\}$ with some $\varepsilon > 0$ into M satisfying $\varphi(0) = p$ and $\varphi_*(d/d\lambda)_0 = X$. For $f \in PS^M(p)$ and $\varphi \in LHC(X)$, we set

 $L_f[\varphi] = \limsup_{\lambda \to 0, \ \lambda \neq 0} (\exp f \cdot \varphi)(\lambda) / |\lambda|.$

We shall show the following key lemma for the argument in this note, which was proved in [1; Remark 3.1] in the case when M is one-dimensional.

LEMMA 2.1. If $f \in PS^{\mathbb{M}}(p)$ and $\varphi_i \in LHC(X)$ (i=0, 1) with $X \in T_p(M)$, then $L_f[\varphi_0] = L_f[\varphi_1]$.

Proof. Take a holomorphic chart (z, U_z) with z(p)=0. We may assume that φ_i are defined in εU with $\varphi_i(\varepsilon U) \subset U_z$. Since $\varphi_i(0)=p$, the open subset

$$D = \{ (\lambda, \xi) \in \varepsilon U \times C; (1 - \xi) z \cdot \varphi_0(\lambda) + \xi z \cdot \varphi_1(\lambda) \in z(U_z) \}$$

of $\varepsilon U \times C$ includes the line $\{0\} \times C$. For every $\xi \in C$, the mapping

$$\tilde{\varphi}_{\xi}(\lambda) = z^{-1}((1-\xi)z \circ \varphi_0(\lambda) + \xi z \circ \varphi_1(\lambda))$$

defined for $\lambda \in \varepsilon U$ with $(\lambda, \xi) \in D$ belongs to LHC(X) and satisfies $\tilde{\varphi}_0 = \varphi_0$, $\tilde{\varphi}_1 = \varphi_1$. We consider the function

$$g(\lambda, \xi) = f \circ \tilde{\varphi}_{\xi}(\lambda) - \log |\lambda|, \qquad (\lambda, \xi) \in D - (\{0\} \times C),$$

which is plurisubharmonic on $D-(\{0\}\times C)$. Since $f \in PS^{M}(p)$, there exists a positive number η such that $(\exp f \circ z^{-1})(v) \leq \eta \|v\|$ for all sufficiently small $v \in C^{m}$, where *m* is the dimension of *M*. For every $\xi \in C$, using $f \circ \tilde{\varphi}_{\xi} = (f \circ z^{-1}) \circ (z \circ \tilde{\varphi}_{\xi})$, we see that

$$(\exp f \circ \tilde{\varphi}_{\xi})(\lambda) / |\lambda| \leq \eta ||z \circ \tilde{\varphi}_{\xi}(\lambda) / \lambda||$$

for all sufficiently small $\lambda \in C - \{0\}$. If we take a $u = (u^1, \dots, u^m) \in C^m$ with

(2.1)
$$X = (\partial_u^z)_p := \sum_{\nu=1}^m u^{\nu} (\partial/\partial z^{\nu})_p,$$

where $z = (z^1, \dots, z^m)$, it then follows that

(2.2)
$$\limsup_{(\lambda', \xi') \to (0,\xi), \lambda' \neq 0} g(\lambda', \xi') \leq \log(\eta \| u \|)$$

for any $\xi \in C$. Therefore, g is uniquely extended to a plurisubharmonic function \tilde{g} on D. Furthermore, the value $\tilde{g}(0, \xi)$ coincides with the left hand side of (2.2). Using the fact that the restriction of \tilde{g} over the intersection of a complex line with D is a subharmonic function there, we get the desired assertion as follows: First, for every $\xi \in C$, the function $\tilde{g}(\cdot, \xi)$ is subharmonic in a neighborhood of 0 in C. From this we have

(2.3)
$$\widetilde{g}(0, \xi) = \limsup_{\lambda \to 0, \ \lambda \neq 0} \widetilde{g}(\lambda, \xi)$$
$$= \limsup_{\lambda \to 0, \ \lambda \neq 0} g(\lambda, \xi)$$
$$= \log L_f[\widetilde{\varphi}_{\xi}].$$

Secondly, the function $\tilde{g}(0, \cdot)$ is subharmonic on *C*. Furthermore, it follows from (2.2) that $\tilde{g}(0, \cdot)$ is bounded from above on *C*, so that it must be constant. Combining this with (2.3), we have

$$\log L_f[\varphi_0] = \tilde{g}(0, 0) = \tilde{g}(0, 1) = \log L_f[\varphi_1],$$

as desired.

Lemma 2.1 implies that the family $PS^{M}(p)$ defined in the present paper coincides with the one originally defined in [1].

By virtue of Lemma 2.1, for every $f \in PS^{\mathcal{M}}(p)$, we may define a function L_f on $T_p(M)$ by

$$L_f(X) = L_f[\varphi], \qquad X \in T_p(M),$$

where $\varphi \in LHC(X)$.

LEMMA 2.2 ([1; Lemma 3.3]). If $f \in PS^{M}(p)$, $\varphi \in LHC(X)$, and φ is defined on εU , then the function a(r), $0 < r < \varepsilon$, given by

KAZUO AZUKAWA

$$a(r) = (2\pi)^{-1} \int_0^{2\pi} f \circ \varphi(re^{i\theta}) d\theta - \log r$$

is monotone-increasing in the interval $(0, \varepsilon)$ and converges to $\log L_f(X)$ as $r \rightarrow 0$.

LEMMA 2.3. For every $f \in PS^{\mathbf{M}}(p)$, the function $\log L_f$ is plurisubharmonic on $T_p(M)$.

Proof. Take a holomorphic chart (z, U_z) around p so that z(p)=0 and $z(U_z)$ is a ball, and set $l(u)=\log L_f((\partial_u^z)_p)$ for $u \in C^m$ (see (2.1)), where $m=\dim M$. We must show that l is plurisubharmonic on C^m .

To prove the upper semi-continuity of l, consider the function h on $D = \{(\lambda, u) \in \mathbb{C} \times \mathbb{C}^m; \lambda u \in z(U_z)\}$ defined by $h(\lambda, u) = f \circ z^{-1}(\lambda u), (\lambda, u) \in D$. Fix a vector $u_0 \in \mathbb{C}^m$, and take a real number $\eta > l(u_0)$. Since

$$l(u_0) = \limsup_{\lambda \to 0, \ \lambda \neq 0} (h(\lambda, u_0) - \log|\lambda|),$$

one can find a positive number δ such that $h(\lambda, u_0) - \log |\lambda| < \eta$ for any $\lambda \in C$ with $0 < |\lambda| \le \delta$. Since h is upper semi-continuous, using the compactness of the set $\delta T = \{\lambda \in C; |\lambda| = \delta\}$, we can find a neighborhood W of u_0 such that $h(\lambda, u)$ $-\log \delta < \eta$ for any $\lambda \in \delta T$ and $u \in W$. It follows from Lemma 2.2 that

$$l(u) \leq (2\pi)^{-1} \int_{0}^{2\pi} h(\delta e^{i\theta}, u) d\theta - \log \delta < \eta$$

for any $u \in W$. This means that l is upper semi-continuous at u_0 . We next show that

$$l(u) \leq (2\pi)^{-1} \int_{0}^{2\pi} l(u + e^{i\xi}v) d\xi$$

for any $u, v \in \mathbb{C}^m$. By Lemma 2.2 we have

$$l(u) = \lim_{r \to 0^+} \left((2\pi)^{-1} \int_0^{2\pi} f \circ z^{-1} (re^{i\theta} u) d\theta - \log r \right),$$

$$l(u + e^{i\xi} v) = \lim_{r \to 0^+} \left((2\pi)^{-1} \int_0^{2\pi} f \circ z^{-1} (re^{i\theta} u + re^{i(\theta + \xi)} v) d\theta - \log r \right)$$

Thus, the desired inequality follows from the monotone convergence theorem, Fubini's theorem, and the plurisubharmonicity of $f \cdot z^{-1}$ (cf. the proof of [1; Lemma 3.8]). This completes the proof.

For every $X \in T_p(M)$, we define

$$P^{\mathbf{M}}(X) = \sup \{ L_f(X) ; f \in PS^{\mathbf{M}}(p) \}.$$

PROPOSITION 2.4. If $g=g_p^M$ is the extremal plurisubharmonic function on a complex manifold M with pole at $p \in M$, defined in the preceding section, then $P^M = L_g$ on $T_p(M)$.

86

Proof. Let $X \in T_p(M)$. Since $g \in PS^{\mathcal{M}}(p)$ (Lemma 1.2), we have $P^{\mathcal{M}}(X) \ge L_g(X)$. On the other hand, if $f \in PS^{\mathcal{M}}(p)$ and $\varphi \in LHC(X)$, then

$$(\exp f \circ \varphi)(\lambda) / |\lambda| \leq (\exp g \circ \varphi)(\lambda) / |\lambda|$$

for all sufficiently small $\lambda \in C - \{0\}$. It follows that $L_f(X) \leq L_g(X)$, so that $P^M(X) \leq L_g(X)$. This completes the proof.

Combining Proposition 2.4 with Lemma 2.3, we get the following.

COROLLARY 2.5. For every point p of a complex manifold M, the function $\log P^{M}|_{T_{p}(M)}$ is plurisubharmonic on $T_{p}(M)$.

In particular, this corollary asserts that $\log P^{\mathcal{M}}|_{T_p(\mathcal{M})}$ is upper semi-continuous on $T_p(\mathcal{M})$. Therefore, the function $P^{\mathcal{M}}$ defined in the present paper coincides with the one originally defined in [1]. According to [1; Proposition 3.8, Theorem 4.3], we review some fundamental properties on $P^{\mathcal{M}}$ in the following:

For every complex manifold M, P^M is a pseudo-metric on M, that is, P^M is a $[0, +\infty)$ -valued function on the holomorphic tangent bundle T(M) of M satisfying $P^M(\lambda X) = |\lambda| P^M(X)$ for any $X \in T(M)$ and $\lambda \in C$.

For a holomorphic mapping Φ from M to M', it holds that

$$(2.4) \qquad \qquad \Phi^* P^{M'} \leq P^M$$

(Decreasing property).

Let C^{M} and K^{M} be the Carathéodory and Kobayashi pseudo-metrics on M, respectively (for the definitions, cf., e.g., [7], [3], [1]). Then, it follows that

For every $p \in M$, the indicatrix $\{X \in T_p(M); P^M(X) < 1\}$ of P^M at p is a pseudoconvex domain in $T_p(M)$.

Let M be a starlike circular domain in \mathbb{C}^m , *i.e.*, a domain satisfying $\lambda \square \subset M$ for any $\lambda \in \mathbb{C}$ with $|\lambda| \leq 1$, and let $N^M(u) = \inf\{\lambda > 0; u \in \lambda M\}$, $P_0^M(u) = P^M((\partial_u^z)_0)$ for $u \in \mathbb{C}^m$ (see (2.1)), where z(u) = u, $u \in M$, is the natural coordinate on M. Then, $P_0^M \leq N^M$, and the equality holds if and only if M is pseudoconvex. Furthermore, the indicatrix $\{u \in \mathbb{C}^m; P_0^M(u) < 1\}$ of P_0^M coincides with the holomorphic hull of M.

Recently, Nishihara, Shon, and Sugawara [9] introduced, in the same manner as in [1], the pseudo-metric $P^{\mathcal{M}}$ for a class of infinite-dimensional complex manifolds \mathcal{M} , and showed that the above-mentioned properties hold also for such manifolds.

We close this section by a useful lemma, which will be employed later.

LEMMA 2.6. Let $(M_n)_{n=1}^{\infty}$ be a sequence of domains in a complex manifold M such that $M_{n+1} \supset M_n$, $M = \bigcup_{n=1}^{\infty} M_n$. Then, the following hold:

(i) For every $p \in M$, the sequence of functions $g_p^{M_n}$ is decreasing and con-

verges to g_p^M (see Lemma 1.1).

(ii) For every $X \in T(M)$, the sequence of numbers $P^{M_n}(X)$ is decreasing and converges to $P^M(X)$ (see (2.4)).

Proof. Fix $p \in M$, take n_0 with $p \in M_{n_0}$, and set $g_n = g_p^{M_n}$, $g = g_p^M$, $P_n = P^{M_n}|_{T_n(M)}$, $P = P^M|_{T_n(M)}$ for $n \ge n_0$.

(i) By the decreasing property (Lemma 1.1) we see that $g_n(q) \ge g_{n+1}(q) \ge g(q)$ for $q \in M_n$, $n \ge n_0$. It follows that the function $f = \lim_{n \to \infty} g_n$ is well-defined on M and satisfies $f \ge g$. Since f is the limit of a decreasing sequence of plurisubharmonic functions, it follows that $f \in PS^M(p)$, so that $f \le g$. Therefore, f = g.

(ii) Assume
$$X \in T_p(M)$$
. Let $\varphi \in LHC(X)$, $\varphi : \varepsilon U \to M$, and set

$$a_n(r) = (2\pi)^{-1} \int_0^{2\pi} g_n \circ \varphi(re^i\theta) d\theta - \log r$$
$$a(r) = (2\pi)^{-1} \int_0^{2\pi} g \circ \varphi(re^i\theta) d\theta - \log r$$

for $r \in (0, \varepsilon)$, $n \ge n_0$. By Proposition 2.4 as well as Lemma 2.2, we have $\log P(X) = \lim_{r \to 0^+} a(r)$, $\log P_n(X) = \lim_{r \to 0^+} a_n(r)$. On the other hand, using the monotone convergence theorem, by part (i) we have $a(r) = \lim_{n \to \infty} a_n(r)$. However, using the monotonicity of $a_n(r)$ in each variable of n and r, we see that

$$\lim_{r\to 0^+} \lim_{n\to\infty} a_n(r) = \lim_{n\to\infty} \lim_{r\to 0^+} a_n(r);$$

this means that $\log P(X) = \lim_{n \to \infty} \log P_n(X)$. The proof is completed.

It is well-known that the same assertion (ii) of Lemma 2.6 for C^{M} or K^{M} in place of P^{M} holds true.

§3. One-dimensional cases.

Throughout this section, we assume that the manifold M under consideration is one-dimensional, *i.e.*, M is a Riemann surface. Let C^{M} and K^{M} be the Carathéodory and Kobayashi pseudo-metrics on M, respectively. If we express C^{M} as $c_{B}^{z}|dz|$ using a local coordinate z, the quantity $c_{B}^{z}(p)$ is called the analytic capacity at $p \in M$ with respect to z. On the other hand, if the universal covering of M is holomorphically equivalent to the unit disc U in C, then K^{M} is the metric induced from the Poincaré metric of U; otherwise $K^{M}=0$.

We next investigate the pseudo-metric P^{M} on a Riemann surface. When M is compact, it is immediately seen by definition that $P^{M}=0$. To clarify P^{M} on an open Riemann surface M, we review the definition of the capacity, according to Sario and Oikawa [11; pp. 54-55]. Let $(M_{n})_{n=1}^{\infty}$ be an exhaustion of M by regular subdomains with respect to the Dirichlet problem for the Laplace equation. Let $p \in M$, and z a local coordinate around p. For n with $p \in M_n$, let g_n and $k_n^{z}(p)$ be the Green function on M_n and the Robin constant at p with respect

to z, respectively, *i.e.*, $g_n(, p)$ and $k_n^z(p)$ be a unique function and a unique real constant, respectively, such that $g_n(, p)$ is harmonic on $M_n - \{p\}$, $g_n(q, p) + \log |z(q)-z(p)| \rightarrow k_n^z(p)$ as $q \rightarrow p$, and $g_n(q, p) \rightarrow 0$ as q approaches any boundary point of M_n . Set

$$g(, p) = \lim_{n \to \infty} g_n(, p), \qquad k_{\beta}^z(p) = \lim_{n \to \infty} k_n^z(p).$$

The quantities $k_{\beta}^{z}(p)$ and $c_{\beta}^{z}(p) = \exp(-k_{\beta}^{z}(p))$ are called the Robin constant and the capacity (of the ideal boundary β) at p with respect to the coordinate z, respectively. By Lemmas 1.3 and 1.4 and the remarks after them, we have $g_{p}^{Mn} = -g_{n}(,p)$. Furthermore, by Proposition 2.4 we see $\log P^{Mn}((d/dz)_{p}) = -k_{n}^{z}(p)$. Therefore, Proposition 2.6 implies that $g_{p}^{M} = -g(,p)$, $P^{M}((d/dz)_{p}) = c_{\beta}^{z}(p)$. We thus get the following.

PROPOSITION 3.1. If M is an open Riemann surface, then the pseudo-metric $P^{\mathcal{M}}$ coincides with $c_{\beta}^{z}|dz|$, where $c_{\beta}^{z} = \exp(-k_{\beta}^{z})$ is the capacity and k_{β}^{z} is the Robin constant with respect to a local coordinate z.

Now, we have noted in (2.5) that $C^{M} \leq P^{M} \leq K^{M}$. Since *M* is one-dimensional, the quantities C^{M}/P^{M} and P^{M}/K^{M} are well-defined [0, 1]-valued functions on *M*, provided that $P^{M} > 0$ and $K^{M} > 0$, respectively. Of course, these functions are biholomorphically invariant. We also note that both the functions converge to 1 as the point approaches any boundary point of *M* when *M* is a strongly pseudoconvex domain in *C* (cf. Graham [3], also cf. [13]).

To establish a formula for P^M/K^M , we review the argument in Suita [13] based on Myrberg's theorem [8]. Let M be an open Riemann surface with $M \oplus O_G$, *i.e.*, with $P^M > 0$. Then, the universal covering of M is holomorphically equivalent to the unit disc $U = \{\lambda \in C; |\lambda| < 1\}$. Assume that M is not simply connected. Let π be a covering projection from U onto M. Let $p \in M$. Take a connected neighborhood W of p such that for every component W_n of $\pi^{-1}(W)$ $(n=0, 1, \cdots)$, the restriction $\pi|_{W_n}: W_n \to W$ is homeomorphic. Let $z = (\pi|_{W_0})^{-1}$, and $z_n = (\pi|_{W_n})^{-1}$ for $n \ge 1$. By Myrberg's theorem [8] the Green function g of M can be expressed as

$$g(q, p) = \log \left| \frac{1 - \overline{z(p)} z(q)}{z(q) - z(p)} \right| + \sum_{n=1}^{\infty} \log \left| \frac{1 - \overline{z_n(p)} z(q)}{z(q) - z_n(p)} \right|$$

for $q \in W$. It follows that

$$c_{\beta}^{z} = \frac{1}{1 - |z|^{2}} \prod_{n=1}^{\infty} \left| \frac{z - z_{n}}{1 - \bar{z}_{n} z} \right|$$

on W. Since $|dz|/(1-|z|^2)$ is the restriction to W of the Kobayashi metric on M, we get the following.

LEMMA 3.2. Let $\pi: U \to M$ be a universal covering of an open Riemann surface M with $M \notin O_G$. For every $p \in M$, let $\{\zeta_n\}_{n=0}^{\infty}$ be a numbering of the fibre $\pi^{-1}(p)$. Then,

$$P^{M}/K^{M}(p) = \prod_{n=1}^{\infty} |\zeta_{0} - \zeta_{n}|/|1 - \bar{\zeta}_{n}\zeta_{0}|.$$

COROLLARY 3.3. An open Riemann surface M with $M \notin O_G$ is simply connected, i.e., holomorphically equivalent to U, if and only if $P^M = K^M$, or equivalently, $P^M = K^M$ on some tangent space $T_p(M)$.

As an example, we consider the functions $C^A/P^A, P^A/K^A$ for the annulus $A=A_q=\{\lambda\in C; q<|\lambda|<1\}$ with 0<q<1. For F=C, P, or K, the same symbol F stands for $F^A((d/dz)_{\lambda})$, where $z(\lambda)=\lambda$, $\lambda\in A$ is the natural coordinate on A. Then, these values are explicitly given by

(3.1)
$$C = \frac{\prod_{n=1}^{\infty} (1-q^{2n})^2 (1+q^{2n-1+2t})(1+q^{2n-1-2t})}{\prod_{n=1}^{\infty} (1+q^{2n-1})^2 (1-q^{2(n-1)+2t})(1-q^{2n-2t})},$$

(3.2)
$$P = \frac{\prod_{n=1}^{\infty} (1-q^{2n})^2}{q^{t^2} \prod_{n=1}^{\infty} (1-q^{2(n-1)+2t})(1-q^{2n-2t})},$$

(3.3)
$$K = \frac{\pi}{2q^t(-\log q)\sin \pi t},$$

where $|\lambda| = q^t (0 < t < 1)$ for $\lambda \in A$. The formula (3.1) was given by Robinson [10] and Simha [12]. The formula (3.2) was given by Suita [13], or is obtained from the formulas of the Green function given in [5], [10]. The formula (3.3) is obtained from the explicit form (as in the proof of Proposition 3.4 below) of a covering projection from the unit disc onto A (cf. Kobayashi [6; pp. 14-15]).

To formulate our assertion, set $\alpha(t)=C/P$, $\beta(t)=P/K$ $(t\in(0, 1))$ with $|\lambda|=q^t$, $\lambda \in A$. It is noted that $\alpha(1-t)=\alpha(t)$, $\beta(1-t)=\beta(t)$ for $t\in(0, 1)$. Let ϑ_q be Jacobi's theta function given by

$$\begin{split} \vartheta_q(z) &= \sum_{n \in \mathbb{Z}} q^{n^2} z^n \\ &= \prod_{n=1}^{\infty} (1 - q^{2n}) (1 + q^{2n-1} z) (1 + q^{2n-1} z^{-1}) \,. \end{split}$$

We shall show the following.

PROPOSITION 3.4. The functions α , β are strictly decreasing in the interval (0, 1/2]. In particular, the minimums of C/P and P/K are both taken in the middle circle $|\lambda| = \sqrt{q}$ of the annulus A_q . The minimums of C/P and P/K are given by

(3.4)
$$\alpha(1/2) = q^{1/4} \vartheta_q(q) \vartheta_q(1)^{-1}$$

and

(3.5)
$$\beta(1/2) = q^{1/4} (-\log q) \pi^{-1} \vartheta_q(1) \vartheta_q(q) = \vartheta_r(1) \vartheta_r(-1) ,$$

respectively, where $r \in (0, 1)$ is the number determined by

(3.6)
$$\pi/\log q = (\log r)/\pi$$
.

We remark that the value (3.4) is the square root of the modulus in the theory of Jacobi elliptic functions with respect to the period basis $(2\pi i, 2 \log q)$. Furthermore, Robinson proved in [10] that this value is realized as the exponential of the minimum value $-g(\sqrt{q}, -\sqrt{q})$ of -g(s, -t) when both s and t run over the subset $(q, 1) \subset A_q$, where g is the Green function of the annulus A_q .

Proof of Proposition 3.4. By (3.1) and (3.2) we find that

 $\alpha(t) = Q(t)/Q(0), \qquad Q(t) := \sum_{n \in \mathbb{Z}} q^{(n+t)^2}.$

It is known ([10; p. 348]) that the function Q(t) is strictly decreasing in the interval [0, 1/2]. Therefore, all the assertions for α and C/P follow.

To prove the assertions for β and P/K, we consider the domains $B = \{\xi \in C; 0 < \text{Im } \xi < -\log q\}$, $H = \{\eta \in C; \text{ Im } \eta > 0\}$, $U = \{\zeta \in C; |\zeta| < 1\}$, and the mappings $\Phi: U \to H$, $\Psi: H \to B$, $\pi_1: B \to A$, given by $\eta = i(\zeta+1)/(\zeta-1)$, $\xi = (-\log q)(\log \eta)/\pi$, and $\lambda = e^{i\xi}$, respectively. Then, $\pi = \pi_1 \circ \Psi \circ \Phi: U \to A$ is a covering projection onto A. Let $\lambda \in (q, 1) \subset A$ be fixed. For $n \in \mathbb{Z}$, set $\xi_n = 2n\pi - i\log \lambda$, $\eta_n = \Psi^{-1}(\xi_n)$, and $\zeta_n = \Phi^{-1}(\eta_n)$. Since $\pi^{-1}(\lambda) = \{\zeta_n; n \in \mathbb{Z}\}$, $\zeta_n = (\eta_n - i)/(\eta_n + i)$, it follows from Myrberg's formula (Lemma 3.2) that

$$P/K = \prod_{n \neq 0} |\zeta_n - \zeta_0| / |1 - \bar{\zeta}_n \zeta_0| = \prod_{n \neq 0} |\eta_n - \eta_0| / |\bar{\eta}_n - \eta_0|.$$

Using the number r given by (3.6) we see $\eta_n = r^{-2n} e^{t\pi i}$. Therefore, for every $t \in (0, 1)$ we see

$$\beta(t) = \prod_{n=1}^{\infty} (1 - r^{2n})^2 |e^{2t\pi i} - r^{2n}|^{-2}.$$

For every *n*, it is easily seen that the function $R(t) = |e^{2t\pi i} - r^{2n}|$ is strictly increasing in the interval [0, 1/2]. Therefore, the function β is strictly decreasing in (0, 1/2], and P/K takes the minimum

$$\beta(1/2) = \prod_{n=1}^{\infty} (1 - r^{2n})^2 (1 + r^{2n})^{-2} = \vartheta_r(1)\vartheta_r(-1)$$

at $\lambda \in A$ with $|\lambda| = \sqrt{q}$. Furthermore, it follows from formulas (3.2) and (3.3) that

$$\begin{split} \beta(1/2) &= 2q^{1/4} (-\log q) \pi^{-1} \prod_{n=1}^{\infty} (1-q^{2n})^2 (1-q^{2n-1})^{-2} \\ &= q^{1/4} (-\log q) \pi^{-1} \mathcal{G}_q(1) \mathcal{G}_q(q) \,. \end{split}$$

This gives the first expression in (3.5) for the value $\beta(1/2)$. Thus, the proof of Proposition 3.4 is completed.

Remark 3.5. We make some comments on the relation (3.5). First, we assume q=r, *i.e.*, $q=e^{-\pi}$. Then, the relation (3.5) implies that the number $q=e^{-\pi}$ satisfies the equation $\vartheta_q(q)q^{1/4}=\vartheta_q(-1)$, that is,

$$2\sum_{n=1}^{\infty} \exp\left(-\pi (n-1/2)^2\right) = 1 + 2\sum_{n=1}^{\infty} (-1)^n \exp\left(-\pi n^2\right)$$

or

KAZUO AZUKAWA

$$e^{\pi/8} = \sqrt{2} \prod_{n=1}^{\infty} (1 + e^{-n\pi} + e^{-2n\pi} + e^{-3n\pi}).$$

On the other hand, since

$$\beta(1/2) = \frac{2q^{1/4}(-\log q)}{\pi(1-q)} \prod_{n=1}^{\infty} \frac{(1+q+\dots+q^{2n-1})^2}{(1+q+\dots+q^{2n-2})(1+q+\dots+q^{2n})},$$

taking the limits as $q \rightarrow 1-0$ in both sides of (3.5), noting $r \rightarrow 0+$, we obtain Wallis' formula

$$(2/\pi)\prod_{n=1}^{\infty}(2n)^2/(2n-1)(2n+1)=1$$
.

Thus, the formula (3.5) can be seen as an extension of Wallis' formula.

References

- K. AZUKAWA, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan, 38 (1986), 627-647.
- [2] E. BEDFORD AND B. A. TAYLOR, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-41.
- [3] I. GRAHAM, Boundary behavior of the Carathéodory and Kobayashi metrics on strictly pseudoconvex domains in Cⁿ with smooth boundary, Trans. Amer. Math. Soc., 207 (1985), 219-240.
- [4] N. KERZMAN AND J.-P. ROSAY, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann., 257 (1981), 171-184.
- [5] M. KLIMEK, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240.
- [6] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.
- [7] S. KOBAYASHI, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416.
- [8] P. J. MYRBERG, Über die Existenz der Greenschen Functionen auf einer gegebenen Riemannschen Fläche, Acta Math., 61 (1933), 39-79.
- [9] M. NISHIHARA, K. H. SHON AND N. SUGAWARA, On pseudo-metrics and their indicatrices in balanced open subsets of a locally convex space, Math. Rep. Toyama Univ., 9 (1986), 109-136.
- [10] R. ROBINSON, Analytic functions in circular rings, Duke Math. J., 10 (1943), 341-354.
- [11] L. SARIO AND K. OIKAWA, Capacity Functions, Springer, Berlin, 1969.
- [12] R.R. SIMHA, The Carathéodory metric of the annulus, Proc. Amer. Math. Soc., 50 (1975), 162-166.
- [13] N. SUITA, Capacities and kernels on Riemann surfaces, Arch. Rational Mech. Anal., 46 (1972), 212-217.

Department of Mathematics Toyama University Toyama, 930 Japan

92