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Introduction.

Let p be a prime number and F, be the prime field with p elements. Our
first main purpose of this paper is to calculate H"(SL,(F,), S(V)) where S(V) is
the symmetric algebra of a two dimentional vector space V over F,. The
cohomology group H"(SL.(F,), S¥V)) is obtained by Y.H. Rhie and G. Whaples
[11] under the condition t=1 and by M. Kuga, W. Parry and C.H. Sah [7]
under the condition ¢t<p—1, n=1, 2, p=5. We shall give the complete descrip-
tion of mentioned above without any condition in section 2 and 3 (Theorem 3
and 4).

Our second purpose is to determine the Hecke algebra actions on H™(SL.(F,),
S(V)) (Theorem 5) and determine H™(GL.(F,), S(V)) (Theorem 6) in section 4.
These results are also extentions of [7].

The Hecke algebra actions on a cohomology group are defined by Y. H. Rhie
and G. Whaples [11] and a brief account on these properties are found in [7]
and [4] by E. Cline, B. Parshall and L. Scott. We summarize their results for
completeness in section 1.

Furthermore we consider cohomologies with coefficients attached to one-
dimensional representations of GL,(F,) in section 5.

In section 6, we determine the Hecke algebra actions on H*(B), by the
Weyl group S; of GL4(F,) where B is a Borel subgroup of GL,(F,).

The author wishes to express his gratitute to Professors T. Nakamura, K.
Shibata and N. Yagita for their helpful suggestions.

§1. Preliminaries.

In this section, we collect some of the basic definitions and results on homo-
logical algebra [2], [3], [9] and Hecke algebra [4], [7], [111.

1.1. Conjugate homomorphisms
Let G and G’ be finite groups and f: G’—G be a homomorphism. When
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COHOMOLOGY OF SLy(Fp) 441
A is a G-module, we can regard A as a G’-module by
g'-a=f(g")a for g’'eG, aeA.

We use Eilenberg-MacLane cohomology group and recall a basic fact [2, 31.1,
31.2].

LEMMA 1. Let {C, 0;} and {C;, 0;} be a free resolution of G and G’ respec-
tably. Then there is a chain map {¢;}: {C;, 0;}—{C,, 0;} such that ¢,(g’c")=
Fghuc’) for i-chain ¢’C; and g’€G’. Furthermore let {¢;} and {¢i} be any
two chain map induced by f. In case f is injective, we have a chain homotopy
{0:}: {Cl}—={Coui}. d.e.

ai+1¢z_@z—1ai:¢z—¢é for >0
and
a1@0:¢0‘-¢6-

We consider pairs (G, A) where G is a finite group and A is a G-module.
We say (f, 8): (G, A)—(G’, A’) is a morphism if f: G’—>G is injective and
6: A—A’ is a homomorphism such that 8(g’-a)=g’6(a) for g’ G’ and a<A.
Given such a morphism (f, 6), we can define the homomorphism

(f, )% HXG, A) — H*G', A')

as follows. Take an n-cochain teHomg(C,, A) and put (f, §)t=ft¢,, where ¢,
is a chain map induced by f. From Lemma 1, we see that (f, 6)* is well

defined.
We restrict our attention to the following case. Let H be a subgroup of

G. Then we define an adjoint homomorphism ad,: H—H?¢ by ad,(h)=ghg™*
and Hé¢=gHg™'. We also denote by ad,-: an n-th chain map induced by ad,-::
Hé—H. When we define §: A—>A by 6(a)=ga and f: H!®—H by f=ad,-,
we have for h'eH®

O(h'-a)=0(adz-1(h")a)=gad,-(h")a=h'ga=h"0(a).

Therefore (ad,-1, 6): (H, A)—(H#, A) is a morphism and it induces the homo-

morphism
(adg-1, 6)*: H*(H, A) —> H*(H?, A).

According to [3], we will denote (ad,-1, 8)* by c¢, hereafter. We call it the
conjugate homomorphism associated with ad,-1.

LEMMA 2. (1) Let {C,, 0;} be a free resolution of G, that s also a free
resolution of H and H8. Then conjugate homomorphism cg 15 given by c t=gtg™*
for n-cocharn teHomg(C,, A).

(2) [9]. In terms of the homogeneous resolution, we have

(cgt)hg, =, hp)=gtladg-1h, -+, adg-1h})  for hjeHE.
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Proof. For ceC, and h’'eH®, we have g~*(h’c)=ad,-1(h’)g~'c. Therefore
we can take ad,-i(c)=g !¢ for a chain map induced by ad,-i:. The results follow
from the definition of the conjugate homomorphism. g.e.d.

Remark 1. In [2], [3], the part (1) of the lemma above shows that our
definition of ¢, agrees with that of [2], [3].

We determine a chain map of the standard resolution of a cyclic group
induced by an adjoint homomorphism. Recall that the standard resolution of a
cyclic group C of order n generated by x is given by

C;=Z[Cle, and 0:(es)=Ney -1, 0gr1(ea0e1)=Tey,,

where we put T=x—1 and N=14x+ --- +x""!, and the augmentation ¢: Cy—
Z is e(x*e,)=1.

PROPOSITION 1. Let C be a cyclic subgroup of G of order n with generator
x. Ng(C) denotes the normalizer of C. Let an element g of Ne(C) act as adg-1(x)
=x?, (a, n)=1. Then a chain map ad,-1 on the standard resolution of C is given by

adg-1(x7¢y,)=a'ad z-1(x%)e,,
and
adg-1(x7es4)=a" 2 x%adg-1(x)esi41.
0sasa-1

Proof. Since we see that ad,-i(x’e,)=ad,-1(x")ad,-1(e;), it is enough to

check that {ad,-1} commute with the boundary maps. First ad,-1 commutes
with the augmentation. For n=27, />0, we have

ad g-1(Bsen))= 2 ad y-(xesy)

n=l . acl ) a-1n-1
=3 a3 x%adg-(x7)ep-1=a Y 2 x%ey, -y
=0 a=0 a=0 7=0
=a'Neg,-,=05:(ad ;-1(ez,)).
For n=2{+1, we have
adg‘l(azz+1(ezi+l))=adg-l(xezi—em)
=a'(adg-1(x)es;—es)=0a"(x"ex;—es,)
a-1 a-1
=a’(x—l)(a2o xaen) =05141 (al QZ_DO xaQZI‘Fl)

=05.+1(ad g-1(e3.41)) . qg.e.d.

1.2. The Hecke algebra.
In the following paragraphes, we recall the basic properties of the Hecke
algebra defined in [4], [7], [11]. Let H be a subgroup of G. We consider the
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free Z-module H\G/H generated by the elements TI%I—IHGH where G=1LHaH

and HaH means EHE s When we regard H\G/H as a submodule of the Q-
S a

group ring Q[G], H\G/H has a natural ring structure induced from Q[G] and
so is called the Hecke algebra with respect to G and H. We denote by |¢ and
| # the corestriction map

Cor: HYH, A) —> H™(G, A)
and the restriction map

Res: HY(G, A) —> H™(H, A)
defined in [2], [3].

We define the right actions of the Hecke algebra H\G/H on an element
preH™(H, A) by

(IHI HaH)—ca 1#]}10. nNH

Particularly, in the case of H<]G, we have

<IH| HaH) =Cq-1ft.

We can rewrite the stability theorem of Cartan-Eilenberg in term of the
Hecke algebra. Recall that an element pycH"™(H, A) is stable if p|gann=
Coltl anm for all a€G.

THEOREM 1. [3, Theorem 10, 1. Chap. XII]. Let H be a p-Sylow subgroup
of G. Then the restriction map H"(G, A)H™(H, A) 1s njective on the set of all
the stable elements.

We define the augmentation ¢ : H\G/H—Z by s([ il HaH) [H: H*'NH].
We call an element g H*(H, A) a fixed point for H\G/H when ,u(LHaH)

|H|
(IHI HaH) are satisfied for all a=G.

THEOREM 2. [4]. Let H be a p-Sylow subgroup of G. Then p is stable if
and only if p is a fixed point for H\G/H.

§2. The cohomology of U.

Let S(V)=t@' S{V) be the symmetric algebra of a two-dimensional vector

space V over F, and SYV) be the homogeneous part of degree ¢. Hereafter we
fix a basis of V and identify S(V) with the polynomial algebra F,[x;, x.]. We
define the action of SL,(F,) on V by (Ax,, Ax,)=(x,, x5)A for A€SLy(F;) and
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extend this action on S(V) as a ring homomorphism. L et U be the cyclic subgroup
of SL,(F,) which consists of the upper triangular matrices with diagonals one.

PROPOSITION 2.
(1) HYU, S(V)=F,[x, v] where v=1€IiI (xo+A%xy).
V4

(2) The multiplication by v induces the isomorphism

H™U, S{V)=H“U, S*?(V))  for n>0.

1)2_2pr]1 lf n=21, >0

p-1 7=0

3) H"(U, @S‘(V))g
t=0 p-2

Z%prfz of n=2+1.

2

Proof. (1) It is easy to see that v=II(x,+2Ax;) is invariant under the
action of U and so S(V)U contains F,[x;, v]. Let FES(V) be invariant. Then
we can suppose that x;, does not devide F and that F does not contain the
monomial x* Regard F as a polynomial with one variable x,, and we can write

F=vL+R, deg,,(R)<p and L, ReS(V).

Since R is invariant and is devided by x,, R must be devided by v. Therefore
R must be zero. Repeating this argument, F is shown to be a power of v.
This implies that S(V)V is exactly the polynomial ring F,[x,, v].

@), 3) We put yz[(l) }] and N:”g‘;"ya T=y—1 in the group ring Z[U].

We consider N or T as a homomorphism on S(V) and set N(S(V))=Im N, yS(V)
=Ker N and T(S(V))=ImT, S(V)V =Ker T respectively. From the standard
resolution, we have

S(WVYY/NSWV))  if n=2,i>0
H™(U, S(V)>={

¥SW)/T(S(V)) if n=2/41.

From (1), we can write fS(V) in the form f(x,, xg)spillgj(xl, v)xh+h(x,, v).
=

Since MN(g,x%)=g;N(x%) and N(h)=0, we only need to calculate N(x%), 1=<;<p

—1. Then we calculate N(x%)= 3 (x;+Ax)= 3 (J) > AFxkxi R and
0sAsp-1 0 k

sksj 0sisp-1
use the formulas

k—

{ 0 if k%0 mod(p—1)

0sisp-1 —1 if £=0 mod(p—1).
We have
. 0 if 1=7=p—2
N(sz):
_xZ;—l if ]:]')-—1

Therefore we obtain N(S(V)=x2-1S(V)¥ and yS(V)= "3 x,S(V ).
J

=0
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Similarly we obtain T(S(V))=x,(S(V)V). The results are immediate.
q.e.d.

Remark 3. The invariant algebras of S(V)V is well known. See [13].

§3. The cohomology of SL.(F,).

Let B the subgroup of SL,(Fp) which is generated by the matrices (a,;
1=4, j=2 with a,,=0 and M be a F,[SL,(F,)]-module.

LEMMA 4. The inclusion map from B to SL.(F,) induces an isomorphism
H*(SLy(Fp), M)~H™B, M) for n>0.

Proof. Since B contains a p-Sylow subgroup U, the induced map is injective
from Theorem 1. We have the decomposition: SL,(F,)=Bl1LBwB, where w is

[(1) _01] Then we see BNwBw=T, where T is the group of the diagonal

matrices in SL,(F,). Since p does not devide the order of T, we have H"(T, M)

=0 for n>0. Therefore the Hecke algebra acts on pcH™(B, M) trivially, 7. e.

”(Ttl?TBwB) =0. From Theorem 2, any element of H™*(B, M) is stable.
q.e.d.

LEMMA 5. The inclusion map from U to B induces an isomorphism H™(B, M)
~H"U, M)®.

Proof. Since U is the mormal p-Sylow subgroup of B, the stable elements
of H*(U, M) are just the fixed parts for B. q.e.d.

THEOREM 3. HYSLy(F,), S(V)=F,[xv, x3+v]

and
H™SLy(F,), S(V)=H™U, SV))  for n>0.

THEOREM 4. Let p be an odd prime. Then we have

(1) HYSLy(Fp), SV)=Fy[x, x?@-D4pP-1],

(2) H™SLy(F,), S(V)) has the p-period p—1 within the positive degrees with
respect to the homological degree n.

(3) The multiplication (xB+v)?~! induces the isomorphism

H™SLy(Fp), SUV)=H™SLy(Fp), St*2@-D)  for n>0.
@) H™SLy(Fp), & SYV))

0st<p(p-1)
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p—1

P Fpxi*®v® @ Fpxiv? -2+ if n=2, 0<i<
0ss<D-1-21 0s3<22 2 p—3
=4 P Fpxjyp-3-2-s &) Fpxgp?p-t-2v=s 4f n=2{4+1, 0=i=
0SsSP-3-21 P-3-21<ssp-2 2
D Fp(xw), if n=p—1.
0553 P-2

To prove the theorems, we prepare a lemma.

LEMMA 6. If we put tz[é 20_1], A€ F3, the action by ¢, on H™U, S(V)) is

given by

1) c(xfwsey=2"2s1-s2xdnse of n=27,1>0
and

(2) c(xfwsR)=2"2CD-n-sexfipse f p=2{+1,

where we identify x$1xi2eS(V) with a cochain of Homy(Z[UJe,, S(V)) under the
correspondence 0 : S(V)Homy(Z[UJe,, S(V)) given by

O(xi1x82)(eqn)=xi1x32.

Proof. (1) From Proposition 1, the action by ¢, induced by ad;-: on the
cochain group is

) colxrxir)=t(xix$)(ad;-1(e;))

=((tx1)*1(tx,)*2)(ad,-1(es,))

=((tx,)*1(tx5)*2(2 " ey,)

=ATErtegiixie(es,).
Reducing to the cohomology Hever(U, S(V)), we have

¢ (x§wse)=2"21s1-82 8182
(2) We take y=[(]3 ﬂ for a generator of U. Then we note that a cochain

x§1, x$2eHomy(Z[U]eyi41, S(V)) has the following property :

xi(yesir1)=(¥x1)*(€2e41)=x1(€2041)
and
x3(Yerir1)=(¥x1)%(C2s01) =%5(€s041)— (¥ — 1) x§(€5,41)
=x5(ez+1) mod coboundaries.
This implies
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() (colxiag))(esr)=t(x1x3)(ad-1(e2041))

=((tx)*1(tx)2(ad -1(ez041))

A72-1
=g (10 3 o)

A-2-1
=R DINCENE G D e
=
= A2+ +s1-82( 81 x82)(g,,,,) mod coboundaries.
Reducing to the cohomology, we obtain
c(x382) =2 2D -s1-Sa x S1p)%2 g.e.d.

Remark 3. Y.H. Rhie and G. Whaples have proved this lemma in the case
of s;=1 and s,=0.

Proof of the theorem.

The 0-dimensional cohomology is the subring of S(V) which is invariant by
SLy(Fp). The generators of this ring are determined by Dickson [5]. In the
case of SL,(F,), we note that B=U in SL,(F,). From Lemma 4 and 5, we have
the isomorphism

H™SLy(Fy), SV)=H™U, S(V))  for n>0.

Let p be an odd prime. From Lemma 4 and 5, it is enough to determine
the elements of H™(U, S(V)) invariant under the actions by the diagonal matrices.
These explicit formulas are given in Lemma 6. Immediately we find that the
p-period is p—1.

If x$w2e H*(U, S(V)) is invariant under B, the relations between s; and s,

are —2i+5;—5,=0 mod(p—1) and 0=s5,=<p—2, O§32,0<z'<p—_L. We solve

2
this congruence equation. And the solutions are
{ §$;=5+21, 0<s<p—1—2

s;=s mod (p—1), s,>0
and
{ s;=s, 0=5s<2¢

S;=p—1—2¢ mod(p—1), s,=0.
We can do the same arguments on H™(U, S(V)) and H?-Y(U, S(V)). g.e.d.

Remark 4. In [10], R.G. Swan shows that the p-period of cohomology
group whose p-Sylow subgroup is cyclic is given by 2|Ng(U)|/|Ce(U)|. Then
Theorem 4, (2) is straightforward.
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§4. The Hecke algebra actions and the cohomology of GL,(F)).

In this secition, we suppose that p is an odd prime. We denote SL,(F)),
GLy(F,) by I', T’ ~respectibly. We define two distinct /-actions on S(V). The
one, p= Ggopm of I'on S(V)= @OS"‘(V), is defined by ; (0.(A)x,, p1(A)x2)=(x1, x5)A

for A=l and on(A)f(x1, x)=f(p:(A)x1, p:(A)x,). The other, p*= E?Dpﬁl, is

defined as p%(g)=det(g) ™pn(g). H™TI, p)(resp. H¥I’ p*)) denote the coho-
mology with the coefficient S(V) throggh the action p (resp. p*). .
Since I' is a normal subgroup of I, we can write 'al'=I'a=al and I'\I'/T"

={Ze.lal': a=[(‘)’ (1)] acF}, a,e2Z} =Z[F;]. From Lemma 3, the Hecke
algebra action by I'\I/I' on peH™I, pn) (resp. H™I, p*)) is given by
y(l—ll,l-['af)=ca_1p<resp. ,u(l—ll.,—lfaf') =det(a)’"ca-1y), taking account of the
asterisque in the proof of Lemma 6. By definition, we see that p|I” and p*|[
and so H¥(I', p)=H*(I, p*). But, as the next theorem shows, the correspond-

ing Hecke algebra actions are not equivalent.

THEOREM 5. The Hecke algebra actions I'\I'/T" on H™(I", p) (resp. H™®(I', p*))
are as follows: 1
) If n=2i+1, —=Tal’ is a scalar multiplication by det(a)**' (resp.

8 ||
det (a)-+*1).
@ If n=k(p—1)+2, 0<i< p;l . we have

(x§+zzvs)(|_l£l_FaF>=(_1)kdet(a>—(s+i)xi+zzvs

(resp. (—1)%det (a)"**xi+2°)

and
1
||

Tal')=(~1)*det (@)'~*xp?- -4+

(resp. (—1)*det(a)s~1xfpP-1-21+s),

(vap—1—2z+3)<

(3) If n=k(p—1) and k>0, we have

(xw)‘*(ﬁ[’al’) —=(—1)*det (a)~*(x,0)*

(resp. (—1)*det(a)*(x)?).

Proof. We prove in the case of the coefficient p*. Since p/ (I’ '] and
I' acts trivially on H™(I, p*), it is sufficient to consider the action of A=

{[g (1)]‘ aEFZ} on H™U, S(V)).
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From Proposition 1 and the remark preceding Theorem 5, we obtain

((xtrom)(pr Tal) s =det(@ys=sco mativ®ea)

=det (a)"***2(a™'x ) (av)*2(det (a)*e;,)

=det (a) 2" (x{1*2)(ez)

and
(i Tl Yewsn =det (@)1 75(c o 30" s,
|1
det(a)-1
:det(cv)sl“z(ac'‘xz)sl(a‘lv)sz(clet(a)1 20 y’ezm)
=

=det (a)*152+*+}(x$11°2)(e,,+,) mod coboundaries.

Then the theorem follows from Theorems 3 and 4. q.e.d.

Remark 5. M. Kuga, W. Parry and C.H. Sah [7, Theorem 1.5.4] have
shown the theorem in the case of n=1, 2 and t=<p—1.
We can calculate the cohomotogy of GL,(F,) with coefficients p and p*.

THEOREM 6.

(1) HYT, p)=F,[(x,)?, x82-D+4y?-1] and HYT, p¥)=HI", S(V))=
Fp[xlv, x’{‘p'”—l—v"“lj.

2) H™T, p)=H™T, p*) for n>0.

(3) H™I 0) has the p-period 2(p—1) within the positive degrees.

(4) The multiplication by x8P=-P4v?-! induces the isomorphism

H™T, S(V)=H™I, S*?@-2(V)  for n>0.
G) HYI, &  pn)

0sm<Pp(p-1)
Fpxw?-1-2 if n=21, 0<2<p—1
0 of n=2+1, n#2p—3
| F® @ Fpxrtt if n=2p—3
1Ss5p-2
P Fp(xv) of n=20p—1).
0sssp-2

Proof. From Theorem 1, we have H~T 0)=H™T, p)*. For example in
p—1
2
under the action p satisfy the conditions by Theorems 4 and 5.

the case of n=Fk(p—1)+27, 0<i< , the invariant elements of H*(I", S(V))

1) xirti=(—1)*det(a)-+V xi*2ws for any acA, 0=s<p—1—2

and
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(2) xfpP-t-nts=(—1)k det (a) " SxjpP-1-2+s for any acA, 05s<2:.

We can determine the values s from the above equations and obtain the solu-

tions from (1) and (2): If 2=1 mod(2), s= p—;l —z¢ and, if £=0 mod(2), s=:

respectively. Therefore we have shown that

HYE, @ pw=Fpxw? it if n=2,0<i< p—1
0sm<P(P-1) 2
We can prove the others similarly. q.e.d.

§5. The cohomology of one-dimensional representations.

In section 4, we determined the cohomology of the polynomial representa-
tion of I'. Here we consider the cohomology derived from one-dimensional
representations, and use the some notations as in section 4.

Let M and M’ be I*module. Then we define MM’ as follows.

M®M’;M(§)M’ as an abelian group
and the left I*action is defined by
a(m,Q@mz)=0a(m)Qa(ms).
If M and M’ are as above, we have a pairing called the cup product
H?(F, My@HXT, M") — H*«(I, MQM).

We consider one-dimensional representations ¢*: f—»F; where ¢*(g)=det (g)*
We regard Z/pZ as a I'module Z/pZ(;) through ¢*. Then we have isomor-
phisms
Z|pZO)=Z/pZ(xtv")

ZIPZOQZ/pZ()=Z/pZ(i+]))
and
Z/pZG+p—1=Z/pZ().

PROPOSITION 3. (Aguadé [11). HXI, Z/pZ)=Z[u:1@Awy), |u|=p—1,
lvil=p—2 and H¥I', Z/pZ)=Z | pZ[u,1QA(,), |us| =2(p—1), |v2|=2p—3.

Proof. We only show the cohomology of I'. Use the split exact sequence
00— Fp—>S(V) — S(V)* — 0

and we have H*I', SV)=H*(I", Z/pZ)DH*(I", S(V)*). From Theorem 4, we
have an additive isomorphism

HXI, Z/pZ)=Z /pZ[u]Q A(vy), |lu;|=p—1 and |v,|=p—2.
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Since *: H™I', Z/pZ)-H™U, Z/pZ) is injective and H*(U, Z)=F,[x]1RQA(y),
|x|=2 and |y|=1, as a ring isomorphism, we can choose u,(resp. v,) S0 as to

satisfy *(u,)=x?""*(resp. 1*(vy)=x7"%2y). qg.e.d.
THEOREM 7. I
(1) H™I, Z/pZ@)=0, if z'asig— mod (p—1) and =0 mod (p—1), and

H(T, Z/pZ(J);*l»;{ Z/pZ if n=p=2 or p—1 mod2(p—1)

0 otherwise.

@) If we put al(resp. B) for a generator of Hp'l(f, Z/pZ(—g—;—l—))

(resp. Hp‘z(f, Z/pZ(—p%l*)), the cup product of E]?H*(f, Z/pZ@) is givenTby
at=u,, af=v, and [*=0.

Proof. We have H*I", Z/pZ@)—H™I", Z/pZ ()", where T is the group
of the diagonal matrices. Because Z/pZ(i)=Z/pZ on U, non zero cohomology
groups can appear only when n=p—2 or p—1 mod 2(p—1). Then the conjugate
actions ¢;, t€T on a n-cochain y*v* are

c(ywh)=det (t)*~P-12 2,
We see that there is a non zero invariant space for the actions if and only if
i’gl mod 2(p—1).
(2) From [3, Chap. XII, 7], the restriction map

i=0 or /=

i*; @HXTI, Z/pZ) — GHXU, Z/p2)
preserves the cup products. Noticing that
PMu)=xP"1, *(v)=xP"%y
and

H@=xrr, H(B)=x "y,

we get the formulas of the Theorem. g.e.d.

§6. The Hecke algebra B\GL.(F,)/B actions.

In this section, we adapt the notations to those of [12] so as to simplify
the computations. Let U be a p-Sylow subgroup of GL,(F,) which is generated by

110 100 101
=0 1 0,b =0 1 1|, c=l0 1 0]
00 1 00 1 00 1
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THEOREM 8. [6], [8].
(1) If p=2, the algebra H*(U, Z) are generated by elements y,, ¥, e, v,
where |y,|=2, 1=:1=2, |e|=3 and |v|=4. The relations are submitted to the

relations
2y,=2y,=2e=4v=0 and ,y,=0, &=(y,+y.)v.

(2) If p is an odd prime, the algebra H*(U, Z)/+/ 0 are generated by ele-
ments Y1, Yz, bp-o, v where |y,|=2, 1=<i=2, |by-o| =2(p—1) and |v|=2p. The
relations are submitted to the relations

Py1=py:=pby.=pv=0 and b} ,=y3'y%?,
Vibp-2=3.357, ¥8y:=915%.
Next we recall some facts about the elements of H*(U, Z) which are in the

images by the correstriction map. If p is an odd prime, we have the ring
isomorphism

H(a, ¢, 2)=Z/pZ[y,, ulQA(B(x2))
for *>0, |y,|=|u|=2, |B(xz)|=3
and y,=f(x;), u=p(z), where x; and z are the dual elements of a and b with
the identification H'(<a, ¢, Z/pZ)=Hom(a, ¢), Z/pZ) and B is the mod p

Bockstein operation. If p=2, the above isomorphism is only additive. Let
7: <a, ¢y—U be the inclusion map and z, and 7* be the correstriction and the

restriction maps respectibly. Then we define

bo:Z|(u), lf p=2
and

by=i(u**') for 1=:=<p—3 and b,.=un(u?*)+y27* if p odd.
PROPOSITION 4. [In case of p=2, we have
by=y: and *u)=u+uy,, *(y)=y,, i*(e)=pF(xz).

Proof. The formulas above are proved in [6] except by,=y;. To prove
this, we apply the cor-res exact sequence of Lewis [8] to H=<a, ¢) and G=U.
Then we have

14 T UYs
00— H¥U, Z)—> T®*— H¥U, Z)— H*(U, Z)
and
y2i €
0 —> H¥a, ¢, Z)@y—> T*—> H%a, ¢, Z)®» —0
where e-p=Res and z.p=Cor. We see that H*(a, ¢), Z)ww=2/2Zu and

H%<a, ¢y, Z)®=Z/2ZB(xz). From the cohomology of U and Res(e)=p(xz2),
we see that 7,(u) is ;. g.e.d.
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THEOREM 8. [8]. Let p be an odd prime. Then the elements b; defined
above are non-zero and they are submitted to the relations in H¥U, Z)

¥:b,=0, if 1=i=2, 1=;=p-—3
and

yibp-z=y1y’}‘l, 1#7, b%-z=y€"y€“1.
Furthermore we have

*)=uP—uy®?! and *(y,)=7:.

PROPOSITION 5. Let n=kp+r, 0=r<p be a positive integer. Then we have

n= 3 (F)urie i, so=p.

1=0 \ 7

Proof, We write u™*? as u™(u?—uyg-!)4+u"*'y2-!, From the formulas
i(a-1*(b))=a-b and 7:*(a)=pa, we have

n(u™*P)=vi(u™)+ y2- 1 (u" ).
Repeating this argument, we obtain the proposition. q.e.d.
COROLLARY 1. #(uP®-D)=ppP-14 yP-D2yB-1_y2(>-1

Proof. Since (p Z.—l>_=_(—1)l mod p, it is immediate from the proposition.
THEOREM 9. [12].
(1) In the case of p=2, we have

H*(B, Z)(Z):H*(U; Z)(Z)-

(2) If p s an odd prime, the cohomology ring H*(B, Z)»/+/ 0 are isomor-
phic to the subalgebra of H¥(U, Z)p/A/ 0 which is generated by

L oy L vP by, and  (.y.)wP Y 1=i<p—1.

Since GLy(Fy)= 1L BuB, we have B\GLi(Fy)/B=Z [I—;TBwB]. We can
wES3

identify BwB with weS,.

THEOREM 10. The Hecke algebra actions on the generators of H*(B, Z) /0
are written as in the following tables.
(1) In the case of p=2,
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S| (12) | (@3 | the others
Y1 0 Y1 0
Ve Ve 0 0
e 0 0 0
v 2v 2v 0

(2) In the case of an odd prime P,

N (12) (23) the others
y5! 0 bp-2—y§! 0
57 bp-1—y37" 0 0
VP! YBP D —yplyP-DE | yRPh—y@-viyp 0
the others 0 0 0

Proof. We prove the theorem for w=(23) and v?'eH*(B, Z). It is
sufficient to consider the Hecke algebra actions on H*(U, Z) instead of H*(B, Z) ).
So we have

vz’“(‘ lél BwB) =1%o (VP 1)) =4, (*0P 1))

=i( II (31— 2P )=i(y§ PP+ 1l (u—2p,)? ' —u??-D)
1eF,
=Z'|(Z'*y1{(1’—l)_I_Z'*vp‘l_up(P—l))
= prPTi—pyPityR P —y Pobiypt
=yB@P-1__yp-DEyp-1 qg.e.d.

Remark 6. This shows that the Hecke algebra B\GL,(F,)/B does not act
as a scalar multiplication different from [7] and [11]. It seems to be occured
in the action of the Hecke algebra B\GL,(F,)/B on H*(B) generally. In the
sence, the tables would give us a non trivial example of a theorem [4].
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