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Introduction.

Let p be a prime number and Fp be the prime field with p elements. Our
first main purpose of this paper is to calculate Hn(SL2(Fp), S(V)) where S(V) is
the symmetric algebra of a two dimentional vector space V over Fp. The
cohomology group Hn(SL2(Fp), Sι(V)) is obtained by Y. H. Rhie and G. Whaples
[11] under the condition t—l and by M. Kuga, W. Parry and C. H. Sah [7]
under the condition t^p—1, n—1, 2, p^5. We shall give the complete descrip-
tion of mentioned above without any condition in section 2 and 3 (Theorem 3
and 4).

Our second purpose is to determine the Hecke algebra actions on Hn(SL2(Fp),
S(V)) (Theorem 5) and determine Hn(GL2(Fp), S(V)) (Theorem 6) in section 4.
These results are also extentions of [7].

The Hecke algebra actions on a cohomology group are defined by Y. H. Rhie
and G. Whaples [11] and a brief account on these properties are found in [7]
and [4] by E. Cline, B. Parshall and L. Scott. We summarize their results for
completeness in section 1.

Furthermore we consider cohomologies with coefficients attached to one-
dimensional representations of GL2(FP) in section 5.

In section 6, we determine the Hecke algebra actions on H*(B)(p) by the
Weyl group Ss of GLS(FP) where B is a Borel subgroup of GL3(FP).

The author wishes to express his gratitute to Professors T. Nakamura, K.
Shibata and N. Yagita for their helpful suggestions.

§ 1. Preliminaries.

In this section, we collect some of the basic definitions and results on homo-
logical algebra [2], [3], [9] and Hecke algebra [4], [7], [11].

1.1. Conjugate homomorphisms
Let G and Gf be finite groups and / : G'-^G be a homomorphism. When
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A is a G-module, we can regard A as a G '-module by

gf-a=f(g')a for g'(=G,ae=A.

We use Eilenberg-MacLane cohomology group and recall a basic fact [2, 31.1,
31.2].

LEMMA 1. Let {Clf 3J and {Q, 3*} be a free resolution of G and G/ respec-
tably. Then there is a chain map {φj : {C't, dl}-+{Clf dt} such that φi{g'c')=
f(g')φάc') for i-chain c'<^Cί and g'&G'. Furthermore let {φt} and {φί} be any
two chain map induced by f. In case f is injective, we have a chain homotopy
{Φt}: {Cί}->{Cι+1}. i.e.

dί+1Φι-Φt-1dί=φt-φί for i>0
and

d1Φo=Φo-Φί.

We consider pairs (G, A) where G is a finite group and A is a G-module.
We say (/, θ): (G, A)-*(G', Af) is a morphism if / : Gf->G is injective and
θ: A-*Af is a homomorphism such that θ(g/ a)=g'θ(a) for g''GG' and G G A
Given such a morphism (/, θ), we can define the homomorphism

(/, θ)*: H*(G, A) — > H*(Gf, Af)

as follows. Take an n-cochain t^HomG(Cn, A) and put (/, θ)t—ftφl9 where φx

is a chain map induced by /. From Lemma 1, we see that (/, β)* is well
defined.

We restrict our attention to the following case. Let H be a subgroup of
G. Then we define an adjoint homomorphism adg: H—>Hg by adg{h)—ghg~λ

and Hg—gHg~1. We also denote by adg-i an n-th chain map induced by adg-i:
Hg-^H. When we define θ: A->A by θ(a)=ga and / : Hg->H by f=adg-i,
we have for h'(=H8

Therefore (adg-i, θ): (H, A)->(Hg, A) is a morphism and it induces the homo-
morphism

(adβ-i, θ)* : H*(H, A) — > H*(H<, A).

According to [3], we will denote {adg-i, θ)* by cg hereafter. We call it the
conjugate homomorphism associated with adg-i.

LEMMA 2. (1) Let {Cτ, 3J be a free resolution of G} that is also a free
resolution of H and Hg. Then conjugate homomorphism cg is given by cgt—gtg~λ

for n-cochain t^HomG(Cn, A).
(2) [9], In terms of the homogeneous resolution, we have

{cgt){K, .» , h'n)=gt(adg-iK, .- , adg-ih'n) for h'x^Hg.
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Proof. For c e C n and h'(=H8, we have g-1(h/c)=adg-i(h/)g~1c. Therefore
we can take adg-i(c)=g'1c for a chain map induced by adg-u The results follow
from the definition of the conjugate homomorphism. q. e. d.

Remark 1. In [2], [3], the part (1) of the lemma above shows that our
definition of cg agrees with that of [2], [3].

We determine a chain map of the standard resolution of a cyclic group
induced by an adjoint homomorphism. Recall that the standard resolution of a
cyclic group C of order n generated by x is given by

Ci=Z{_C]eτ and d2i(e2t)=Ne2ι.lf d2ι+1(e2ι+1)=Te2t,

where we put T = x—1 and N=l+x + —\-x n ~\ and the augmentation ε: Co->
Z is ε(xιe0) = L

PROPOSITION 1. Let C be a cyclic subgroup of G of order n with generator
x. NG(C) denotes the normalizer of C. Let an element g of NG(C) act as adg-ι{x)
— xa, (α, n) = l. Then a chain map adg-i on the standard resolution of C is given by

adg-i{x3eZι)—aιadg-ι(xj)e2ι

and
adg-i(xJe2ι+1)=at Σ xaadg-i(xi)e2i+1.

Proof. Since we see that adg-i(xJeι)=adg-i(xi)adg-i(ei), it is enough to
check that {adg-i} commute with the boundary maps. First adg-i commutes
with the augmentation. For n=2i, i>0, we have

7 1 - 1

adg-i(d2i(e2ι))= Σ adg-i(xie2t-1)

= Σ 1 a'-1 *Σ x°adg-i(xj)e2t-1=a1-1 Σ Σ! x^e^
j=0 a=0 α=0 j=0

For n = 2 / + l , we have

adg-i(d2t+1(e2i+1))=adg-i(xe2i—e2t)

= a\adg-i(x)e2i-e2ι)=aι(xae2i-e.2ι)

= aKx-l)(Σ xa<?2r) =d2ι+1(aι "ff xae2ι+1)

=d2ι+1(adg-i(e2t+1)). q. e. d.

1.2. The Hecke algebra.
In the following paragraphes, we recall the basic properties of the Hecke

algebra defined in [4], [7], [11]. Let if be a subgroup of G. We consider the
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free Z-module H\G/H generated by the elements -γz-HaH, where G=MHaH
\Jti\

and HaH means Σ s. When we regard H\G/H as a submodule of the Q-

group ring QIG"], H\G/H has a natural ring structure induced from Q[G~] and
so is called the Hecke algebra with respect to G and H. We denote by | G and
\H the corestriction map

Cor: Hn(H, A) — > Hn(G, A)

and the restriction map

Res: Hn(G, A) — > Hn(H, A)

defined in [2], [3].
We define the right actions of the Hecke algebra H\G/H on an element

μ<=Hn(H, A) by

μ(j^HaH)=ca-ίμ\Ha-^H\H.

Particularly, in the case of H<\G, we have

We can rewrite the stability theorem of Cartan-Eilenberg in term of the
Hecke algebra. Recall that an element μ^Hn(H, A) is stable if μ\Har)H=z

caμ\Hac\H for all

THEOREM 1. [3, Theorem 10, 1. Chap. XII]. Let H be a p-Sylow subgroup
of G. Then the restriction map Hn(G, A)Hn(H, A) is injectiυe on the set of all
the stable elements.

We define the augmentation ε : H\G/H->Z by είj^r-HaH) = IH: Ha'1Γ\H'].
1 1 IWe call an element μ<ΞHn(H, A) a fixed point for H\G/H when μί^r

•j \ J Γ Z |

= e(-r^jrHaH) are satisfied for all a^G.
\\n\ /

THEOREM 2. [4]. Let H be a p-Sylow subgroup of G. Then μ is stable if
and only if μ is a fixed point for H\G/H.

§ 2. The cohomology of U.

Let S(V)=(&St(V) be the symmetric algebra of a two-dimensional vector

space V over Pp and Sι(V) be the homogeneous part of degree t. Hereafter we
ήx a basis of V and identify S(V) with the polynomial algebra Fv\_xu x2'\. We
define the action of SL2(FP) on V by (Axlf Ax2)=(xu x*)A for A^SL2(FP) and
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extend this action on S(V) as a ring homomorphism. L et U be the cyclic subgroup
of SL2(FP) which consists of the upper triangular matrices with diagonals one.

PROPOSITION 2.

(1) H\U, S(Y))^FPίxu v] where v= Π (xz+λxj.
λ(ΞFp

(2) The multiplication by v induces the isomorphism

Hn(U, SW^-H^U, St+p(V)) for n>0.

P-2

Σ Fpx\ if n=2/, i>0

(3) Hn(u, ^ S £ ( 7 ) ) s

Proof. (1) It is easy to see that i>=/7(#2+^Xi) is invariant under the
action of U and so S(V)U contains FPlxlt υ]. Let F^S(V) be invariant. Then
we can suppose that xλ does not devide F and that F does not contain the
monomial x\. Regard F a s a polynomial with one variable x2, and we can write

F=vL+R, άegX2(R)<p and L, Rz=S(V).

Since R is invariant and is devided by x2, R must be devided by v. Therefore
R must be zero. Repeating this argument, F is shown to be a power of v.
This implies that S(V)U is exactly the polynomial ring Fp\_xlf v~\.

(2), (3) We put y = \l ]] and N= *Σ y\ T=y-1 in the group ring Z[ί/] .
LU l j t=o

We consider Nor T as a homomorphism on S(V) and set N{S(V))—lmN, NS{V)
=KerΛΓ and T(S(V))=lmT, 5(7)^ = Ker T respectively. From the standard
resolution, we have

f S(V)U/N(S(V)) if n=2ι, i>0

{ NS(V)/T(S(V)) if n = 2 ι + l .

From (1), we can write / e S ( F ) in the form f(xlt x2)— Σ gj(xi, v)xJ

z+h(xlt v).

Since N(gjXj

2)=gjN(x{) and N(h)=0, we only need to calculate N(xJ

2), l^j^p

—1. Then we calculate N(x{)= Σ (xι+λxxy= Σ ( Ό Σ ^xfx;

2~* and

use the formulas
f 0 if km mod(ί-l)

Σ λfc=\
**1 [ - 1 if &ΞO m o d ( ί - l ) .

We have
0 if l^j^p-2

xr1 if /=/>-i.

Therefore we obtain M5(F))=%r1S(F)ί7 and ΛrS(y)=P
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Similarly we obtain T(S(V))=*i(S(V)ί7). The results are immediate.
q. e. d.

Remark 3. The invariant algebras of S(V)U is well known. See [13].

§3. The cohomology of SL2(FP).

Let B the subgroup of SL2(FP) which is generated by the matrices (atj)
^i, ; ^ 2 with a12=0 and M be a Fp[SL2(Fp)]-module.

LEMMA 4. The inclusion map from B to SL2(FP) induces an isomorphism
Hn(SL2(Fp), M)^Hn(B, M) for n>0.

Proof. Since B contains a />-Sylow subgroup U, the induced map is injective
from Theorem 1. We have the decomposition: SL2{Fp)—B]\_BwB, where w is

[Q ]η
. Then we see BΓ\wBw=T, where T is the group of the diagonal

matrices in SL2(FP). Since p does not devide the order of T, we have Hn(T, M)
= 0 for n>0. Therefore the Hecke algebra acts on μ<BHn(B, M) trivially, i.e.

μ(-~n-BwB)=ϋ. From Theorem 2, any element of Hn{B, M) is stable.

q. e. d.

LEMMA 5. The inclusion map from U to B induces an isomorphism Hn(B, M)
C^Hn(U, M)B.

Proof. Since U is the mormal ^-Sylow subgroup of B, the stable elements
of Hn(U, M) are just the fixed parts for B. q. e. d.

THEOREM 3. H\SL2{F2), SiW^F^x^, xl+v^

and
Hn(SL2(F2),S(V))=Hn(U,S(V)) for n>0.

THEOREM 4. Let p be an odd prime. Then we have
(1) H\SL2{Fp)y S(y))=FPίxlV, χP(p-«+ v p-i].
(2) Hn(SL2{Fp), S{V)) has the p-period p-1 within the positive degrees with

respect to the homological degree n.
(3) The multiplication {x^+vY'1 induces the isomorphism

Hn{SL2{Fp), Sm^H^SUFJ, S"*"-") for n>0.

(4) Hn(SL2(Fp), Θ S*(V))
0ύt<p(pl)
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0 Fpxl+Uvs 0 Fpxiv*-1-21*', if n=2ι, 0<ι
2 ? l 2 l 0SS<2l

0 Fpx
s

2v
p-*-2ι-s 0 Fpx^"4-21-5, ί/ n=2/+l, 0 ^ - ^ —

^S^p-3-21 p-3-2l<S^p-2 Z

0 Fp(x1v)9, if n=p-l.
O^Sύp-2

To prove the theorems, we prepare a lemma.

LEMMA 6. // we put t=\ 1, ^ e F J , the action by ct on Hn(U, S(V)) is

given by

(1) ct(xliv'*)=λ-*t+Ί'$*xiiv8*, if n=2i, i>0

and

(2) ct(xϊv9*)=λ-*ii+1)-'i-'*xiiv8*, if n=2i+l,

where we identify x^x^^SiV) with a cochain of UomuiZlU^en, S(V)) under the
correspondence θ: S(V)2${omu(Z[lJ~\en, S(V)) given by

Proof. (1) From Proposition 1, the action by ct induced by adt-i on the
cochain group is

Reducing to the cohomology Heven(U, S(V)), we have

(2) We take 3̂  = L for a generator of U. Then we note that a cochain

ΛΓJ1, zf2eHom [ ί(Z[ί/]β2 ί + 1, S(F)) has the following property:

and

= X2(e2ι+1) mod coboundaries.

This implies
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Σ,

«2(Λ;{iΛ:|2)(egι+1) mod coboundaries.

Reducing to the cohomology, we obtain

2)=λ-2(ί+1)-si-s*xs

2iv
sK q. e. d.

Remark 3. Y. H. Rhie and G. Whaples have proved this lemma in the case
of Si=l and s 2=0.

Proof of the theorem.
The O-dimensional cohomology is the subring of S(V) which is invariant by

SL2(FP). The generators of this ring are determined by Dickson [5]. In the
case of SL2(P2), we note that B—U in SL2(F2). From Lemma 4 and 5, we have
the isomorphism

Hn(SL2(F2), S(V))^Hn(U, S(V)) for n>0.

Let p be an odd prime. From Lemma 4 and 5, it is enough to determine
the elements of Hn(U, S(V)) invariant under the actions by the diagonal matrices.
These explicit formulas are given in Lemma 6. Immediately we find that the
^-period is p—1.

If x\1vS2^H2ι(JJ) S(V)) is invariant under B, the relations between ^ and s2

are —2i+s1-s2=0 moά(p-l) and O^s^p—2, 0^s2, 0<*'< P~Z . We solve
this congruence equation. And the solutions are

s1=s+2i, 0^s<p-l-2i

s2=s mod (p—1), s2>0
and

s2=/>—1—2*' moά(p-l), s 2 ^0.

We can do the same arguments on Hn(U, S(V)) and Hp-\U, S(V)). q. e. d.

Remark 4. In [10], R. G. Swan shows that the /^-period of cohomology
group whose £-Sylow subgroup is cyclic is given by 2\NG(U)\/\CG(U)\. Then
Theorem 4, (2) is straightforward.
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§4. The Hecke algebra actions and the cohomology of GL2(FP).

In this secition, we suppose that p is an odd prime. We denote SL2(FP),
GL2(FP) by Γ, Γ respectibly. We define two distinct f-actions on S(V). The
one, P=®Qpm of f on S(V)=(&Sm(V), is defined by;(p1(A)x1, p1(A)xt)=(xlf x2)A

for AeίΓ and pm(A)f(xu x2)=f(p1(A)x1, p1(A)x2). The other, p*=(Bp%, is

defined as ρ%,(g)=άet(g)-mρm(g). Hn(Γ, p) (resp. Hn(Γ, p*)) denote the coho-
mology with the coefficient S(V) through the action p (resp. p*).

Since Γ is a normal subgroup of ft we can write ΓaΓ—Γa—aΓ and Γ\Γ/Γ

= \ΣaaΓaΓ: a=\? Jl a^Fx

p, aa^Z^=Z{F^\ From Lemma 3, the Hecke

algebra action by Γ\Γ/Γ on μtΞHn(Γ, pm) (resp. Hn(Γ, p*)) is given by

, taking account of the

asterisque in the proof of Lemma 6. By definition, we see that ρ\Γ and p*\Γ
and so H*(Γ, p)=H*{Γ, p*). But, as the next theorem shows, the correspond-
ing Hecke algebra actions are not equivalent.

THEOREM 5. The Hecke algebra actions Γ\Γ/Γ on Hn(Γ, p) (resp. Hn(Γ, p*))

are as follows:

(1) // n=2* + l, γp-ΓaΓ is a scalar multiplication by det(α)1 + 1 (resp.

" ι + 1 ) .

(2) // n = k(p-l)+2i, 0<i< P~ , we have
Δ

and

l+2W)(τj^ΓaΓ^=(-l)k άet(a)-(s+i) xl+2ιvs

(resp. (-l)kάet(a)s+ιxl+2ιvs)

(resp. (-l)k det(a

(3) // n = k(p—l) and k>0, we have

(resp. (-l)kάet(a)s(x1v)s).

Proof. We prove in the case of the coefficient p*. Since p X [Γ, Γ~\ and
Γ acts trivially on Hn(Γ, p*), it is sufficient to consider the action of Δ=

{[o i ] : aEΞF*>\ o n
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From Proposition 1 and the remark preceding Theorem 5, we obtain

=det (ay

and

( y 2 ι

=det(α)'1 +*2 +*+ 1(*S1z;'8)(β2t+i) mod coboundaries.

Then the theorem follows from Theorems 3 and 4. q. e. d.

Remark 5. M. Kuga, W. Parry and C. H. Sah [7, Theorem 1.5.4] have
shown the theorem in the case of n = l, 2 and t^p—1.

We can calculate the cohomotogy of GL2(FP) with coefficients p and p*.

THEOREM 6.

(1) H\Γ, p)=FPi(x1vy-1, J C ^ ^ + I ; * - 1 ] and H°(f, p*) = H°(Γ,

(2) Hn{Γ, p)=Hn(Γ, p*) for n>0.
(3) Hn(Γ, p) has the p-penod 2(p—l) within the positive degrees.
(4) The multiplication by xp

1

(p~1)-\-vp'1 induces the isomorphism

Hn(Γ, SKV^H^Γ, S ί+p(*-υ(TO) for n>0.

if n^=2ι, 0<ι<p-l

if n=22 + l, nφ2p-3

0 jyxii/)' 2/ n=2(/»-l).
^SSp-2

. From Theorem 1, we have Hn(Γ, p) = Hn{Γ, p)Δ. For example in
f. 1

the case of n = k(p — ϊ)+2i, 0<i<-^z—, the invariant elements of Hn(Γ, S(V))

under the action p satisfy the conditions by Theorems 4 and 5.

(1) A:{+ 2V=(-l)*det(α)- (*+ < )jcί+ 2V for any « G Δ , 0^s<p-l-2ι

and
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(2) xs

1v
p-1-2ι+s=(-l)kάet(ay-sxs

1v
p-1-2ι+s for any « G A , O^ί

We can determine the values s from the above equations and obtain the solu-

tions from (1) and (2): If k = l mod (2), s=^τ> i and, if k=0 mod (2), s = ί

respectively. Therefore we have shown that

IJn/p (Ύ\ n \—p γi.jP-1-21 :f y.—O,

We can prove the others similarly. q. e. d.

§ 5. The cohomology of one-dimensional representations.

In section 4, we determined the cohomology of the polynomial representa-
tion of f. Here we consider the cohomology derived from one-dimensional
representations, and use the some notations as in section 4.

Let M and M' be Γ-module. Then we define M®Mf as follows.

M®M/ = M®M/ as an abelian group
z

and the left Γ-action is defined by

If M and M' are as above, we have a pairing called the cup product

Hp(Γ, M)®Hq(Γ, Mr) — > Hp+*(f,

We consider one-dimensional representations φι: Γ->F£ where φι(g)=άet(g)1

We regard Z/pZ as a Γ-module Z/pZ(i) through φ\ Then we have isomor-
phisms

Z/pZ(t)®Z/pZ(j)^Z/pZ(i+j)
and

Z/pZ(i+p-l)*£Z/pZ(i).

PROPOSITIONS. (Aguade [1]). H*(Γ, ZlρZ)=Z\_u{]®Λ(v1\ 1̂ 1 =£
\Vl\=p-2 and H*{Γ, Z/pZ)^Z/pZίU2]®Λ(v2), |u2 |=2(/>-l), \v*\=2p-3.

Proof. We only show the cohomology of Γ. Use the split exact sequence

0 — > Fp — > S(V) —> S(V)+ —> 0

and we have H*(Γ, S(7))=//*(Γ, Z/jί?Z)0J7*(Γ, S(V)+). From Theorem 4, we
have an additive isomorphism

H*(Γ, Z/pZ)^Z/pZ\_u1-]®Λ(v1)f \Ul\=p-l and
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Since i*: Hn(Γ, Z/pZ)-*Hn(U, Z/pZ) is injective and H*(U, Z)sFp[
1*1=2 and | ^ | = 1 , as a ring isomorphism, we can choose w^resp. vj so as to
satisfy i*(u1)=xp-1/2(resρ. i*(v1)=xp-*/2y). q.e.ά.

THEOREM 7.

(1) Hn(Γ, Z/pZ(i))=0, if isέ — - — mod (0—1) and i=fcθ mod (0—1), and

Z/pZ if n~p-2 or 0-1 mod2(0-1)

0 otherwise.

(2) // we put a(resp. β) for a generator of HP'1(^Γ, Z/pZ^P~Zl ))

(resp. Hp-2(Γ, Z/pz( P~Z )), the cup product of ®i/*(f, Z/pZ{i)) is given?by

a2=u2, aβ=v2 and β2=0.

Proof. We have Hn(Γ, Z/pZ(i))-*Hn(Γ, Z/pZ{i))τ, where T is the group
of the diagonal matrices. Because Z/pZ{i)~Z/pZ on U, nonzero cohomology
groups can appear only when n^p—2 or 0 — 1 mod 2(0—1). Then the conjugate
actions ct, ί e T on a n-cochain yιvι are

We see that there is a non zero invariant space for the actions if and only if

/ s 0 or IEE mod 2(0-1).

(2) From [3, Chap. XII, 7], the restriction map

i* Θ#*(f, Z/ίZ(ί)) —> ® Jϊ*(ί/,

preserves the cup products. Noticing that

and

we get the formulas of the Theorem. q. e. d.

§ 6. The Hecke algebra B\GLS(FP)/B actions.

In this section, we adapt the notations to those of [12] so as to simplify
the computations. Let U be a 0-Sylow subgroup of GLS(FP) which is generated by

a —

"1

0

0

1

1

0

0"

0

1

,b =

1

0

0

0

1

0

0

1

1

, c=

1

0

0

0

1

0

1

0

1
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THEOREM 8. [6], [8].

(1) // p=2, the algebra H*(U, Z) are generated by elements ylf y2, e, v,
where \yι\—2) l^z'^2, \e\—2> and \v\— 4. The relations are submitted to the
relations

2y1=2y2=2e=4v=0 and y1y2-=0, e^fa+yjv.

(2) // p is an odd prime, the algebra H*(U, Z)/V~0~ ore generated by ele-
ments y1,y2,bp-2,v where \yτ\=2, l^i^2, \bp-2\=2(p—l) and \v\=2p. The
relations are submitted to the relations

py!=py2=pbp-2=p2v=O and bl-^y^y**"1,

Next we recall some facts about the elements of H*(U, Z) which are in the
images by the correstriction map. If p is an odd prime, we have the ring
isomorphism

H«a, c>, Z)^Z/pZlyl9 u~\®Λ{β{xz))

for *>0, 1^1 = 11*1=2, Ii8(xz)|=3

and yi=β(xi), u = β(z), where xx and z are the dual elements of a and b with
the identification H\<a, c}, Z/pZ)^Yίom{(a, c>, Z/pZ) and β is the mod p
Bockstein operation. If p—2, the above isomorphism is only additive. Let
/: <α, c>->£7 be the inclusion map and 2, and i* be the correstriction and the
restriction maps respectibly. Then we define

&o=*.(tt), if 0 = 2
and

bt=:i,(uι+1) for l ^ z ^ 0 - 3 and ί ^ ^ ' t ^ Ή ^ " 1 , if 0 odd.

PROPOSITION 4. In case of p—2, we have

bo=y1 and i*(u)=u2

Proof. The formulas above are proved in [6] except &o=3Ί To prove
this, we apply the cor-res exact sequence of Lewis [8] to H—(a, c} and G — U.
Then we have

0 —> H\U, Z)-^T3-?-> H\U, Z) -Λ2 H\U, Z)
and

0 — > H\a, c, Z)<b> -^> T3 - ^ > H\a, c, Z)<b> — > 0

where e /t>=Res and τ ^^Cor. We see that H\(a, c>, Z)m-=Z/2Zu and
H\(ay c>, Z)<by=Z/2Zβ(xz). From the cohomology of U and Res(e)=β(xz),
we see that z,(w) is 3;̂  q. e. d.
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THEOREM 8. [8]. Let p be an odd prime. Then the elements bt defined
above are non-zero and they are submitted to the relations in H*(U, Z)

yib3=0, if 1 ^ 2 , l^j^p-3

and

Furthermore we have

i*(v)=up—uyp

1~
1 and i*(yi)=y1.

PROPOSITION 5. Let n=kpJrr, 0^r<p be a positive integer. Then we have

Proof, We write un+p as un(up—uyp

1-
1)+un+1yp

1-
1. From the formulas

i\(a-i*(b))—a-b and ia*(a)=pa, we have

Repeating this argument, we obtain the proposition. q. e. d.

COROLLARY 1. i,(upip-1))=pvp-1+yi

1

p-1)2yp

2-
1-yp

1

(p~1).

(
-K 1 \

. j = (—l)1 moάp, it is immediate from the proposition.

THEOREM 9. [12].

(1) In the case of p=2, we have

H*{B,Z)W=H*(U,Z)W.

(2) // p is an odd prime, the cohomology ring H*{B, Z)Cp)/^/~0 are isomor-
phic to the subalgebra of H*{U, Z)(p)/^~0 which is generated by

ypi~\ y\~\ vp~\ bp-2 and (y1y2Yvp~1-\ l^t^p-1.

Since GL,(FP)= Ji BwB, we have B\GLZ{FP)/B=Z \-^-BWB\. We can

we£3 LI -o I J

identify BwB with w^Ss.
THEOREM 10. The Hecke algebra actions on the generators of H*(B,

are written as in the following tables.
(1) In the case of p=2,
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e

V

(12)

0

J>2

0

2v

(23)

3Ί

0

0

2v

the others

0

0

0

0

(2) In the case of an odd prime p,

y\-χ

VP-1

the others

(12)

0

bp-i-yV1

yi(P-l>-yl-lyp-»*

0

(23)

b^t-yl-1

0

yP^p-V-yiP-l^yP^l

0

the others

0

0

0

0

Proof. We prove the theorem for u/=(23) and v^^H^B, Z ) ( p ) . It is
sufficient to consider the Hecke algebra actions on H*(U, Z) instead of H*(B, Z)ip).
So we have

= ll( Π (^l-

=pv ~1—

q. e. d.

Remark 6. This shows that the Hecke algebra B\GL3(PP)/B does not act
as a scalar multiplication different from [7] and [11]. It seems to be occured
in the action of the Hecke algebra B\GLn(Fq)/B on H*(B) generally. In the
sence, the tables would give us a non trivial example of a theorem [4],
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