THE INVARIANT PSEUDO-METRIC RELATED TO NEGATIVE PLURISUBHARMONIC FUNCTIONS

Dedicated to Professor Tadashi Kuroda on his 60th birthday

By Kazuo Azukawa

Introduction.

In [1], using a family of negative plurisubharmonic functions on a complex manifold M, the author defined an invariant pseudo-metric P^{M} on M whose indicatrices are always pseudoconvex domains in the holomorphic tangent spaces. On the other hand, Klimek [5] defined an extremal plurisubharmonic function g_{p}^{M} with pole at a given point p of M.

The aim of the present note is to clarify the relationship between P^{M} and g_{p}^{M} (Proposition 2.4), and to simplify the original construction of P^{M} in [1] (Lemma 2.1, Corollary 2.5). We also show that P^{M} is a higher-dimensional generalization of the pseudo-metric $c_{\beta}^{z}|d z|$ induced from the capacity $c_{\beta}^{z}=$ $\exp \left(-k_{\beta}^{2}\right)$ on an open Riemann surface M (cf. [11]), where $k_{\beta}^{z}(p)$ is the Robin constant at a point p of M with respect to a local coordinate z around p (Proposition 3.1). Finally, we derive some results related to the pseudo-metric P^{M} for Riemann surfaces M.

§ 1. Klimek's extremal plulisubharmonic functions.

Let p be a point of a complex manifold M. We denote by $P S^{M}(p)$ the family of all $[-\infty, 0)$-valued plurisubharmonic functions f on M such that the function $f-\log \|z\|$ is bounded from above in a deleted neighborhood of p for some holomorphic local coordinate z with $z(p)=0$. We note that every $f \in P S^{M}(p)$ takes the value $-\infty$ at p, and that $P S^{M}(p)$ always contains the constant function $-\infty$. The definition of the family $P S^{M}(p)$ does not depend on the choice of the coordinate z with $z(p)=0$. According to Klimek [5], we define the extremal function g_{p}^{M} on M by

$$
g_{p}^{M}(q)=\sup \left\{f(q) ; f \in P S^{M}(p)\right\}
$$

for $q \in M$.
We quote from [5] some results on g_{p}^{M}. In [5], Klimek dealt with the case when M is a domain in \boldsymbol{C}^{m}. However, one can see that these assertions hold also for prescribed manifolds M.

[^0]Lemma 1.1 ([5; Theorem 1.1]). (Decreasing property) If $\Phi: M \rightarrow M^{\prime}$ is a holomorphic mapping between complex manifolds M and M^{\prime}, then $g_{\boldsymbol{Q}^{M}(p)}^{\prime \prime} \Phi \leqq g_{p}^{M}$ on M for any $p \in M$.

Lemma 1.2 ([5; Corollary 1.3]). For every point p of a complex manıfold M, the function g_{p}^{M} belongs to $P S^{M}(p)$.

Lemma 1.3 ([5; Theorem 1.5]). If $g=g_{p}^{M} \in L_{\text {loc }}^{\infty}(M-\{p\})$, then g satisfies the homogeneous Monge-Ampère equation $\left(d d^{c} g\right)^{m}=0$ in $M-\{p\}$, where $d^{c}=i(\bar{\partial}-\partial)$ and m is the dimension of a complex manifold M (cf. [2]).

In one complex variable, the Monge-Ampère equation is reduced to the Laplace equation, so that when M is one-dimensional the conclusion of Lemma 1.3 means that g_{p}^{M} is harmonic in $M-\{p\}$.

Lemma 1.4 ([5; Proposition 1.6]). If M is a pseudoconvex, relatively compact domain of a Stein manifold with C^{1}-boundary, then $g_{p}^{M} \in L_{\text {loc }}^{\infty}(M-\{p\})$, and $g_{p}^{M}(q)$ $\rightarrow 0$ if q approaches any boundary point of M (cf. [4]).

We note that every open Riemann surface is a Stein manifold, and that every domain of an open Riemann surface is pseudoconvex.

§ 2. Invariant pseudo-metrics.

For a holomorphic tangent vector $X \in T_{p}(M)$ at a point p of a complex manifold M, we denote by $\operatorname{LHC}(X)$ the totality of local holomorphic curves contacting with X at p, that is, $\varphi \in \operatorname{LHC}(X)$ if and only if φ is a holomorphic mapping from $\varepsilon U=\{\lambda \in \boldsymbol{C} ;|\lambda|<\varepsilon\}$ with some $\varepsilon>0$ into M satisfying $\varphi(0)=p$ and $\varphi_{*}(d / d \lambda)_{0}=X$. For $f \in P S^{M}(p)$ and $\varphi \in \operatorname{LHC}(X)$, we set

$$
L_{f}[\varphi]=\lim \sup _{\lambda \rightarrow 0, \lambda \neq 0}(\exp f \cdot \varphi)(\lambda) /|\lambda|
$$

We shall show the following key lemma for the argument in this note, which was proved in [1; Remark 3.1] in the case when M is one-dimensional.

Lemma 2.1. If $f \in P S^{M}(p)$ and $\varphi_{i} \in \operatorname{LHC}(X)(i=0,1)$ with $X \in T_{p}(M)$, then $L_{f}\left[\varphi_{0}\right]=L_{f}\left[\varphi_{1}\right]$.

Proof. Take a holomorphic chart $\left(z, U_{z}\right)$ with $z(p)=0$. We may assume that φ_{i} are defined in εU with $\varphi_{i}(\varepsilon U) \subset U_{z}$. Since $\varphi_{i}(0)=p$, the open subset

$$
D=\left\{(\lambda, \xi) \in \varepsilon U \times \boldsymbol{C} ;(1-\xi) z \cdot \varphi_{0}(\lambda)+\xi z^{\circ} \varphi_{1}(\lambda) \in z\left(U_{z}\right)\right\}
$$

of $\varepsilon U \times \boldsymbol{C}$ includes the line $\{0\} \times \boldsymbol{C}$. For every $\xi \in \boldsymbol{C}$, the mapping

$$
\tilde{\varphi}_{\xi}(\lambda)=z^{-1}\left((1-\xi) z^{\circ} \varphi_{0}(\lambda)+\xi z^{\circ} \varphi_{1}(\lambda)\right)
$$

defined for $\lambda \in \varepsilon U$ with $(\lambda, \xi) \in D$ belongs to $\operatorname{LHC}(X)$ and satisfies $\tilde{\varphi}_{0}=\varphi_{0}, \tilde{\varphi}_{1}=\varphi_{1}$. We consider the function

$$
g(\lambda, \xi)=f \circ \tilde{\varphi}_{\xi}(\lambda)-\log |\lambda|, \quad(\lambda, \xi) \in D-(\{0\} \times \boldsymbol{C})
$$

which is plurisubharmonic on $D-(\{0\} \times \boldsymbol{C})$. Since $f \in P S^{M}(p)$, there exists a positive number η such that $\left(\exp f \circ z^{-1}\right)(v) \leqq \eta\|v\|$ for all sufficiently small $v \in \boldsymbol{C}^{m}$, where m is the dimension of M. For every $\xi \in \boldsymbol{C}$, using $f \circ \tilde{\varphi}_{\xi}=\left(f \circ z^{-1}\right) \circ\left(z \circ \tilde{\varphi}_{\xi}\right)$, we see that

$$
\left(\exp f \circ \tilde{\varphi}_{\xi}\right)(\lambda) /|\lambda| \leqq \eta\left\|z^{\circ} \tilde{\varphi}_{\xi}(\lambda) / \lambda\right\|
$$

for all sufficiently small $\lambda \in \boldsymbol{C}-\{0\}$. If we take a $u=\left(u^{1}, \cdots, u^{m}\right) \in \boldsymbol{C}^{m}$ with

$$
\begin{equation*}
X=\left(\partial_{u}^{z}\right)_{p}:=\sum_{\nu=1}^{m} u^{\nu}\left(\partial / \partial z^{\nu}\right)_{p} \tag{2.1}
\end{equation*}
$$

where $z=\left(z^{1}, \cdots, z^{m}\right)$, it then follows that

$$
\begin{equation*}
\limsup _{\left(\lambda^{\prime}, \xi^{\prime}\right) \rightarrow(0, \xi), \lambda^{\prime} \neq 0} g\left(\lambda^{\prime}, \xi^{\prime}\right) \leqq \log (\eta\|u\|) \tag{2.2}
\end{equation*}
$$

for any $\xi \in \boldsymbol{C}$. Therefore, g is uniquely extended to a plurisubharmonic function \tilde{g} on D. Furthermore, the value $\tilde{g}(0, \xi)$ coincides with the left hand side of (2.2). Using the fact that the restriction of \tilde{g} over the intersection of a complex line with D is a subharmonic function there, we get the desired assertion as follows: First, for every $\xi \in \boldsymbol{C}$, the function $\tilde{g}(\cdot, \xi)$ is subharmonic in a neighborhood of 0 in \boldsymbol{C}. From this we have

$$
\begin{align*}
\tilde{g}(0, \xi) & =\lim \sup _{\lambda \rightarrow 0, \lambda \neq 0} \tilde{g}(\lambda, \xi) \tag{2.3}\\
& =\lim \sup _{\lambda \rightarrow 0, \lambda \neq 0} g(\lambda, \xi) \\
& =\log L_{f}\left[\tilde{\varphi}_{\xi}\right] .
\end{align*}
$$

Secondly, the function $\tilde{g}(0, \cdot)$ is subharmonic on \boldsymbol{C}. Furthermore, it follows from (2.2) that $\tilde{g}(0, \cdot)$ is bounded from above on \boldsymbol{C}, so that it must be constant. Combining this with (2.3), we have

$$
\log L_{f}\left[\varphi_{0}\right]=\tilde{g}(0,0)=\tilde{g}(0,1)=\log L_{f}\left[\varphi_{1}\right],
$$

as desired.
Lemma 2.1 implies that the family $P S^{M}(p)$ defined in the present paper coincides with the one originally defined in [1].

By virtue of Lemma 2.1, for every $f \in P S^{M}(p)$, we may define a function L_{f} on $T_{p}(M)$ by

$$
L_{f}(X)=L_{f}[\varphi], \quad X \in T_{p}(M),
$$

where $\varphi \in \operatorname{LHC}(X)$.
Lemma 2.2 ([1; Lemma 3.3]). If $f \in P S^{M}(p), \varphi \in \operatorname{LHC}(X)$, and φ is defined on εU, then the function $a(r), 0<r<\varepsilon$, given by

$$
a(r)=(2 \pi)^{-1} \int_{0}^{2 \pi} f \circ \varphi\left(r e^{i \theta}\right) d \theta-\log r
$$

is monotone-increasing in the interval $(0, \varepsilon)$ and converges to $\log L_{f}(X)$ as $r \rightarrow 0$.
Lemma 2.3. For every $f \in P S^{M}(p)$, the function $\log L_{f}$ is plurisubharmonic on $T_{p}(M)$.

Proof. Take a holomorphic chart $\left(z, U_{z}\right)$ around p so that $z(p)=0$ and $z\left(U_{z}\right)$ is a ball, and set $l(u)=\log L_{f}\left(\left(\partial_{u}^{z}\right)_{p}\right)$ for $u \in \boldsymbol{C}^{m}$ (see (2.1)), where $m=\operatorname{dim} M$. We must show that l is plurisubharmonic on \boldsymbol{C}^{m}.

To prove the upper semi-continuity of l, consider the function h on $D=$ $\left\{(\lambda, u) \in \boldsymbol{C} \times \boldsymbol{C}^{m} ; \lambda u \in z\left(U_{z}\right)\right\}$ defined by $h(\lambda, u)=f \circ z^{-1}(\lambda u),(\lambda, u) \in D$. Fix a vector $u_{0} \in \boldsymbol{C}^{m}$, and take a real number $\eta>l\left(u_{0}\right)$. Since

$$
l\left(u_{0}\right)=\lim \sup _{\lambda \rightarrow 0, \lambda \neq 0}\left(h\left(\lambda, u_{0}\right)-\log |\lambda|\right),
$$

one can find a positive number δ such that $h\left(\lambda, u_{0}\right)-\log |\lambda|<\eta$ for any $\lambda \in \boldsymbol{C}$ with $0<|\lambda| \leqq \delta$. Since h is upper semi-continuous, using the compactness of the set $\delta T=\{\lambda \in \boldsymbol{C} ;|\lambda|=\delta\}$, we can find a neighborhood W of u_{0} such that $h(\lambda, u)$ $-\log \delta<\eta$ for any $\lambda \in \delta T$ and $u \in W$. It follows from Lemma 2.2 that

$$
l(u) \leqq(2 \pi)^{-1} \int_{0}^{2 \pi} h\left(\delta e^{i \theta}, u\right) d \theta-\log \delta<\eta
$$

for any $u \in W$. This means that l is upper semi-continuous at u_{0}.
We next show that

$$
l(u) \leqq(2 \pi)^{-1} \int_{0}^{2 \pi} l\left(u+e^{i \hat{\xi}} v\right) d \xi
$$

for any $u, v \in \boldsymbol{C}^{m}$. By Lemma 2.2 we have

$$
\begin{aligned}
& l(u)=\lim _{r \rightarrow 0+}\left((2 \pi)^{-1} \int_{0}^{2 \pi} f \circ z^{-1}\left(r e^{i \theta} u\right) d \theta-\log r\right), \\
& l\left(u+e^{i \xi} v\right)=\lim _{r \rightarrow 0+}\left((2 \pi)^{-1} \int_{0}^{2 \pi} f \circ z^{-1}\left(r e^{i \theta} u+r e^{i(\theta+\xi)} v\right) d \theta-\log r\right) .
\end{aligned}
$$

Thus, the desired inequality follows from the monotone convergence theorem, Fubini's theorem, and the plurisubharmonicity of $f \circ z^{-1}$ (cf. the proof of $[1$; Lemma 3.8]). This completes the proof.

For every $X \in T_{p}(M)$, we define

$$
P^{M}(X)=\sup \left\{L_{f}(X) ; f \in P S^{M}(p)\right\} .
$$

Proposition 2.4. If $g=g_{p}^{M}$ is the extremal plurisubharmonic function on a complex manifold M with pole at $p \in M$, defined in the preceding section, then $P^{M}=L_{g}$ on $T_{p}(M)$.

Proof. Let $X \in T_{p}(M)$. Since $g \in P S^{M}(p)$ (Lemma 1.2), we have $P^{M}(X) \geqq$ $L_{g}(X)$. On the other hand, if $f \in P S^{M}(p)$ and $\varphi \in \operatorname{LHC}(X)$, then

$$
(\exp f \circ \varphi)(\lambda) /|\lambda| \leqq(\exp g \circ \varphi)(\lambda) /|\lambda|
$$

for all sufficiently small $\lambda \in \boldsymbol{C}-\{0\}$. It follows that $L_{f}(X) \leqq L_{g}(X)$, so that $P^{M}(X) \leqq L_{g}(X)$. This completes the proof.

Combining Proposition 2.4 with Lemma 2.3, we get the following.
Corollary 2.5. For every point p of a complex manifold M, the function $\left.\log P^{M}\right|_{T_{p}(M)}$ is plurisubharmonic on $T_{p}(M)$.

In particular, this corollary asserts that $\left.\log P^{M}\right|_{r_{p}(M)}$ is upper semi-continuous on $T_{p}(M)$. Therefore, the function P^{M} defined in the present paper coincides with the one originally defined in [1]. According to [1; Proposition 3.8, Theorem 4.3], we review some fundamental properties on P^{M} in the following:

For every complex manifold M, P^{M} is a pseudo-metric on M, that is, P^{M} is a $[0,+\infty)$-valued function on the holomorphic tangent bundle $T(M)$ of M satisfying $P^{M}(\lambda X)=|\lambda| P^{M}(X)$ for any $X \in T(M)$ and $\lambda \in \boldsymbol{C}$.

For a holomorphic mapping Φ from M to M^{\prime}, it holds that

$$
\begin{equation*}
\Phi^{*} P^{M^{\prime}} \leqq P^{M} \tag{2.4}
\end{equation*}
$$

(Decreasing property).
Let C^{M} and K^{M} be the Carathéodory and Kobayashi pseudo-metrics on M, respectively (for the definitions, cf., e.g., [7], [3], [1]). Then, it follows that

$$
\begin{equation*}
C^{M} \leqq P^{M} \leqq K^{M} \tag{2.5}
\end{equation*}
$$

For every $p \in M$, the indicatrix $\left\{X \in T_{p}(M) ; P^{M}(X)<1\right\}$ of P^{M} at p is a pseudoconvex domain in $T_{p}(M)$.

Let M be a starlike circular domain in \boldsymbol{C}^{m},. .e., a domain satisfying $\lambda M \subset M$ for any $\lambda \in C$ with $|\lambda| \leqq 1$, and let $N^{M}(u)=\inf \{\lambda>0 ; u \in \lambda M\}, \quad P_{0}^{M}(u)=P^{M}\left(\left(\partial_{u}^{z}\right)_{0}\right)$ for $u \in \boldsymbol{C}^{m}$ (see (2.1)), where $z(u)=u, u \in M$, is the natural coordinate on M. Then, $P_{0}^{M} \leqq N^{M}$, and the equality holds if and only if M is pseudoconvex. Furthermore, the indicatrix $\left\{u \in \boldsymbol{C}^{m} ; P_{0}^{M}(u)<1\right\}$ of P_{0}^{M} coincides with the holomorphic hull of M.

Recently, Nishihara, Shon, and Sugawara [9] introduced, in the same manner as in [1], the pseudo-metric P^{M} for a class of infinite-dimensional complex manifolds M, and showed that the above-mentioned properties hold also for such manifolds.

We close this section by a useful lemma, which will be employed later.
Lemma 2.6. Let $\left(M_{n}\right)_{n=1}^{\infty}$ be a sequence of domains in a complex manifold M such that $M_{n+1} \supset M_{n}, M=\bigcup_{n=1}^{\infty} M_{n}$. Then, the following hold:
(i) For every $p \in M$, the sequence of functions $g_{p}^{M_{n}}$ is decreasing and con-
verges to g_{p}^{M} (see Lemma 1.1).
(ii) For evary $X \in T(M)$, the sequence of numbers $P^{M_{n}}(X)$ is decreasing and converges to $P^{M}(X)$ (see (2.4)).

Proof. Fix $p \in M$, take n_{0} with $p \in M_{n_{0}}$, and set $g_{n}=g_{p}^{M_{n}}, g=g_{p}^{M}, \quad P_{n}=$ $\left.P^{M_{n}}\right|_{T_{p}(M)}, P=\left.P^{M}\right|_{T_{p}(M)}$ for $n \geqq n_{0}$.
(i) By the decreasing property (Lemma 1.1) we see that $g_{n}(q) \geqq g_{n+1}(q) \geqq g(q)$ for $q \in M_{n}, n \geqq n_{0}$. It follows that the function $f=\lim _{n \rightarrow \infty} g_{n}$ is well-defined on M and satisfies $f \geqq g$. Since f is the limit of a decreasing sequence of plurisubharmonic functions, it follows that $f \in P S^{M}(p)$, so that $f \leqq g$. Therefore, $f=g$.
(ii) Assume $X \in T_{p}(M)$. Let $\varphi \in \operatorname{LHC}(X), \varphi: \varepsilon U \rightarrow M$, and set

$$
\begin{aligned}
& a_{n}(r)=(2 \pi)^{-1} \int_{0}^{2 \pi} g_{n^{\circ}} \varphi\left(r e^{2} \theta\right) d \theta-\log r, \\
& a(r)=(2 \pi)^{-1} \int_{0}^{2 \pi} g \circ \varphi\left(r e^{2} \theta\right) d \theta-\log r
\end{aligned}
$$

for $r \in(0, \varepsilon), n \geqq n_{0}$. By Proposition 2.4 as well as Lemma 2.2, we have $\log P(X)$ $=\lim _{r \rightarrow 0+} a(r), \log P_{n}(X)=\lim _{r \rightarrow 0+} a_{n}(r)$. On the other hand, using the monotone convergence theorem, by part (i) we have $a(r)=\lim _{n \rightarrow \infty} a_{n}(r)$. However, using the monotonicity of $a_{n}(r)$ in each variable of n and r, we see that

$$
\lim _{r \rightarrow 0^{+}} \lim _{n \rightarrow \infty} a_{n}(r)=\lim _{n \rightarrow \infty} \lim _{r \rightarrow 0+} a_{n}(r) ;
$$

this means that $\log P(X)=\lim _{n \rightarrow \infty} \log P_{n}(X)$. The proof is completed.
It is well-known that the same assertion (ii) of Lemma 2.6 for C^{M} or K^{M} in place of P^{M} holds true.

§ 3. One-dimensional cases.

Throughout this section, we assume that the manifold M under consideration is one-dimensional, i.e., M is a Riemann surface. Let C^{M} and K^{M} be the Carathéodory and Kobayashi pseudo-metrics on M, respectively. If we express C^{M} as $c_{B}^{2}|d z|$ using a local coordinate z, the quantity $c_{B}^{2}(p)$ is called the analytic capacity at $p \in M$ with respect to z. On the other hand, if the universal covering of M is holomorphically equivalent to the unit disc U in C, then K^{M} is the metric induced from the Poincaré metric of U; otherwise $K^{M}=0$.

We next investigate the pseudo-metric P^{M} on a Riemann surface. When M is compact, it is immediately seen by definition that $P^{M}=0$. To clarify P^{M} on an open Riemann surface M, we review the definition of the capacity, according to Sario and Oikawa [11; pp. 54-55]. Let $\left(M_{n}\right)_{n=1}^{\infty}$ be an exhaustion of M by regular subdomains with respect to the Dirichlet problem for the Laplace equation. Let $p \in M$, and z a local coordinate around p. For n with $p \in M_{n}$, let g_{n} and $k_{n}^{2}(p)$ be the Green function on M_{n} and the Robin constant at p with respect
to z, respectively, i.e., $g_{n}(, p)$ and $k_{n}^{z}(p)$ be a unique function and a unique real constant, respectively, such that $g_{n}(, p)$ is harmonic on $M_{n}-\{p\}, g_{n}(q, p)+$ $\log |z(q)-z(p)| \rightarrow k_{n}^{z}(p)$ as $q \rightarrow p$, and $g_{n}(q, p) \rightarrow 0$ as q approaches any boundary point of M_{n}. Set

$$
g(, p)=\lim _{n \rightarrow \infty} g_{n}(, p), \quad k_{\beta}^{2}(p)=\lim _{n \rightarrow \infty} k_{n}^{z}(p) .
$$

The quantities $k_{\beta}^{2}(p)$ and $c_{\beta}^{2}(p)=\exp \left(-k_{\beta}^{2}(p)\right)$ are called the Robin constant and the capacity (of the ideal boundary β) at p with respect to the coordinate z, respectively. By Lemmas 1.3 and 1.4 and the remarks after them, we have $g_{p}^{M_{n}}=-g_{n}(, p)$. Furthermore, by Proposition 2.4 we see $\log P^{M_{n}\left((d / d z)_{p}\right)}=$ $-k_{n}^{2}(p)$. Therefore, Proposition 2.6 implies that $g_{p}^{M}=-g(, p), P^{M}\left((d / d z)_{p}\right)=$ $c_{\beta}^{z}(p)$. We thus get the following.

Proposition 3.1. If M is an open Riemann surface, then the pseudo-metric P^{M} coincides with $c_{\beta}^{2}|d z|$, where $c_{\beta}^{2}=\exp \left(-k_{\beta}^{2}\right)$ is the capacity and k_{β}^{2} is the Robin constant with respect to a local coordinate z.

Now, we have noted in (2.5) that $C^{M} \leqq P^{M} \leqq K^{M}$. Since M is one-dimensional, the quantities C^{M} / P^{M} and P^{M} / K^{M} are well-defined [0, 1]-valued functions on M, provided that $P^{M}>0$ and $K^{M}>0$, respectively. Of course, these functions are biholomorphically invariant. We also note that both the functions converge to 1 as the point approaches any boundary point of M when M is a strongly pseudoconvex domain in \boldsymbol{C} (cf. Graham [3], also cf. [13]).

To establish a formula for P^{M} / K^{M}, we review the argument in Suita [13] based on Myrberg's theorem [8]. Let M be an open Riemann surface with $M \oplus O_{G}$, i.e., with $P^{M}>0$. Then, the universal covering of M is holomorphically equivalent to the unit disc $U=\{\lambda \in \boldsymbol{C} ;|\lambda|<1\}$. Assume that M is not simply connected. Let π be a covering projection from U onto M. Let $p \in M$. Take a connected neighborhood W of p such that for every component W_{n} of $\pi^{-1}(W)$ $(n=0,1, \cdots)$, the restriction $\left.\pi\right|_{W_{n}}: W_{n} \rightarrow W$ is homeomorphic. Let $z=\left(\left.\pi\right|_{W_{0}}\right)^{-1}$, and $z_{n}=\left(\left.\pi\right|_{W_{n}}\right)^{-1}$ for $n \geqq 1$. By Myrberg's theorem [8] the Green function g of M can be expressed as

$$
g(q, p)=\log \left|\frac{1-\overline{z(p)} z(q)}{z(q)-z(p)}\right|+\sum_{n=1}^{\infty} \log \left|\frac{1-\overline{z_{n}(p)} z(q)}{z(q)-z_{n}(p)}\right|
$$

for $q \in W$. It follows that

$$
c_{\beta}^{z}=\frac{1}{1-|z|^{2}} \Pi_{n=1}^{\infty}\left|\frac{z-z_{n}}{1-\bar{z}_{n} z}\right|
$$

on W. Since $|d z| /\left(1-|z|^{2}\right)$ is the restriction to W of the Kobayashi metric on M, we get the following.

Lemma 3.2. Let $\pi: U \rightarrow M$ be a universal covering of an open Riemann surface M with $M \notin O_{G}$. For every $p \in M$, let $\left\{\zeta_{n}\right\}_{n=0}^{\infty}$ be a numbering of the fibre $\pi^{-1}(p)$. Then,

$$
P^{M} / K^{M}(p)=\Pi_{n=1}^{\infty}\left|\zeta_{0}-\zeta_{n}\right| /\left|1-\bar{\zeta}_{n} \zeta_{0}\right| .
$$

Corollary 3.3. An open Riemann surface M with $M \notin O_{G}$ is simply connected, i.e., holomorphically equivalent to U, if and only if $P^{M}=K^{M}$, or equivalently, $P^{M}=K^{M}$ on some tangent space $T_{p}(M)$.

As an example, we consider the functions $C^{A} / P^{A}, P^{A} / K^{A}$ for the annulus $A=A_{q}=\{\lambda \in C ; q<|\lambda|<1\}$ with $0<q<1$. For $F=C, P$, or K, the same symbol F stands for $F^{A}\left((d / d z)_{\lambda}\right)$, where $z(\lambda)=\lambda, \lambda \in A$ is the natural coordinate on A. Then, these values are explicitly given by

$$
\begin{equation*}
P=\frac{\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}}{q^{t} \Pi_{n=1}^{\infty}\left(1-q^{2(n-1)+2 t}\right)\left(1-q^{2 n-2 t}\right)} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
C=\frac{\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}\left(1+q^{2 n-1+2 t}\right)\left(1+q^{2 n-1-2 t}\right)}{\Pi_{n=1}^{\infty}\left(1+q^{2 n-1}\right)^{2}\left(1-q^{2(n-1)+2 t}\right)\left(1-q^{2 n-2 t}\right)}, \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
K=\frac{\pi}{2 q^{t}(-\log q) \sin \pi t}, \tag{3.3}
\end{equation*}
$$

where $|\lambda|=q^{t}(0<t<1)$ for $\lambda \in A$. The formula (3.1) was given by Robinson [10] and Simha [12]. The formula (3.2) was given by Suita [13], or is obtained from the formulas of the Green function given in [5], [10]. The formula (3.3) is obtained from the explicit form (as in the proof of Proposition 3.4 below) of a covering projection from the unit disc onto A (cf. Kobayashi [6; pp. 1415]).

To formulate our assertion, set $\alpha(t)=C / P, \beta(t)=P / K(t \in(0,1))$ with $|\lambda|=q^{t}$, $\lambda \in A$. It is noted that $\alpha(1-t)=\alpha(t), \beta(1-t)=\beta(t)$ for $t \in(0,1)$. Let ϑ_{q} be Jacobi's theta function given by

$$
\begin{aligned}
\vartheta_{q}(z) & =\sum_{n \in Z} q^{n^{2}} z^{n} \\
& =\Pi_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1+q^{2 n-1} z\right)\left(1+q^{2 n-1} z^{-1}\right) .
\end{aligned}
$$

We shall show the following.
Proposition 3.4. The functions α, β are strictly decreasing in the interval $(0,1 / 2]$. In particular, the minimums of C / P and P / K are both taken in the middle circle $|\lambda|=\sqrt{q}$ of the annulus A_{q}. The minimums of C / P and P / K are given by

$$
\begin{equation*}
\alpha(1 / 2)=q^{1 / 4} \vartheta_{q}(q) \vartheta_{q}(1)^{-1} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta(1 / 2)=q^{1 / 4}(-\log q) \pi^{-1} \vartheta_{q}(1) \vartheta_{q}(q)=\vartheta_{r}(1) \vartheta_{r}(-1), \tag{3.5}
\end{equation*}
$$

respectively, where $r \in(0,1)$ is the number determined by

$$
\begin{equation*}
\pi / \log q=(\log r) / \pi \tag{3.6}
\end{equation*}
$$

We remark that the value (3.4) is the square root of the modulus in the theory of Jacobi elliptic functions with respect to the period basis $(2 \pi r, 2 \log q)$. Furthermore, Robinson proved in [10] that this value is realized as the exponential of the minimum value $-g(\sqrt{q},-\sqrt{q})$ of $-g(s,-t)$ when both s and t run over the subset $(q, 1) \subset A_{q}$, where g is the Green function of the annulus A_{q}.

Proof of Proposition 3.4. By (3.1) and (3.2) we find that

$$
\alpha(t)=Q(t) / Q(0), \quad Q(t):=\Sigma_{n \in Z} q^{(n+t)^{2}}
$$

It is known ($[10 ; \mathrm{p} .348]$) that the function $Q(t)$ is strictly decreasing in the interval $[0,1 / 2]$. Therefore, all the assertions for α and C / P follow.

To prove the assertions for β and P / K, we consider the domains $B=\{\xi \in \boldsymbol{C}$; $0<\operatorname{Im} \xi<-\log q\}, H=\{\eta \in \boldsymbol{C} ; \operatorname{Im} \eta>0\}, U=\{\zeta \in \boldsymbol{C} ;|\zeta|<1\}$, and the mappings $\Phi: U \rightarrow H, \Psi: H \rightarrow B, \pi_{1}: B \rightarrow A$, given by $\eta=i(\zeta+1) /(\zeta-1), \xi=(-\log q)(\log \eta) / \pi$, and $\lambda=e^{i \xi}$, respectively. Then, $\pi=\pi_{1} \circ \Psi \circ \Phi: U \rightarrow A$ is a covering projection onto A. Let $\lambda \in(q, 1) \subset A$ be fixed. For $n \in \boldsymbol{Z}$, set $\xi_{n}=2 n \pi-i \log \lambda, \eta_{n}=\Psi^{-1}\left(\xi_{n}\right)$, and $\zeta_{n}=\Phi^{-1}\left(\eta_{n}\right)$. Since $\pi^{-1}(\lambda)=\left\{\zeta_{n} ; n \in \boldsymbol{Z}\right\}, \quad \zeta_{n}=\left(\eta_{n}-i\right) /\left(\eta_{n}+i\right)$, it follows from Myrberg's formula (Lemma 3.2) that

$$
P / K=\Pi_{n \neq 0}\left|\zeta_{n}-\zeta_{0}\right| /\left|1-\bar{\zeta}_{n} \zeta_{0}\right|=\Pi_{n \neq 0}\left|\eta_{n}-\eta_{0}\right| /\left|\bar{\eta}_{n}-\eta_{0}\right| .
$$

Using the number r given by (3.6) we see $\eta_{n}=r^{-2 n} e^{t \pi 2}$. Therefore, for every $t \in(0,1)$ we see

$$
\beta(t)=\Pi_{n=1}^{\infty}\left(1-r^{2 n}\right)^{2}\left|e^{2 t \pi \tau}-r^{2 n}\right|^{-2}
$$

For every n, it is easily seen that the function $R(t)=\left|e^{2 t \pi \imath}-r^{2 n}\right|$ is strictly increasing in the interval $[0,1 / 2]$. Therefore, the function β is strictly decreasing in $(0,1 / 2]$, and P / K takes the minimum

$$
\beta(1 / 2)=\Pi_{n=1}^{\infty}\left(1-r^{2 n}\right)^{2}\left(1+r^{2 n}\right)^{-2}=\vartheta_{r}(1) \vartheta_{r}(-1)
$$

at $\lambda \in A$ with $|\lambda|=\sqrt{q}$. Furthermore, it follows from formulas (3.2) and (3.3) that

$$
\begin{aligned}
\beta(1 / 2) & =2 q^{1 / 4}(-\log q) \pi^{-1} \Pi_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}\left(1-q^{2 n-1}\right)^{-2} \\
& =q^{1 / 4}(-\log q) \pi^{-1} \vartheta_{q}(1) \vartheta_{q}(q) .
\end{aligned}
$$

This gives the first expression in (3.5) for the value $\beta(1 / 2)$. Thus, the proof of Proposition 3.4 is completed.

Remark 3.5. We make some comments on the relation (3.5). First, we assume $q=r$, i.e., $q=e^{-\pi}$. Then, the relation (3.5) implies that the number $q=e^{-\pi}$ satisfies the equation $\vartheta_{q}(q) q^{1 / 4}=\vartheta_{q}(-1)$, that is,

$$
2 \sum_{n=1}^{\infty} \exp \left(-\pi(n-1 / 2)^{2}\right)=1+2 \sum_{n=1}^{\infty}(-1)^{n} \exp \left(-\pi n^{2}\right)
$$

or

$$
e^{\pi / 8}=\sqrt{2} \prod_{n=1}^{\infty}\left(1+e^{-n \pi}+e^{-2 n \pi}+e^{-3 n \pi}\right) .
$$

On the other hand, since

$$
\beta(1 / 2)=\frac{2 q^{1 / 4}(-\log q)}{\pi(1-q)} \Pi_{n=1}^{\infty} \frac{\left(1+q+\cdots+q^{2 n-1}\right)^{2}}{\left(1+q+\cdots+q^{2 n-2}\right)\left(1+q+\cdots+q^{2 n}\right)},
$$

taking the limits as $q \rightarrow 1-0$ in both sides of (3.5), noting $r \rightarrow 0+$, we obtain Wallis' formula

$$
(2 / \pi) \prod_{n=1}^{\infty}(2 n)^{2} /(2 n-1)(2 n+1)=1 .
$$

Thus, the formula (3.5) can be seen as an extension of Wallis' formula.

References

[1] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan, 38 (1986), 627-647.
[2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-41.
[3] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strictly pseudoconvex domains in \boldsymbol{C}^{n} with smooth boundary, Trans. Amer. Math. Soc., 207 (1985), 219-240.
[4] N. Kerzman and J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann., 257 (1981), 171-184.
[5] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240.
[6] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.
[7] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416.
[8] P.J. Myrberg, Über die Existenz der Greenschen Functionen auf einer gegebenen Riemannschen Fläche, Acta Math., 61 (1933), 39-79.
[9] M. Nishihara, K. H. Shon and N. Sugawara, On pseudo-metrics and their indicatrices in balanced open subsets of a locally convex space, Math. Rep. Toyama Univ., 9 (1986), 109-136.
[10] R. Robinson, Analytic functions in circular rings, Duke Math. J., 10 (1943), 341-354.
[11] L. Sario and K. Oikawa, Capacity Functions, Springer, Berlin, 1969.
[12] R.R. Simha, The Carathéodory metric of the annulus, Proc. Amer. Math. Soc., 50 (1975), 162-166.
[13] N. Suita, Capacities and kernels on Riemann surfaces, Arch. Rational Mech. Anal., 46 (1972), 212-217.

[^0]: Received July 9, 1986

