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ON COMPLEX OSCILLATION AND A PROBLEM OF OZAWA

BY J. K. LANGLEY

Abstract

It is shown that if Q(z) is a non-constant polynomial, then all non-trivial solutions of

have zeros with infinite exponent of convergence. Similar methods are used to settle
a problem of M. Ozawa : if P{z) is a non-constant polynomial, all non-trivial solutions of

have infinite order.

1. Introduction.

We are concerned with the order of growth of solutions of the differential
equation

y"+A(z)y'+B(z)y=0 (1.1)

where A(z) and B(z) are entire functions of finite order, not both polynomials.
Denoting by σ(g) the order of an entire function g, we note that if σ(B)>σ(A)
then it follows at once from the lemma of the logarithmic derivative (see [11])
that all non-trivial solutions of (1.1) are entire functions of infinite order. Ho-
wever, if σ(B)<σ(A) it may be difficult to determine whether (1.1) can have
non-trivial solutions of finite order, although since a finite order solution cannot
grow large when A(z) is close to its maximum modulus in this case, certain
equations (for example if A(z)—$m(zn)) are easily dealt with.

Ozawa [13] considered the equation

y"+e"y'+P(z)y=0 (1.2)

where P{z) is a polynomial. A result of Frei [7] states that if P is a constant,
then (1.2) has a solution of finite order if and only if P= — n2, where n is an
integer. (See also [3] for a result on the oscillation of solutions of (1.2) when
P is a constant). The case where P is non-constant is more difficult to resolve
and results of Ozawa [13], Amemiya and Ozawa [1], and Gundersen [9] may
be summarised as follows:
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THEOREM A. Let P(z)=anz
n+apz

p-\ Va0 be a non-constant polynomial.

Then all non-trivial solutions of

y"+e-zy'+P(z)y=0

have infinite order if P(z) satisfies any of the following:

(a) n is odd;
(b) n is even, and n^2p-\-3;
(c) n=2, and α ^ α o ^ O ;
(d) n is even, and an(—l)n/2 is not real and negative.

Now the problem of the growth of solutions of (1.1) is related to that of
the oscillation of solutions of

y"+A(z)y=0 (1.3)

where Λ(z) is a transcendental entire function of finite order. Denoting by λ(g)
the exponent of convergence of the zeros of g, it is shown in [2] that the
product E(z) of two linearly independent solutions fx and/ 2 of (1.3) itself satisfies

4A=(E'/E)2-2(E"/E)-(1/E2) (1.4)

after a normalisation which makes tne Wronskian of fx and f2 equal to 1. Now
(1.4) implies that if λ(E) is finite then so is σ(E) and moreover E is small where

A is large so that if, for example, σ(A)<— then λ(E) must be infinite (see [2]).

It is conjectured that if λ(E) is finite then σ(A) must be a positive integer. On
the other hand examples of integer order do exist—there are pairs of polynomials
P and Q (see [5]) whose degrees dP, dQ satisfy

such that the equation

y"+(ep+Q)y=0 (1.5)

has two linearly independent non-vanishing solutions. These examples make
the following result sharp [5] :

THEOREM B. Let A(z) be a transcendental entire function of finite order p
with the following property: there exists a set H<^=R, of measure zero, such that
for each real Θ not in H, either

( i ) r-N\A(reiθ)\-*cχ> as r->oo, for each N>0,
or poo

(ii) r\A(reiθ)\dr<oo,
Jo

or
(iii) there exists n^O, possibly depending on θ, such that (nJr2)<2ρ and

= O(rn) as r ->co.
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Then if flf f2 are linearly independent solutions of

y"+A(z)y=O

we have
Now if (1.4) has a solution E of finite order, which must be the product of

two solutions of (1.3) (see [4]), then E can only grow large where the growth
of A(z) is bounded by some power of | z |. In view of this fact, Theorem B and
the examples preceding it, it is of interest to consider equations of the form
(1.5), and the following was proved in [5] :

THEOREM C. Let K^C and suppose that

f"+(ez-K)f=0 (1.6)

has a non-trivial solution with λ(f)<co.
Then

K=q>/16 (1.7)

where q is an odd integer. Conversely if K satisfies (1.7) with q odd, then (1.6)
has two linearly independent solutions flf f2 with

We remark that this result gives examples where σ(E) is finite, but E has
zeros, although it seems worth noting that σ(E)=σ(A) and the author is unaware
of any examples of solutions of (1.4) for which A is transcendental and

σ(A)<σ(E)<oo.

In the case where P is linear and Q is non-constant we are able to prove
the following:

THEOREM 1. Let Q(z) be a non-constant polynomial, and let a^C. Then
every non-trivial solution f of

)y=b (1.8)
satisfies Λ(/)=oo.

Now it turns out that (1.8) can only have a solution / with λ(f)<oo if the
equation

where C G C \ { 0 } , has a solution of finite order (see §3 for a proof of this fact)
and of course this equation is very close to (1.2). By similar methods to those
of Theorem 1 we are able to settle Ozawa's problem:

THEOREM 2. Let Q(z) be a non-constant polynomial. Then all non-trivial
solutions of
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y"+Ae-'y'+Q(z)y=0 (1.9)

have infinite order, for any A^C\{0}.

The author would like to acknowledge very valuable conversations with
S. Bank.

2. Notation and Preliminary Lemmas.

We define an R-set to be a countable set of discs in the plane the sum of
whose radii is finite, and remark, following Hayman [10], that the set of θ for
which the ray reiθ meets infinitely many discs of a given R-set has measure zero.

A key role is played by the following lemma:

LEMMA 1. Let S be the strip

z—x-\-iy, χ^χo> l:vl^4.

Suppose that in S

Q(z)=anz
n+O(\z\n~2)

where n is a positive integer and an>0. Then there exists a path Γ tending to
infinity in S such that all solutions of

y"+Qy=0
tend to zero on Γ.

Proof. We set N=(n+2)/2 and

Z=[2Q(t)ί/2dt
Ja

for some large a in S. Then Z satisfies

N-χ) (2.1)

in the smaller strip Sx given by

Here klf k2, ••• denote positive constants.
We assert that Z is univalent in the strip S2 given by

for some large x2. For suppose that z and z1 are in S2. Then since
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we have

\N'1ί \ z 1 \ N ~ 1 } (2.2)

using the fact that Re((z/z1)
i)>0 for j = l, •••, 27V—1 if x2 is large enough. So

(2.1) and (2.2) imply that if zγ and z2 are large with Z{z^)—Z{z2), then \zγ—z2\
<l/2. But then applying Rouche's theorem on the circle \z—z1\=l/2, and using
(2.1) and (2.2) we see that Z(z)—Z(z1) has but one zero in \z—z1\<l/2.

We assert now that if X is large and positive, Z(z) takes the value X at
some point in S2. This follows again from Rouche's theorem. Set x3—X1/N.
Then on the circle \z—xs\=l/2, using (2.2), we have

Z(z)-X=(l+o(l)){zN-x?).

We now choose Γ to be the preimage in S2 of the half line X given by

with XQ large. We make the standard transformation

so that U(Z) satisfies

d2U

dZ2

where

+ (l-F(Z))ί/=0

4 Q(zY 16

Hence, for large z in S2 and Z—Z{z),

= O( |Z |- 2 )

so that writing

sm(Z-t)F(t)U(t)dt

where ί/i satisfies

we obtain

\U\^kA+kSZ \F(f)U(t)\dt

for Z on i" so that ί/ is bounded on X by GronwalΓs lemma ([6], p 35). By
(2.3) we see that y(z)-*0 on Γ.
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We require the growth estimate below, deduced in [5] from Herold's com-
parison theorem [12]:

LEMMA A. Suppose that A(z) is analytic in a sector containing the ray X:
reiθ and that as r->oo,

A(reίθ)=O{rn)

for some n^O. Then all solutions of

y"+A(z)y=0

satisfy

log+\y(reίθ)\=O(r{n+2)ί2)

on X.

3. Proof of Theorem 1.

We assume that (1.8) has a solution y{z) with λ(y)<cΌ. By a translation
we may assume that

Q(z)=anz
n + an-iZ

n-*+~ (3.1)

if n^2 or

Q(z) = alZ (3.2)

if n = l. We define the critical rays for Q as those rays reiθ for which

Argα n +(n+2)0=O (mod2π)

and remark that the substitution z—xeiθ transforms the equation (1.8) into

dx2

where Qι(x)=a1x
n+O(xn~z) and «i>0. By Lemma 1, for any critical θ lying

in (-5-, —7z—) there exists a path Γ\ tending to infinity, such that arg z—>#_"on

Γθ while yCε)-^ there.

Λ representation for y(z).
Since Λ(j/)<oo we may write y—Ueh where σ{Π) is finite, so that

77" 077/

We differentiate (3.3) and subtract (3.3) from the differentiated equation, and
find that

hf{2h"-h')=P{h')
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where P(h') is a differential polynomial in h', linear in h'y h"', •••, and with
coefficients which are differential polynomials in W jTl'. Clunie's Lemma applies
([11], p 68) and we deduce that

2h"-h'=P1(z),

with Px a polynomial, so that

h'=ce«2+P2(z), (3.4)

where c is a constant and P2 is a polynomial. We then set

(3.5)

and substitute in the equation (1.8). (This device is due to S. Bank.) We remark
that by (3.4) and (3.5), W has finite order since 77 has.

Now W satisfies

Setting V=W'/W we have

e*'2-j)v+(c2ez+ez+a+Q(z)+^=0. (3.6)

Since

\V'\ + \V\=O(\z\»)

outside an R-set U we deduce from (3.6) that c2— — ea. Moreover, if φ <E

(-«Γ~> y ) is such that the ray reιφ meets only finitely many discs of U we see

that V=o(\z\-2) as z tends to infinity on this ray and hence that W tends to a
finite, non-zero limit. Applying this reasoning to a set of φ outside a set of
zero measure we deduce by the Phragmen-Lindelof principle that with no loss
of generality, if ε is positive, then

W(reίθ) — > 1 (3.7)

as r-»oo with | θ \ < -~- — ε. We deduce also from (3.5) that TF->0 along the paths

ΓQ determined by the critical rays in the sector y < # < - y - .

The order of W.

By Lemma A, y(z) satisfies

\og+\y(reiθ)\=O(r(n+2)/2) (3.8)

as r->oo, for any θ in \~, -γ\. Thus (3.5), (3.7), (3.8) and the fact that ε is
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arbitrary imply that, by the Phragmen-Lindelof principle,

(3.9)

Conclusion of the proof.

If w=l, at least one critical θ for Q(z) must lie in (—, -ψ) But this

implies the existence of an unbounded domain of angular measure at most -«-+
o

ε, bounded by a path on which W(z)->0 and a ray on which W(z)-*1. But then
the Phragmen-Lindelof Theorem (see eg. [8], p 104) implies that σ(W)^3, since
ε is arbitrary, and this contradicts (3.9).

In the case n ^ 2 we claim that 0 = -^- is a critical ray for Q(z). For other-

wise there exists a critical θ for Q in

π π , 2π

2 2 ' n + 2

and the same reasoning as above, with

implies that σ(W)> —^—, contradicting (3.9). But now by Lemma 1, W(z)-*0

on a path Γπ/2 on which arg ^~>y and this combined with (3.7) provides a

contradiction.

4. Proof of Theorem 2.

Since the proof is very similar to that of Theorem 1 we present only a
sketch. Assuming that (1.9) has a solution y(z) of finite order and that Q(z)
satisfies (3.1), or (3.2) if Q is linear, we deduce as in the proof of Theorem 1
that, given any position ε, with no loss of generality

as z^=reίθ->oo with y + ε < # < — ε.

(4.1)

We now set

y = uv (4.2)

where

() (4.3)

and u satisfies
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= 0 . (4.4)

Now, as.2-»oo with | a r g ^ | < y , we see that Kz)->1, while on the strip

z=x+iy, |* |^Ξ4

|v(z)| is bounded above and below. Defining again the critical rays for Q(z)
as those rays reίθ for which

Argan+(n+2)θ=0 (mod2ττ)

we deduce from (4.2), (4.3), (4.4) and Lemma 1 that for any critical ray with θ

lying in (—«—, y ) there exists a path Γθ on which u(z), and moreover y{z),

tend to zero, and on which arg z—>θ, while the same is true if n^2 and θ~±

— is a critical ray.

As in the proof of Theorem 1 we obtain from Lemma A the estimate

c O O ^ , ( 4 . 5 )

and proceed to a contradiction as follows. If n~\ some critical ray for Q must

lie in \r~κ~, -y) and we find that y(z)-*l on a ray and y(z)-*0 on a path which

together bound a region of angular measure at most -~-+s, implying that σ(y)

3
>—, which contradicts (4.5). On the other hand if n ^ 2 the same reasoning

implies that θ—-^- is a critical ray for Q(z) and again we find that y(z) tends

to zero on a path Γπ/2. Since 3; has finite order and ε is arbitrary, this and
(4.1) provide a contradiction.
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