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ON COMPLEX OSCILLATION AND A PROBLEM OF OZAWA

By J. K. LANGLEY

Abstract
It is shown that if @ (z) is a non-constant polynomial, then all non-trivial solutions of
Y+ (e*+Q(2))y=0

have zeros with infinite exponent of convergence. Similar methods are used to settle
a problem of M. Ozawa: if P(z) is a non-constant polynomial, all non-trivial solutions of

Y +e*y'+ P(2)y=0
have infinite order.

1. Introduction.

We are concerned with the order of growth of solutions of the differential
equation

¥+ A(z)y'+B(z)y=0 (1.1

where A(z) and B(z) are entire functions of finite order, not both polynomials.
Denoting by ¢(g) the order of an entire function g, we note that if ¢(B)>a(A)
then it follows at once from the lemma of the logarithmic derivative (see [11])
that all non-trivial solutions of (1.1) are entire functions of infinite order. Ho-
wever, if ¢(B)<c(A) it may be difficult to determine whether (1.1) can have
non-trivial solutions of finite order, although since a finite order solution cannot
grow large when A(z) is close to its maximum modulus in this case, certain
equations (for example if A(z)=sin(z")) are easily dealt with.
Ozawa [13] considered the equation

y'+e?y’ +P(z)y=0 (1.2)

where P(z) is a polynomial. A result of Frei [7] states that if P is a constant,
then (1.2) has a solution of finite order if and only if P=—n? where n is an
integer. (See also [3] for a result on the oscillation of solutions of (1.2) when
P is a constant). The case where P is non-constant is more difficult to resolve
and results of Ozawa [13], Amemiya and Ozawa [1], and Gundersen [9] may
be summarised as follows:
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THEOREM A. Let P(z)=a,z"+a,z?+:-+a, be a non-constant polynomual.
Then all non-trivial solutions of

¥'+e"y' +P(z)y=0

have infinite ovder 1f P(z) satisfies any of the following:
(@) n s odd;
(b) n is even, and n=2p+3;
(¢) n=2, and a,=a,=0;
(d) n is even, and a,(—1)"'* 1s not real and negative.

Now the problem of the growth of solutions of (1.1) is related to that of
the oscillation of solutions of
y'+A(z)y=0 (1.3)

where A(z) is a transcendental entire function of finite order. Denoting by A(g)
the exponent of convergence of the zeros of g, it is shown in [2] that the
product E(z) of two linearly independent solutions f; and f, of (1.3) itself satisfies

4A=(E'/Ey—-2(E"/E)—(1/E?) (1.4)

after a normalisation which makes tne Wronskian of f; and f, equal to 1. Now
(1.4) implies that if A(F) is finite then so is ¢(F) and moreover E is small where

A is large so that if, for example, a(A)<-;— then A(E) must be infinite (see [2]).

It is conjectured that if A(E) is finite then ¢(A) must be a positive integer. On
the other hand examples of integer order do exist—there are pairs of polynomials
P and Q (see [5]) whose degrees dp, dg satisfy

do+2=2dp
such that the equation
¥+ (F+Q)y=0 (1.5)

has two linearly independent non-vanishing solutions. These examples make
the following result sharp [5]:

THEOREM B. Let A(z) be a transcendental entire function of finite order p
with the following property: there exists a set HS R, of measure zevo, such that
for each real 6 not in H, either

(i) r V| A@e)|—co as r—oo, for each N>0,

or )
(i) Sor!A(rew)Idr<oo,

or
(iii) there exists n=0, possibly depending on 6, such that (n+2)<2p and

Alre*H=00r") as r— oo,
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Then if f,, f, ave linearly independent solutions of
'+ A(z)y=0

we have max{A(f,), A(fs)}=00.

Now if (1.4) has a solution E of finite order, which must be the product of
two solutions of (1.3) (see [4]), then E can only grow large where the growth
of A(z) is bounded by some power of |z|. In view of this fact, Theorem B and
the examples preceding it, it is of interest to consider equations of the form
(1.5), and the following was proved in [5]:

THEOREM C. Let K=C and suppose that
frH(e—K)f=0 (1.6)

has a non-trivial solution with A(f)<oco.
Then
K=¢*/16 (L7

where q is an odd integer. Conversely if K satisfies (1.7) with ¢ odd, then (1.6)
has two linearly independent solutions f,, f, with A(fif2)=1.

We remark that this result gives examples where ¢(E) is finite, but E has
zeros, although it seems worth noting that ¢(E)=0(A) and the author is unaware
of any examples of solutions of (1.4) for which A is transcendental and

d(A)<ag(E)<c.

In the case where P is linear and Q is non-constant we are able to prove
the following :

THEOREM 1. Let Q(z) be a non-constant polynomial, and let a=C. Then
every non-trivial solution f of

¥+t +Q(2)y=0 (1.8)
satisfies A(f)=co.

Now it turns out that (1.8) can only have a solution f with A(f)<co if the
equation

y”+(2ce”2-—%>y’+ (Q(Z)+I16)y=0,

where ¢=C\{0}, has a solution of finite order (see §3 for a proof of this fact)
and of course this equation is very close to (1.2). By similar methods to those
of Theorem 1 we are able to settle Ozawa’s problem:

THEOREM 2. Let Q(z) be a non-constant polynomual. Then all non-trivial
solutions of
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y"+Ae?y’ +Q(2)y=0 (1.9)
have infinite order, for any A= C\{0}.

The author would like to acknowledge very valuable conversations with
S. Bank.

2. Notation and Preliminary Lemmas.

We define an R-set to be a countable set of discs in the plane the sum of
whose radii is finite, and remark, following Hayman [10], that the set of # for
which the ray »e¢‘? meets infinitely many discs of a given R-set has measure zero.

A key role is played by the following lemma:

LEMMA 1. Let S be the strip
Z=x+iy, X=X, lyl=4.

Suppose that in S
Q@)=a,z"+0(|z|"*?)

where n 15 a positive integer and a,>0. Then there exists a path I" tending to
infinity in S such that all solutions of

¥ +Qy=0
tend to zero on I.

Proof. We set N=(n+2)/2 and
z={. Quyrat
for some large a in S. Then Z satisfies
z={_ krr(+0u-)de

= kyzV+o(|2z|¥) 2.1
in the smaller strip S; given by
ngl) ’ y | §2 .

Here k., k., --- denote positive constants.
We assert that Z is univalent in the strip S, given by

xeZr |y|§1

for some large x,. For suppose that z and z, are in S,. Then since
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2N-1
Z‘V—Z{V:(ZN""Z{V)”(Z—Zl)zf”'1<1+"'+<§;) )
we have
|2V —z{ | = ksl z—z; Imax{|z]| V-2, |z | ¥} 2.2)

using the fact that Re((z/z;)?)>0 for ;=I1, ---, 2N—1 if x,is large enough. So
(2.1) and (2.2) imply that if z, and z, are large with Z(z,)=Z(z,), then |z;—2z,]|
<1/2. But then applying Rouché’s theorem on the circle |z—z,|=1/2, and using
(2.1) and (2.2) we see that Z(z)—Z(z,) has but one zero in |z—z,|<1/2.

We assert now that if X is large and positive, Z(z) takes the value X at
some point in S,. This follows again from Rouché’s theorem. Set x,=X?.
Then on the circle |z—x,|=1/2, using (2.2), we have

Z(z)—X=(14o))(z" —x7).
We now choose I’ to be the preimage in S, of the half line .£ given by
z=X, X=X,
with X, large. We make the standard transformation
¥(@)=0Q(z)"VU(Z) (2.3)
so that U(Z) satisfies

d*u

4z TA—F@2)U=0

where
1Q"(z) 5 Q)¢
4 Q= 16 Q(z)* °

Hence, for large z in S, and Z=Z(=2),

F(Z)=

F(Z)=0(|z|-"**)
=01z
so that writing

U(Z>=U1(Z)+Si sin(Z—OFP (OUG)dt

where U, satisfies
we obtain

U1kt ksl IFOUEIdE
0

for Z on £ so that U is bounded on .£ by Gronwall’s lemma ([6], p 35). By
(2.3) we see that y(z)—0 on I
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We require the growth estimate below, deduced in [5] from Herold’s com-
parison theorem [12]:

LEMMA A. Suppose that A(z) is analytic in a sector containing the ray .L:
ret’ and that as r—oo,

A@ret)=00")
for some n=0. Then all solutions of
¥+ A(2)y=0

satisfy
10g+ [ y(re”’) | :O(T("+2)/2)

on L.

3. Proof of Theorem 1.

We assume that (1.8) has a solution y(z) with A(y)<oco. By a translation
we may assume that

Q2)=a,2"+a,-2" % --- 3.1
if n=2 or
Qiz)=az (3.2)
if n=1. We define the critical rays for Q as those rays re*? for which
Arga,+(n+2)0=0 (mod 2x)

and remark that the substitution z=xe®’ transforms the equation (1.8) into
d2y i0 ya+zetl
W——l—(e? ea+oe™” 1-Qy(x))y=0,
where Q(x)=a;x"+0(x"?) and a;>0. By Lemma 1, for any critical # lying
in (%, %ﬁ—) there exists a path I, tending to infinity, such that arg z—@ ‘on
I’y while y(z)—0 there.
A representation for y(z).
Since A(y)<co we may write y=IIe" where o([l) is finite, so that

ﬂ 217, ’ ” ’2 zZ+a o
7 T M R e+ Q=0. (3.3)

We differentiate (3.3) and subtract (3.3) from the differentiated equation, and
find that

h'(2h" —h’)=P(h’)
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where P(h’) is a differential polynomial in A’, linear in A’, A7, ---, and with
coefficients which are differential polynomials in /7//II. Clunie’s Lemma applies
([117, p 68) and we deduce that

2h"—h'=Py(z),
with P; a polynomial, so that
h'=ce**+ Py(z), (3.4)

where ¢ is a constant and P, is a polynomial. We then set
— z/2__£
y——Wexp(Zce 4) (3.5)

and substitute in the equation (1.8). (This device is due to S. Bank.) We remark
that by (3.4) and (3.5), W has finite order since /7 has.
Now W satisfies

1 1
4 2/2___ ’ 2,2 Z2+a _ —
W+ (2cet 2>W +(crer e +Q(z)+16)W 0.
Setting V=W’/W we have
1 1
’ 2 2/2__ 2,2 2+a il Jp—
VIVt (20— )V (et Q)+ 55) =0 (3.6)
Since
[V [+1V]=0(z|")
outside an R-set U we deduce from (3.6) that ¢*=—e® Moreover, if ¢ =
(le, %) is such that the ray re'* meets only finitely many discs of U we see
that V=o0(|z|-%) as z tends to infinity on this ray and hence that W tends to a
finite, non-zero limit. Applying this reasoning to a set of ¢ outside a set of

zero measure we deduce by the Phragmén-Lindeléf principle that with no loss
of generality, if ¢ is positive, then

Wret?) —> 1 3.7
as r—oo with |6| <Z ¢, We deduce also from (3.5) that W—0 along the paths

2
I'y determined by the critical rays in the sector —g—<0 < %E

The order of W.
By Lemma A, y(z) satisfies

log*|y(re*’)|=0(r ™+»1%) 3.8)

as r—oo, for any 6 in [% %’”—] Thus (3.5), 3.7), 3.8) and the fact that ¢ is
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arbitrary imply that, by the Phragmén-Lindeléf principle,

(W)= "erz . 3.9)

Conclusion of the proof. 3

If n=1, at least one critical 8 for Q(z) must lie in (izr—, —25) But this
implies the existence of an unbounded domain of angular measure at most %‘i—
&, bounded by a path on which W(z)—0 and a ray on which W(z)—1. But then
the Phragmén-Lindel6f Theorem (see eg. [8], p 104) implies that ¢(W)=3, since
¢ is arbitrary, and this contradicts (3.9).

In the case n=2 we claim that ¢9=-72E is a critical ray for Q(z). For other-

wise there exists a critical 4 for Q in

2
n+2

T T
0l <0< 1 +
and the same reasoning as above, with

1= 2n
=3 (34572 )
n+2

2
on a path /';,, on which arg z—ag and this combined with (3.7) provides a

, contradicting (3.9). But now by Lemma 1, W(z)—0

implies that a¢(W)>
contradiction.

4. Proof of Theorem 2.

Since the proof is very similar to that of Theorem 1 we present only a
sketch. Assuming that (1.9) has a solution y(z) of finite order and that Q(z)
satisfies (3.1), or (3.2) if Q is linear, we deduce as in the proof of Theorem 1
that, given any position ¢, with no loss of generality

y(z) —>1 (4.1)
as z=re'? oo with %+e<0<%—e.
We now set
Y=uv (4.2)
where
A -2
v:exp<§e ) (4.3)

and u satisfies
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u”+ <Q(z)—‘%e‘“+i;1—e‘z)u:0. (4.4)

Now, as z—oo with |arg z| <%, we see that v(z)—1, while on the strip

z=x+1y, |x]=4

|v(z)] is bounded above and below. Defining again the critical rays for Q(z)
as those rays re'? for which

Arga,+(n+2)0=0 (mod 27)
we deduce from (4.2), (4.3), (4.4) and Lemma 1 that for any critical ray with @
lying in (:21, —g) there exists a path I’y on which u(z), and moreover y(z),
tend to zero, and on which arg z—§, while the same is true if n=2 and =+
-g— is a critical ray.
As in the proof of Theorem 1 we obtain from Lemma A the estimate

n+2
2

and proceed to a contradiction as follows. If n=1 some critical ray for Q must
lie in (;2”—, %) and we find that y(z)—1 on a ray and y(z)—0 on a path which
together bound a region of angular measure at most —375—1—5, implying that o(y)

o(y)= , (4.5)

>~23—, which contradicts (4.5). On the other hand if n=2 the same reasoning
T
2
to zero on a path I'.,,. Since y has finite order and ¢ is arbitrary, this and
(4.1) provide a contradiction.

implies that #=-= is a critical ray for Q(z) and again we find that y(z) tends
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