THE COHOMOLOGY OF $SL_2(F_p)$ AND THE HECKE ALGEBRA ACTIONS

By Michishige Tazuka

Dedicated to the Memory of Dr. Takehiko Miyata

Introduction.

Let p be a prime number and F_p be the prime field with p elements. Our first main purpose of this paper is to calculate $H^n(SL_2(F_p), S(V))$ where S(V) is the symmetric algebra of a two dimentional vector space V over F_p . The cohomology group $H^n(SL_2(F_p), S^t(V))$ is obtained by Y. H. Rhie and G. Whaples [11] under the condition t=1 and by M. Kuga, W. Parry and C. H. Sah [7] under the condition $t \leq p-1$, n=1, 2, $p \geq 5$. We shall give the complete description of mentioned above without any condition in section 2 and 3 (Theorem 3 and 4).

Our second purpose is to determine the Hecke algebra actions on $H^n(SL_2(F_p), S(V))$ (Theorem 5) and determine $H^n(GL_2(F_p), S(V))$ (Theorem 6) in section 4. These results are also extentions of [7].

The Hecke algebra actions on a cohomology group are defined by Y. H. Rhie and G. Whaples [11] and a brief account on these properties are found in [7] and [4] by E. Cline, B. Parshall and L. Scott. We summarize their results for completeness in section 1.

Furthermore we consider cohomologies with coefficients attached to one-dimensional representations of $GL_2(F_p)$ in section 5.

In section 6, we determine the Hecke algebra actions on $H^*(B)_{(p)}$ by the Weyl group S_3 of $GL_3(F_p)$ where B is a Borel subgroup of $GL_3(F_p)$.

The author wishes to express his gratitute to Professors T. Nakamura, K. Shibata and N. Yagita for their helpful suggestions.

§ 1. Preliminaries.

In this section, we collect some of the basic definitions and results on homological algebra [2], [3], [9] and Hecke algebra [4], [7], [11].

1.1. Conjugate homomorphisms

Let G and G' be finite groups and $f: G' \rightarrow G$ be a homomorphism. When Received May 20, 1986

A is a G-module, we can regard A as a G'-module by

$$g' \cdot a = f(g')a$$
 for $g' \in G$, $a \in A$.

We use Eilenberg-MacLane cohomology group and recall a basic fact [2, 31.1, 31.2].

LEMMA 1. Let $\{C_i, \partial_i\}$ and $\{C'_i, \partial'_i\}$ be a free resolution of G and G' respectably. Then there is a chain map $\{\phi_i\}: \{C'_i, \partial'_i\} \rightarrow \{C_i, \partial_i\}$ such that $\phi_i(g'c') = f(g')\phi_i(c')$ for i-chain $c' \in C'_i$ and $g' \in G'$. Furthermore let $\{\phi_i\}$ and $\{\phi'_i\}$ be any two chain map induced by f. In case f is injective, we have a chain homotopy $\{\Phi_i\}: \{C'_i\} \rightarrow \{C_{i+1}\}$. i. e.

$$\partial_{i+1}\Phi_i - \Phi_{i-1}\partial_i = \phi_i - \phi_i'$$
 for $i > 0$

and

$$\partial_1 \Phi_0 = \phi_0 - \phi_0'$$
.

We consider pairs (G, A) where G is a finite group and A is a G-module. We say $(f, \theta): (G, A) \rightarrow (G', A')$ is a morphism if $f: G' \rightarrow G$ is injective and $\theta: A \rightarrow A'$ is a homomorphism such that $\theta(g' \cdot a) = g'\theta(a)$ for $g' \in G'$ and $a \in A$. Given such a morphism (f, θ) , we can define the homomorphism

$$(f,\;\theta)^*\colon H^*(G,\;A) \longrightarrow H^*(G',\;A')$$

as follows. Take an n-cochain $t \in \operatorname{Hom}_G(C_n, A)$ and put $(f, \theta)t = ft\phi_i$, where ϕ_i is a chain map induced by f. From Lemma 1, we see that $(f, \theta)^*$ is well defined.

We restrict our attention to the following case. Let H be a subgroup of G. Then we define an adjoint homomorphism $ad_g: H \rightarrow H^g$ by $ad_g(h) = ghg^{-1}$ and $H^g = gHg^{-1}$. We also denote by $ad_{g^{-1}}$ an n-th chain map induced by $ad_{g^{-1}}: H^g \rightarrow H$. When we define $\theta: A \rightarrow A$ by $\theta(a) = ga$ and $f: H^g \rightarrow H$ by $f = ad_{g^{-1}}$, we have for $h' \in H^g$

$$\theta(h' \cdot a) = \theta(a d_{g^{-1}}(h')a) = gad_{g^{-1}}(h')a = h'ga = h'\theta(a).$$

Therefore $(ad_{g^{-1}}, \theta)$: $(H, A) \rightarrow (H^g, A)$ is a morphism and it induces the homomorphism

$$(ad_{g-1}, \theta)^* : H^*(H, A) \longrightarrow H^*(H^g, A).$$

According to [3], we will denote $(ad_{g^{-1}}, \theta)^*$ by c_g hereafter. We call it the conjugate homomorphism associated with $ad_{g^{-1}}$.

LEMMA 2. (1) Let $\{C_i, \hat{o}_i\}$ be a free resolution of G, that is also a free resolution of H and H^g . Then conjugate homomorphism c_g is given by $c_g t = g t g^{-1}$ for n-cochain $t \in \text{Hom}_G(C_n, A)$.

(2) [9]. In terms of the homogeneous resolution, we have

$$(c_g t)(h'_0, \dots, h'_n) = gt(ad_{g-1}h'_0, \dots, ad_{g-1}h'_n)$$
 for $h'_i \in H^g$.

Proof. For $c \in C_n$ and $h' \in H^g$, we have $g^{-1}(h'c) = ad_{g^{-1}}(h')g^{-1}c$. Therefore we can take $ad_{g^{-1}}(c) = g^{-1}c$ for a chain map induced by $ad_{g^{-1}}$. The results follow from the definition of the conjugate homomorphism.

Remark 1. In [2], [3], the part (1) of the lemma above shows that our definition of c_{ε} agrees with that of [2], [3].

We determine a chain map of the standard resolution of a cyclic group induced by an adjoint homomorphism. Recall that the standard resolution of a cyclic group C of order n generated by x is given by

$$C_i = Z[C]e_i$$
 and $\partial_{2i}(e_{2i}) = Ne_{2i-1}, \partial_{2i+1}(e_{2i+1}) = Te_{2i}$,

where we put T=x-1 and $N=1+x+\cdots+x^{n-1}$, and the augmentation $\varepsilon: C_0 \to Z$ is $\varepsilon(x^i e_0)=1$.

PROPOSITION 1. Let C be a cyclic subgroup of G of order n with generator x. $N_G(C)$ denotes the normalizer of C. Let an element g of $N_G(C)$ act as $ad_{g-1}(x) = x^a$, (a, n)=1. Then a chain map ad_{g-1} on the standard resolution of C is given by

$$ad_{g-1}(x^{j}e_{2i}) = a^{i}ad_{g-1}(x^{j})e_{2i}$$

and

$$ad_{g-1}(x^{j}e_{2i+1}) = a^{i} \sum_{0 \leq \alpha \leq a-1} x^{\alpha} ad_{g-1}(x^{j})e_{2i+1}.$$

Proof. Since we see that $ad_{g^{-1}}(x^je_i)=ad_{g^{-1}}(x^j)ad_{g^{-1}}(e_i)$, it is enough to check that $\{ad_{g^{-1}}\}$ commute with the boundary maps. First $ad_{g^{-1}}$ commutes with the augmentation. For n=2i, i>0, we have

$$a d_{g-1}(\partial_{2i}(e_{2i})) = \sum_{j=0}^{n-1} a d_{g-1}(x^{j}e_{2i-1})$$

$$= \sum_{j=0}^{n-1} a^{i-1} \sum_{\alpha=0}^{a-1} x^{\alpha} a d_{g-1}(x^{j})e_{2i-1} = a^{i-1} \sum_{\alpha=0}^{a-1} \sum_{j=0}^{n-1} x^{\alpha+j}e_{2i-1}$$

$$= a^{i}Ne_{2i-1} = \partial_{2i}(a d_{g-1}(e_{2i})).$$

For n=2i+1, we have

$$\begin{split} a \, d_{g^{-1}}(\widehat{\partial}_{2i+1}(e_{2i+1})) &= a \, d_{g^{-1}}(x e_{2i} - e_{2i}) \\ &= a^{i}(a \, d_{g^{-1}}(x) e_{2i} - e_{2i}) = a^{i}(x^{\alpha} e_{2i} - e_{2i}) \\ &= a^{i}(x-1) \Big(\sum_{\alpha=0}^{a-1} x^{\alpha} e_{2i}\Big) = \widehat{\partial}_{2i+1} \Big(a^{i} \sum_{\alpha=0}^{a-1} x^{\alpha} e_{2i+1}\Big) \\ &= \widehat{\partial}_{2i+1}(a \, d_{g^{-1}}(e_{2i+1})) \,. \end{split} \qquad \text{q. e. d.}$$

1.2. The Hecke algebra.

In the following paragraphes, we recall the basic properties of the Hecke algebra defined in [4], [7], [11]. Let H be a subgroup of G. We consider the

free Z-module $H\backslash G/H$ generated by the elements $\frac{1}{|H|}HaH$, where $G=\bot\!\!\!\!\bot HaH$ and HaH means $\sum_{s\in HaH}$ s. When we regard $H\backslash G/H$ as a submodule of the Q-group ring Q[G], $H\backslash G/H$ has a natural ring structure induced from Q[G] and so is called the Hecke algebra with respect to G and H. We denote by |G| and |G| the corestriction map

Cor:
$$H^n(H, A) \longrightarrow H^n(G, A)$$

and the restriction map

Res:
$$H^n(G, A) \longrightarrow H^n(H, A)$$

defined in [2], [3].

We define the right actions of the Hecke algebra $H \setminus G/H$ on an element $\mu \in H^n(H, A)$ by

$$\mu\left(\frac{1}{|H|}HaH\right)=c_{a^{-1}}\mu|_{Ha^{-1}\cap H}|_{H}.$$

Particularly, in the case of $H \triangleleft G$, we have

$$\mu\left(\frac{1}{|H|}HaH\right)=c_{a-1}\mu.$$

We can rewrite the stability theorem of Cartan-Eilenberg in term of the Hecke algebra. Recall that an element $\mu \in H^n(H, A)$ is stable if $\mu|_{H^a \cap H} = c_a \mu|_{H^a \cap H}$ for all $a \in G$.

THEOREM 1. [3, Theorem 10, 1. Chap. XII]. Let H be a p-Sylow subgroup of G. Then the restriction map $H^n(G, A)H^n(H, A)$ is injective on the set of all the stable elements.

We define the augmentation $\varepsilon: H\backslash G/H \to Z$ by $\varepsilon\Big(\frac{1}{|H|}HaH\Big) = [H: H^{a-1}\cap H].$ We call an element $\mu \in H^n(H,A)$ a fixed point for $H\backslash G/H$ when $\mu\Big(\frac{1}{|H|}HaH\Big) = \varepsilon\Big(\frac{1}{|H|}HaH\Big)$ are satisfied for all $a \in G$.

THEOREM 2. [4]. Let H be a p-Sylow subgroup of G. Then μ is stable if and only if μ is a fixed point for $H\backslash G/H$.

$\S 2$. The cohomology of U.

Let $S(V)=\bigoplus_{t\geq 0}S^t(V)$ be the symmetric algebra of a two-dimensional vector space V over P_p and $S^t(V)$ be the homogeneous part of degree t. Hereafter we fix a basis of V and identify S(V) with the polynomial algebra $P_p[x_1, x_2]$. We define the action of $SL_2(P_p)$ on V by $(Ax_1, Ax_2)=(x_1, x_2)A$ for $A\in SL_2(P_p)$ and

extend this action on S(V) as a ring homomorphism. Let U be the cyclic subgroup of $SL_2(P_p)$ which consists of the upper triangular matrices with diagonals one.

Proposition 2.

- (1) $H^0(U, S(V)) \cong F_p[x_1, v]$ where $v = \prod_{\lambda \in F_p} (x_2 + \lambda x_1)$.
- (2) The multiplication by v induces the isomorphism

$$H^n(U, S^t(V)) \cong H^n(U, S^{t+p}(V))$$
 for $n > 0$.

$$(3) \quad H^{n}\Big(U, \ \bigoplus_{t=0}^{p-1} S^{t}(V)\Big) \cong \left\{ \begin{array}{ll} \sum\limits_{j=0}^{p-2} F_{p} x^{j}_{1} & \text{ if } \quad n = 2i, \ i > 0 \\ \sum\limits_{j=0}^{p-2} F_{p} x^{j}_{2} & \text{ if } \quad n = 2i + 1. \end{array} \right.$$

Proof. (1) It is easy to see that $v = \Pi(x_2 + \lambda x_1)$ is invariant under the action of U and so $S(V)^U$ contains $F_p[x_1, v]$. Let $F \in S(V)$ be invariant. Then we can suppose that x_1 does not devide F and that F does not contain the monomial x_1^k . Regard F as a polynomial with one variable x_2 , and we can write

$$F=vL+R$$
, $\deg_{x_0}(R) < p$ and L , $R \in S(V)$.

Since R is invariant and is devided by x_2 , R must be devided by v. Therefore R must be zero. Repeating this argument, F is shown to be a power of v. This implies that $S(V)^U$ is exactly the polynomial ring $F_p[x_1, v]$.

(2), (3) We put
$$y = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $N = \sum_{i=0}^{p-1} y^i$, $T = y - 1$ in the group ring $Z[U]$.

We consider N or T as a homomorphism on S(V) and set $N(S(V)) = \operatorname{Im} N$, $N(V) = \operatorname{Ker} N$ and $T(S(V)) = \operatorname{Im} T$, $S(V)^U = \operatorname{Ker} T$ respectively. From the standard resolution, we have

$$H^{n}(U, S(V)) = \begin{cases} S(V)^{U}/N(S(V)) & \text{if } n=2i, i>0 \\ NS(V)/T(S(V)) & \text{if } n=2i+1. \end{cases}$$

From (1), we can write $f \in S(V)$ in the form $f(x_1, x_2) = \sum_{j=1}^{p-1} g_j(x_1, v) x_2^j + h(x_1, v)$. Since $N(g_j x_2^j) = g_j N(x_2^j)$ and N(h) = 0, we only need to calculate $N(x_2^j)$, $1 \le j \le p$

-1. Then we calculate $N(x_2^j) = \sum_{0 \le \lambda \le p-1} (x_2 + \lambda x_1)^j = \sum_{0 \le k \le j} \binom{j}{k} \sum_{0 \le \lambda \le p-1} \lambda^k x_1^k x_2^{j-k}$ and use the formulas

$$\sum_{0 \le \lambda \le p-1} \lambda^k = \begin{cases} 0 & \text{if } k \not\equiv 0 \mod (p-1) \\ -1 & \text{if } k \equiv 0 \mod (p-1). \end{cases}$$

We have

$$N(x_{2}^{j}) = \begin{cases} 0 & \text{if } 1 \leq j \leq p-2 \\ -x_{1}^{p-1} & \text{if } j = p-1. \end{cases}$$

Therefore we obtain $N(S(V)) = x_1^{p-1}S(V)^U$ and $N(S(V)) = \sum_{j=0}^{p-1} x_2^j S(V)^U$.

Similarly we obtain $T(S(V)) = x_1(S(V)^U)$. The results are immediate.

q. e. d.

Remark 3. The invariant algebras of $S(V)^U$ is well known. See [13].

§ 3. The cohomology of $SL_2(F_p)$.

Let B the subgroup of $SL_2(F_p)$ which is generated by the matrices (a_{ij}) $1 \le i$, $j \le 2$ with $a_{12} = 0$ and M be a $F_p[SL_2(F_p)]$ -module.

LEMMA 4. The inclusion map from B to $SL_2(F_p)$ induces an isomorphism $H^n(SL_2(F_p), M) \cong H^n(B, M)$ for n > 0.

Proof. Since B contains a p-Sylow subgroup U, the induced map is injective from Theorem 1. We have the decomposition: $SL_2(F_p)=B \perp \!\!\! \perp BwB$, where w is $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then we see $B \cap wBw = T$, where T is the group of the diagonal matrices in $SL_2(F_p)$. Since p does not devide the order of T, we have $H^n(T,M)=0$ for n>0. Therefore the Hecke algebra acts on $\mu\in H^n(B,M)$ trivially, i.e. $\mu\left(\frac{1}{|B|}BwB\right)=0$. From Theorem 2, any element of $H^n(B,M)$ is stable.

q. e. d.

LEMMA 5. The inclusion map from U to B induces an isomorphism $H^n(B, M) \simeq H^n(U, M)^B$.

Proof. Since U is the mormal p-Sylow subgroup of B, the stable elements of $H^n(U, M)$ are just the fixed parts for B.

THEOREM 3. $H^0(SL_2(F_2), S(V)) \cong F_2 \lceil x_1 v, x_1^2 + v \rceil$

and

$$H^n(SL_2(F_2), S(V)) \cong H^n(U, S(V))$$
 for $n > 0$.

THEOREM 4. Let p be an odd prime. Then we have

- (1) $H^0(SL_2(F_p), S(V)) \cong F_p[x_1v, x^{p(p-1)} + v^{p-1}].$
- (2) $H^n(SL_2(F_p), S(V))$ has the p-period p-1 within the positive degrees with respect to the homological degree n.
 - (3) The multiplication $(x_1^p+v)^{p-1}$ induces the isomorphism

$$H^n(SL_2(F_p), S^t(V) \cong H^n(SL_2(F_p), S^{t+p(p-1)})$$
 for $n > 0$.

(4) $H^n(SL_2(F_p), \bigoplus_{0 \le t \le p(p-1)} S^t(V))$

$$\cong \left\{ \begin{array}{ll} \bigoplus\limits_{0 \leq s < p-1-2i}^{} F_{p}x_{1}^{s+2i}v^{s} \bigoplus\limits_{0 \leq s < 2i}^{} F_{p}x_{1}^{s}v^{p-1-2i+s}, & if \quad n = 2i, \ 0 < i < \frac{p-1}{2} \\ \bigoplus\limits_{0 \leq s \leq p-3-2i}^{} F_{p}x_{2}^{s}v^{p-3-2i-s} \bigoplus\limits_{p-3-2i < s \leq p-2}^{} F_{p}x_{2}^{s}v^{2p-4-2i-s}, & if \ n = 2i+1, \ 0 \leq i \leq \frac{p-3}{2} \\ \bigoplus\limits_{0 \leq s \leq p-2}^{} F_{p}(x_{1}v)^{s}, & if \quad n = p-1. \end{array} \right.$$

To prove the theorems, we prepare a lemma.

LEMMA 6. If we put $t = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix}$, $\lambda \in F_p^{\times}$, the action by c_t on $H^n(U, S(V))$ is given by

(1)
$$c_t(x_1^{s_1}v^{s_2}) = \lambda^{-2i+s_1-s_2}x_1^{s_1}v^{s_2}$$
, if $n=2i$, $i>0$

and

(2)
$$c_t(x_2^{s_1}v^{s_2}) = \lambda^{-2(i+1)-s_1-s_2}x_2^{s_1}v^{s_2}$$
, if $n=2i+1$,

where we identify $x_1^{s_1}x_2^{s_2} \in S(V)$ with a cochain of $\operatorname{Hom}_U(Z[U]e_n, S(V))$ under the correspondence $\theta: S(V) \cong \operatorname{Hom}_U(Z[U]e_n, S(V))$ given by

$$\theta(x_1^{s_1}x_2^{s_2})(e_n) = x_1^{s_1}x_2^{s_2}$$
.

Proof. (1) From Proposition 1, the action by c_t induced by ad_{t-1} on the cochain group is

$$\begin{aligned} (*) \quad & c_t(x_1^{s_1}x_2^{s_2}) \!=\! t(x_1^s x_2^s)(a\, d_{t^{-1}}(e_{2i})) \\ &= ((tx_1)^{s_1}(tx_2)^{s_2})(a\, d_{t^{-1}}(e_{2i})) \\ &= ((tx_1)^{s_1}(tx_2)^{s_2}(\lambda^{-2\imath}e_{2\imath}) \\ &= \lambda^{-2\imath + s_1 - s_2} x_1^{s_1} x_2^{s_2}(e_{2\imath}) \,. \end{aligned}$$

Reducing to the cohomology $H^{\text{even}}(U, S(V))$, we have

$$c_t(x_1^{s_1}v^{s_2}) = \lambda^{-2i+s_1-s_2}x_1^{s_1}v^{s_2}$$
.

(2) We take $y = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ for a generator of U. Then we note that a cochain $x_1^{s_1}$, $x_2^{s_2} \in \operatorname{Hom}_U(Z[U]e_{2i+1}, S(V))$ has the following property:

$$x_1^s(ye_{2i+1})=(yx_1)^s(e_{2i+1})=x_1^s(e_{2i+1})$$

and

$$x_2^s(ye_{2i+1}) = (yx_1)^s(e_{2i+1}) = x_2^s(e_{2i+1}) - (y-1)x_2^s(e_{2i+1})$$

 $\equiv x_2^s(e_{2i+1})$ mod coboundaries.

This implies

$$\begin{split} (*) \quad & (c_t(x_1^{s_1}x_2^{s_2}))(e_{2\imath+1}) \!=\! t(x_1^{s_1}x_2^{s})(a\,d_{\,t-1}(e_{2\imath+1})) \\ & = ((t\,x_1)^{s_1}(t\,x_2)^{s_2}(a\,d_{\,t-1}(e_{2\imath+1})) \\ & = \lambda^{s_1-s_2}x_1^{s_1}x_2^{s_2}\Big(\lambda^{-2\imath}\sum_{j=0}^{\lambda-2-1}y^je_{2\imath+1}\Big) \\ & = \lambda^{-2\imath+s_1-s_2}\sum_{j=0}^{\lambda-2-1}(y^jx_1)^{s_1}(y^jx_2)^{s_2}(e_{2\imath+1}) \\ & \equiv \lambda^{-2\cdot(\imath+1)+s_1-s_2}(x_1^{s_1}x_2^{s_2})(e_{2\imath+1}) \quad \text{mod coboundaries.} \end{split}$$

Reducing to the cohomology, we obtain

$$c_t(x_2^{s_1}v^{s_2}) = \lambda^{-2(i+1)-s_1-s_2}x_2^{s_1}v^{s_2}.$$
 q. e. d.

Remark 3. Y. H. Rhie and G. Whaples have proved this lemma in the case of $s_1=1$ and $s_2=0$.

Proof of the theorem.

The 0-dimensional cohomology is the subring of S(V) which is invariant by $SL_2(F_p)$. The generators of this ring are determined by Dickson [5]. In the case of $SL_2(F_2)$, we note that B=U in $SL_2(F_2)$. From Lemma 4 and 5, we have the isomorphism

$$H^n(SL_n(F_n), S(V)) \cong H^n(U, S(V))$$
 for $n > 0$.

Let p be an odd prime. From Lemma 4 and 5, it is enough to determine the elements of $H^n(U, S(V))$ invariant under the actions by the diagonal matrices. These explicit formulas are given in Lemma 6. Immediately we find that the p-period is p-1.

If $x_1^{s_1}v^{s_2} \in H^{s_1}(U, S(V))$ is invariant under B, the relations between s_1 and s_2 are $-2i+s_1-s_2\equiv 0 \mod (p-1)$ and $0\leq s_1\leq p-2$, $0\leq s_2$, $0< i<\frac{p-1}{2}$. We solve this congruence equation. And the solutions are

$$\begin{cases} s_1 = s + 2i, \ 0 \le s 0 \end{cases}$$

and

$$\begin{cases} s_1 = s, \ 0 \le s < 2i \\ s_2 = p - 1 - 2i \ \text{mod} (p - 1), \ s_2 \ge 0. \end{cases}$$

We can do the same arguments on $H^n(U, S(V))$ and $H^{p-1}(U, S(V))$. q. e. d

Remark 4. In [10], R.G. Swan shows that the *p*-period of cohomology group whose *p*-Sylow subgroup is cyclic is given by $2|N_G(U)|/|C_G(U)|$. Then Theorem 4, (2) is straightforward.

§ 4. The Hecke algebra actions and the cohomology of $GL_2(F_p)$.

In this secition, we suppose that p is an odd prime. We denote $SL_2(F_p)$, $GL_2(F_p)$ by Γ , $\tilde{\Gamma}$ respectibly. We define two distinct $\tilde{\Gamma}$ -actions on S(V). The one, $\rho = \bigoplus_{m \geq 0} \rho_m$ of $\tilde{\Gamma}$ on $S(V) = \bigoplus_{m \geq 0} S^m(V)$, is defined by ; $(\rho_1(A)x_1, \rho_1(A)x_2) = (x_1, x_2)A$ for $A \in \tilde{\Gamma}$ and $\rho_m(A)f(x_1, x_2) = f(\rho_1(A)x_1, \rho_1(A)x_2)$. The other, $\rho^* = \bigoplus_{m \geq 0} \rho_m^*$, is defined as $\rho_m^*(g) = \det(g)^{-m} \rho_m(g)$. $H^n(\tilde{\Gamma}, \rho)$ (resp. $H^n(\tilde{\Gamma}, \rho^*)$) denote the cohomology with the coefficient S(V) through the action ρ (resp. ρ^*).

Since Γ is a normal subgroup of $\tilde{\Gamma}$, we can write $\Gamma \alpha \Gamma = \Gamma \alpha = \alpha \Gamma$ and $\Gamma \setminus \tilde{\Gamma}/\Gamma = \left\{ \sum a_{\alpha} \Gamma \alpha \Gamma : \alpha = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \ a \in F_p^{\times}, \ a_{\alpha} \in Z \right\} \cong Z[F_p^{\times}].$ From Lemma 3, the Hecke algebra action by $\Gamma \setminus \tilde{\Gamma}/\Gamma$ on $\mu \in H^n(\Gamma, \rho_m)$ (resp. $H^n(\Gamma, \rho^*)$) is given by $\mu \left(\frac{1}{|\Gamma|} \Gamma \alpha \Gamma \right) = c_{\alpha^{-1}} \mu \left(\text{resp. } \mu \left(\frac{1}{|\Gamma|} \Gamma \alpha \Gamma \right) = \det(\alpha)^m c_{\alpha^{-1}} \mu \right)$, taking account of the asterisque in the proof of Lemma 6. By definition, we see that $\rho \mid \Gamma$ and $\rho^* \mid \Gamma$ and so $H^*(\Gamma, \rho) = H^*(\Gamma, \rho^*)$. But, as the next theorem shows, the corresponding Hecke algebra actions are not equivalent.

Theorem 5. The Hecke algebra actions $\Gamma \setminus \tilde{\Gamma} / \Gamma$ on $H^n(\Gamma, \rho)$ (resp. $H^n(\Gamma, \rho^*)$) are as follows:

(1) If n=2i+1, $\frac{1}{|\Gamma|}\Gamma\alpha\Gamma$ is a scalar multiplication by $\det(\alpha)^{i+1}$ (resp. $\det(\alpha)^{-i+1}$).

(2) If
$$n=k(p-1)+2i$$
, $0 < i < \frac{p-1}{2}$, we have

$$(x_1^{s+2i}v^s) \left(\frac{1}{|\varGamma|} \varGamma \alpha \varGamma\right) = (-1)^k \det(\alpha)^{-(s+i)} x_1^{s+2i} v^s$$

$$(resp. \ (-1)^k \det(\alpha)^{s+i} x_1^{s+2i} v^s)$$

and

$$(x_1^s v^{p-1-2z+s}) \left(\frac{1}{|\Gamma|} \Gamma \alpha \Gamma \right) = (-1)^k \det(\alpha)^{z-s} x_1^s v^{p-1-2z+s}$$

$$(resp. \ (-1)^k \det(\alpha)^{s-1} x_1^s v^{p-1-2z+s}).$$

(3) If n=k(p-1) and k>0, we have

$$(x_1 v)^s \left(\frac{1}{|\varGamma|} \varGamma \alpha \varGamma\right) = (-1)^k \det(\alpha)^{-s} (x_1 v)^s$$

$$(resp. \ (-1)^k \det(\alpha)^s (x_1 v)^s).$$

Proof. We prove in the case of the coefficient ρ^* . Since $p \not\mid [\tilde{\Gamma}, \Gamma]$ and Γ acts trivially on $H^n(\Gamma, \rho^*)$, it is sufficient to consider the action of $\Delta = \left\{ \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} : a \in F_p^* \right\}$ on $H^n(U, S(V))$.

From Proposition 1 and the remark preceding Theorem 5, we obtain

$$\begin{split} \Big((x_1^{t_1} v^{s_2}) \Big(\frac{1}{|\varGamma|} \varGamma \alpha \varGamma \Big) \Big) (e_{2i}) = & \det(\alpha)^{s_1 + p_{s_2}} (c_{\alpha^{-1}} x_1^{s_1} v^{s_2}) (e_{2i}) \\ = & \det(\alpha)^{s_1 + s_2} (\alpha^{-1} x_1)^{s_1} (\alpha v)^{s_2} (\det(\alpha)^{s_2} e_{2i}) \\ = & \det(\alpha)^{s_2 + i} (x_1^{s_1} v^{s_2}) (e_{2i}) \end{split}$$

and

$$\begin{split} \Big((x_2^{s_1} v^{s_2}) \Big(\frac{1}{|\varGamma|} \varGamma \alpha \varGamma \Big) \Big) (e_{2\imath+1}) &= \det(\alpha)^{s_1 + p_{s_2}} (c_{\alpha^{-1}} x_2^{s_1} v^{s_2}) (e_{2\imath+1}) \\ &= \det(\alpha)^{s_1 + s_2} (\alpha^{-1} x_2)^{s_1} (\alpha^{-1} v)^{s_2} \Big(\det(\alpha)^{\imath} \sum_{j=0}^{\det(\alpha)^{-1}} y^j e_{2\imath+1} \Big) \\ &= \det(\alpha)^{s_1 + s_2 + \imath + 1} (x_2^{s_1} v^{s_2}) (e_{2\imath+1}) \mod \text{coboundaries}. \end{split}$$

Then the theorem follows from Theorems 3 and 4.

q. e. d.

Remark 5. M. Kuga, W. Parry and C. H. Sah [7, Theorem 1.5.4] have shown the theorem in the case of n=1, 2 and $t \le p-1$.

We can calculate the cohomotogy of $GL_2(F_p)$ with coefficients ρ and ρ^* .

THEOREM 6.

- $(1) \quad H^{0}(\tilde{\Gamma}, \, \rho) \cong F_{p}[(x_{1}v)^{p-1}, \, x_{1}^{p(p-1)} + v^{p-1}] \ \ and \ \ H^{0}(\tilde{\Gamma}, \, \rho^{*}) \cong H^{0}(\Gamma, \, S(V)) \cong F_{p}[x_{1}v, \, x_{1}^{p(p-1)} + v^{p-1}].$
 - (2) $H^n(\tilde{\Gamma}, \rho) \cong H^n(\tilde{\Gamma}, \rho^*)$ for n > 0.
 - (3) $H^n(\tilde{\Gamma}, \rho)$ has the p-period 2(p-1) within the positive degrees.
 - (4) The multiplication by $x_1^{p(p-1)} + v^{p-1}$ induces the isomorphism

$$H^n(\tilde{\varGamma},\,S^t(V))\!\cong\!H^n(\tilde{\varGamma},\,S^{t+p\,(p-1)}(V))\qquad for\quad n\!>\!0\,.$$

$$(5) \quad H^{n}(\tilde{\Gamma}, \bigoplus_{0 \leq m < p(p-1)} \rho_{m})$$

$$\cong \begin{cases} F_{p}x_{1}^{i}v^{p-1-2i} & \text{if } n=2i, \ 0 < i < p-1 \\ 0 & \text{if } n=2i+1, \ n \neq 2p-3 \\ F_{p} \bigoplus_{1 \leq s \leq p-2} F_{p}x_{2}^{s}v^{p-2-s} & \text{if } n=2p-3 \\ \bigoplus F_{p}(x_{1}v)^{s} & \text{if } n=2(p-1). \end{cases}$$

Proof. From Theorem 1, we have $H^n(\tilde{\Gamma}, \rho) = H^n(\Gamma, \rho)^d$. For example in the case of n = k(p-1) + 2i, $0 < i < \frac{p-1}{2}$, the invariant elements of $H^n(\Gamma, S(V))$ under the action ρ satisfy the conditions by Theorems 4 and 5.

$$(1) \quad x_1^{s+2\imath} v^s = (-1)^k \det(\alpha)^{-(s+i)} x_1^{s+2\imath} v^s \qquad \text{for any} \quad \alpha \!\in\! \Delta, \ 0 \!\leq\! s \!<\! p \!-\! 1 \!-\! 2\imath$$
 and

(2)
$$x_1^s v^{p-1-2i+s} = (-1)^k \det(\alpha)^{i-s} x_1^s v^{p-1-2i+s}$$
 for any $\alpha \in \Delta$, $0 \le s < 2i$.

We can determine the values s from the above equations and obtain the solutions from (1) and (2): If $k\equiv 1 \mod (2)$, $s=\frac{p+1}{2}-i$ and, if $k\equiv 0 \mod (2)$, s=i respectively. Therefore we have shown that

$$H^n(\tilde{\Gamma}, \bigoplus_{0 \le m < p(p-1)} \rho_m) = F_p x_1^i v^{p-1-2i}, \quad \text{if} \quad n = 2i, \ 0 < i < \frac{p-1}{2}.$$

We can prove the others similarly.

q. e. d.

§ 5. The cohomology of one-dimensional representations.

In section 4, we determined the cohomology of the polynomial representation of $\tilde{\Gamma}$. Here we consider the cohomology derived from one-dimensional representations, and use the some notations as in section 4.

Let M and M' be $\tilde{\Gamma}$ -module. Then we define $M \otimes M'$ as follows.

$$M \otimes M' \cong M \underset{\mathbf{Z}}{\bigotimes} M'$$
 as an abelian group

and the left $\tilde{\Gamma}$ -action is defined by

$$\sigma(m_1 \otimes m_2) = \sigma(m_1) \otimes \sigma(m_2)$$
.

If M and M' are as above, we have a pairing called the cup product

$$H^p(\tilde{\Gamma}, M) \otimes H^q(\tilde{\Gamma}, M') \longrightarrow H^{p+q}(\tilde{\Gamma}, M \otimes M')$$

We consider one-dimensional representations $\phi^i \colon \widetilde{\varGamma} \to F_p^\times$ where $\phi^i(g) = \det(g)^i$. We regard Z/pZ as a $\widetilde{\varGamma}$ -module Z/pZ(i) through ϕ^i . Then we have isomorphisms

$$Z/bZ(i) \cong Z/bZ(x^iv^i)$$

$$Z/pZ(i)\otimes Z/pZ(j)\cong Z/pZ(i+j)$$

and

$$Z/pZ(i+p-1)\cong Z/pZ(i)$$
.

PROPOSITION 3. (Aguadé [1]). $H^*(\Gamma, Z/pZ) \cong Z[u_1] \otimes \Lambda(v_1), |u_1| = p-1, |v_1| = p-2 \text{ and } H^*(\tilde{\Gamma}, Z/pZ) \cong Z/pZ[u_2] \otimes \Lambda(v_2), |u_2| = 2(p-1), |v_2| = 2p-3.$

Proof. We only show the cohomology of Γ . Use the split exact sequence

$$0 \longrightarrow F_p \longrightarrow S(V) \longrightarrow S(V)^+ \longrightarrow 0$$

and we have $H^*(\Gamma, S(V))=H^*(\Gamma, Z/pZ)\oplus H^*(\Gamma, S(V)^+)$. From Theorem 4, we have an additive isomorphism

$$H^*(\Gamma, Z/pZ) \cong Z/pZ[u_1] \otimes \Lambda(v_1), |u_1| = p-1 \text{ and } |v_1| = p-2.$$

Since i^* : $H^n(\Gamma, Z/pZ) \to H^n(U, Z/pZ)$ is injective and $H^*(U, Z) \cong F_p[x] \otimes \Lambda(y)$, |x|=2 and |y|=1, as a ring isomorphism, we can choose $u_1(\text{resp. } v_1)$ so as to satisfy $i^*(u_1)=x^{p-1/2}(\text{resp. } i^*(v_1)=x^{p-3/2}y)$.

THEOREM 7.

(1) $H^n(\tilde{\Gamma}, \mathbb{Z}/p\mathbb{Z}(i))=0$, if $i \not\equiv \frac{p-1}{2} \mod (p-1)$ and $i \not\equiv 0 \mod (p-1)$, and

$$H^n\left(\tilde{\Gamma}, \, Z/pZ\left(\frac{p-1}{2}\right)\right) \cong \left\{ \begin{array}{ll} Z/pZ \ \ if \ \ n \equiv p-2 \ \ or \ \ p-1 \ \ \text{mod} \ 2(p-1) \\ 0 \ \ \ \ \ \ otherwise. \end{array} \right.$$

(2) If we put α (resp. β) for a generator of $H^{p-1}\left(\tilde{\Gamma}, Z/pZ\left(\frac{p-1}{2}\right)\right)$ (resp. $H^{p-2}\left(\tilde{\Gamma}, Z/pZ\left(\frac{p-1}{2}\right)\right)$, the cup product of $\bigoplus_{i} H^*(\tilde{\Gamma}, Z/pZ(i))$ is given by $\alpha^2 = u_2$, $\alpha\beta = v_2$ and $\beta^2 = 0$.

Proof. We have $H^n(\tilde{\Gamma}, Z/pZ(i)) \rightarrow H^n(\Gamma, Z/pZ(i))^T$, where T is the group of the diagonal matrices. Because Z/pZ(i) = Z/pZ on U, non zero cohomology groups can appear only when $n \equiv p-2$ or $p-1 \mod 2(p-1)$. Then the conjugate actions c_t , $t \in T$ on a n-cochain y^iv^i are

$$c_t(y^iv^i) = \det(t)^{i-(p-1/2)}y^iv^i$$
.

We see that there is a non zero invariant space for the actions if and only if $i\equiv 0$ or $i\equiv \frac{p-1}{2}\mod 2(p-1)$.

(2) From [3, Chap. XII, 7], the restriction map

$$i^*\,;\, \bigoplus H^*(\tilde{\varGamma},\, Z/pZ(i)) \longrightarrow \bigoplus H^*(U,\, Z/pZ)$$

preserves the cup products. Noticing that

 $i^*(u_2) = x^{p-1}, i^*(v_2) = x^{p-2}y$

and

$$i^*(\alpha) = x^{p-1/2}, \quad i^*(\beta) = x_1^{p-3/2}y,$$

we get the formulas of the Theorem.

q. e. d.

§ 6. The Hecke algebra $B \setminus GL_3(F_p)/B$ actions.

In this section, we adapt the notations to those of [12] so as to simplify the computations. Let U be a p-Sylow subgroup of $GL_3(F_p)$ which is generated by

$$a = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

THEOREM 8. [6], [8].

(1) If p=2, the algebra $H^*(U,Z)$ are generated by elements y_1 , y_2 , e, v, where $|y_i|=2$, $1 \le i \le 2$, |e|=3 and |v|=4. The relations are submitted to the relations

$$2y_1=2y_2=2e=4v=0$$
 and $y_1y_2=0$, $e^2=(y_1+y_2)v$.

(2) If p is an odd prime, the algebra $H^*(U,Z)/\sqrt{0}$ are generated by elements y_1, y_2, b_{p-2}, v where $|y_1|=2, 1 \le i \le 2, |b_{p-2}|=2(p-1)$ and |v|=2p. The relations are submitted to the relations

$$\begin{aligned} p y_1 &= p y_2 = p b_{p-2} = p^2 v = 0 \quad and \quad b_{p-2}^2 &= y_1^{p-1} y_2^{p-1}, \\ y_i b_{p-2} &= y_i y_j^{p-1}, \ y_1^p y_2 = y_1 y_2^p. \end{aligned}$$

Next we recall some facts about the elements of $H^*(U, \mathbb{Z})$ which are in the images by the correstriction map. If p is an odd prime, we have the ring isomorphism

$$H(\langle a, c \rangle, Z) \cong Z/pZ[y_1, u] \otimes A(\beta(xz))$$

for $*>0, |y_1| = |u| = 2, |\beta(xz)| = 3$

and $y_1 = \beta(x_1)$, $u = \beta(z)$, where x_1 and z are the dual elements of a and b with the identification $H^1(\langle a, c \rangle, Z/pZ) \cong \operatorname{Hom}(\langle a, c \rangle, Z/pZ)$ and β is the mod p Bockstein operation. If p=2, the above isomorphism is only additive. Let $i: \langle a, c \rangle \to U$ be the inclusion map and i and i be the correstriction and the restriction maps respectibly. Then we define

$$b_0 = i(u)$$
, if $p=2$

and

$$b_i = i_1(u^{i+1})$$
 for $1 \le i \le p-3$ and $b_{p-2} = i_1(u^{p-1}) + y_1^{p-1}$, if p odd.

Proposition 4. In case of p=2, we have

$$b_0 = y_1$$
 and $i^*(u) = u^2 + u y_1$, $i^*(y_1) = y_1$, $i^*(e) = \beta(xz)$.

Proof. The formulas above are proved in [6] except $b_0=y_1$. To prove this, we apply the cor-res exact sequence of Lewis [8] to $H=\langle a,c\rangle$ and G=U. Then we have

$$0 \longrightarrow H^{\mathfrak{s}}(U, Z) \stackrel{\rho}{\longrightarrow} T^{\mathfrak{s}} \stackrel{\tau}{\longrightarrow} H^{\mathfrak{s}}(U, Z) \stackrel{\bigcup \mathcal{Y}_{2}}{\longrightarrow} H^{\mathfrak{s}}(U, Z)$$

and

$$0 \longrightarrow H^{2}(a, c, Z)_{\langle b \rangle} \stackrel{\mu}{\longrightarrow} T^{3} \stackrel{\varepsilon}{\longrightarrow} H^{3}(a, c, Z)^{\langle b \rangle} \longrightarrow 0$$

where $\varepsilon \cdot \rho = \text{Res}$ and $\tau \cdot \mu = \text{Cor}$. We see that $H^2(\langle a, c \rangle, Z)_{\langle b \rangle} = Z/2Zu$ and $H^3(\langle a, c \rangle, Z)^{\langle b \rangle} = Z/2Z\beta(xz)$. From the cohomology of U and $\text{Res}(e) = \beta(xz)$, we see that $i_1(u)$ is y_1 .

THEOREM 8. [8]. Let p be an odd prime. Then the elements b_i defined above are non-zero and they are submitted to the relations in $H^*(U, Z)$

$$y_i b_i = 0$$
, if $1 \le i \le 2$, $1 \le j \le p-3$

and

$$y_i b_{p-2} = y_i y_i^{p-1}, i \neq j, b_{p-2}^2 = y_1^{p-1} y_2^{p-1}.$$

Furthermore we have

$$i^*(v) = u^p - u^{p-1}$$
 and $i^*(y_1) = y_1$.

PROPOSITION 5. Let n=kp+r, $0 \le r < p$ be a positive integer. Then we have

$$i_1(u^n) = \sum_{i=0}^k {k \choose i} v^{k-i} y_1^{i(p-1)} i_1(u^{r+i}), i_1(0) = p.$$

Proof, We write u^{n+p} as $u^n(u^p-uy_1^{p-1})+u^{n+1}y_1^{p-1}$. From the formulas $i\cdot(a\cdot i^*(b))=a\cdot b$ and $i\cdot i^*(a)=pa$, we have

$$i(u^{n+p}) = vi(u^n) + y_1^{p-1}i(u^{n+1}).$$

Repeating this argument, we obtain the proposition.

q. e. d.

COROLLARY 1. $i(u^{p(p-1)}) = pv^{p-1} + y_1^{(p-1)^2} y_2^{p-1} - y_1^{p(p-1)}$.

Proof. Since $\binom{p-1}{i} \equiv (-1)^i \mod p$, it is immediate from the proposition.

THEOREM 9. [12].

(1) In the case of p=2, we have

$$H^*(B, Z)_{(2)} = H^*(U, Z)_{(2)}$$
.

(2) If p is an odd prime, the cohomology ring $H^*(B, Z)_{(p)}/\sqrt{0}$ are isomorphic to the subalgebra of $H^*(U, Z)_{(p)}/\sqrt{0}$ which is generated by

$$y_1^{p-1}, y_2^{p-1}, v^{p-1}, b_{p-2}$$
 and $(y_1y_2)^i v^{p-1-i}, 1 \le i \le p-1$.

Since $GL_3(F_p)=\coprod_{w\in S_3}BwB$, we have $B\backslash GL_3(F_p)/B=Z$ $\Big[\frac{1}{|B|}BwB\Big]$. We can identify BwB with $w\in S_3$.

THEOREM 10. The Hecke algebra actions on the generators of $H^*(B, Z)_{(p)}/\sqrt{0}$ are written as in the following tables.

(1) In the case of p=2,

w	(12)	(23)	the others
y ₁	0	<i>y</i> ₁	0
y ₂	y ₂	0	0
e	0	0	0
v	2v	2v	0

(2) In the case of an odd prime p,

w	(12)	(23)	the others
y_1^{p-1}	0	$b_{p-2}-y_1^{p-1}$	0
y_{2}^{p-1}	$b_{p-1}-y_2^{p-1}$	0	0
v^{p-1}	$y_2^{p(p-1)} - y_1^{p-1} y_2^{(p-1)^2}$	$y_1^{p(p-1)} - y_1^{(p-1)^2} y_2^{p-1}$	0
the others	0	0	0

Proof. We prove the theorem for w=(23) and $v^{p-1} \in H^*(B, Z)_{(p)}$. It is sufficient to consider the Hecke algebra actions on $H^*(U, Z)$ instead of $H^*(B, Z)_{(p)}$. So we have

$$\begin{split} v^{p-1} \Big(\frac{1}{|B|} BwB \Big) &= i_! (i^* c_w (v^{p-1})) = i_! (c_w (i^* v^{p-1})) \\ &= i_! (\prod_{\lambda \in F_p} (y_1 - \lambda u)^{p-1}) = i_! (y_1^{p(p-1)} + \Pi(u - \lambda y_1)^{p-1} - u^{p(p-1)}) \\ &= i_! (i^* y_1^{p(p-1)} + i^* v^{p-1} - u^{p(p-1)}) \\ &= p v^{p-1} - p v^{p-1} + y_1^{p(p-1)} - y_1^{(p-1)^2} y_2^{p-1} \\ &= y_1^{p(p-1)} - y_1^{(p-1)^2} y_2^{p-1}. \end{split} \qquad \text{q. e. d.}$$

Remark 6. This shows that the Hecke algebra $B\backslash GL_3(F_p)/B$ does not act as a scalar multiplication different from [7] and [11]. It seems to be occurred in the action of the Hecke algebra $B\backslash GL_n(F_q)/B$ on $H^*(B)$ generally. In the sence, the tables would give us a non trivial example of a theorem [4].

REFERENCES

- [1] J. AGUADÉ, The cohomology of the GL_2 of a finite field, Arch. Math., 34 (1980), 509-516.
- [2] A. BABAKHANIAN, Cohomological methods in group theory, Marcel Dekker, Inc. 1972.

- [3] H. CARTAN AND S. EILENBERG, Homological algebra, Princeton Univ. Press, Princeton, 1956.
- [4] E. CLINE, B. PARSHALL AND L. SCOTT, Cohomology of finite groups of Lie type, Publ. Math. I.H.E.S., 45 (1975), 169-191.
- [5] L. Dickson, A fundamental system of invariants of the general linear group with a solution of the form problem, Trans. Amer. Math. Soc., 12 (1911), 75-98.
- [6] L. EVENS, On the Chern classes of representation of finite group, Trans. Amer. Math. Soc., 115 (1965), 180-193.
- [7] M. Kuga, W. Parry and C.H. Sah, Group cohomology and Hecke operators, Manifolds and Lie groups, Birkhauser (1981), 223-266.
- [8] G. Lewis, The integral cohomology rings of groups of order p³, Trans. Amer. Math. Soc., 132 (1968), 501-529.
- [9] S. MAC LANE, Homology, Springer 1963.
- [10] R.G. SWAN, The p-period of a finite group, Illinois J. Math., 4 (1960), 341-346.
- [11] Y.H. RHIE AND G. WHAPLES, Hecke operators in cohomology of groups, J. Math. Japan, 22 (1970), 431-442.
- [12] M. TEZUKA AND N. YAGITA, The mod p cohomology ring of $GL_3(F_p)$, J. Algebra, 81 (1983), 295-303.
- [13] M.-J. Dumas, Notes des membres et correspondants et notes présentées ou transmises par leurs soins, C.R. Acod. Sci. Paris, 260 (1965), 5655-5658.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY OHOKAYAMA, MEGURO-KU, TOKYO