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ORIENTATION REVERSING INVOLUTIONS

ON BRIESKORN SPHERES

BY YASUHIKO KITADA

§1. Introduction and Results.

Free involutions on homotopy spheres have been studied extensively by
many topologists, and in particular, when the sphere bounds a parallelizable
manifold, interesting examples have been constructed using Brieskorn spheres
or plumbing methods ([1], [2], [5], [6], [7]). But as for non-free involutions,
especially when the involution reverses the orientation, few results have been
known so far.

The purpose of this paper is to classify the orientation reversing involutions
on Brieskorn spheres of dimension 4& + 1 which are defined by the conjugation
of complex numbers. In this case, the fixed point set is of dimension 2k and
to classify these examples, we meet with the failure of the " Gap Hypothesis "
([3], [9]). However, with the aid of Z2-surgery theory due to K. H. Dovermann
[4], this situation can be handled.

Le us begin with showing our examples. Let C?+ 2 be the complex (n+2)-
space with the conjugate involution, and fd be a polynomial function

where n is even, and d=2q+l is odd.
Denote by S2n+3 the unit sphere in C?+ 2 and set

The involution on C?+ 2 keeps W2

d

n+1 invariant and defines an involution Td on

The second construction is the equivariant attaching method ([1]). For a
unit vector x<EJRn+1, let θx be the reflection with respect to the hyperplane
normal to x:

θxy=y-2<x, y}x,

where <, > is the usual inner product in Rn+1. Let φ be the diffeomorphism of
SnxSn defined by

ψ(x, y)=(θxθyx, θxθyy).
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Then using the relation ΘAX—AΘXA~1 for i 4 e θ ( n + l ) , it is easy to verify that

ψq(χ, y)=((θ*0y)qx, (θxθyYy).

The diffeomorphism φ is equivariant with respect to the involution: (x, y)>-*
(x, —y) of SnxSn. Therefore we have an involution τq on the manifold

Σ\n+1=Sn x Dn+1 \J Dn+1 x Sn,

where Dn+1xSn is attached to SnxDn+1 via φq and the involution is given by
rβ(x, y)=(x, —y) About these two examples, we can prove their equivalence.

THEOREM 1. (Wlq+i, T2q+1) and (Σln+\ τq) are diffeomorphic involutions. In
fact they are diffeomorphic as Z2x0(n+ϊ) mani'folds. (For the O(n+l)-structuref

see [2], [6].)

Denote by St+r-\r) the unit sphere in Λ5.0BL, where Rι

+ (resp. BL) has the
trivial (resp. antipodal) involution. Since the fixed point set of Wlj+ί is Sn, we
have a Z2-equivariant homotopy equivalence:

W%ti—>S*n+1(n+l).

This map can be constructed as follows. Take an equivariant open disk neigh-
borhood U of a fixed point in W=W%lϊϊ, and consider the natural collapsing
map

f:W—>W/W-U.

Then W/W—U is Z2-homeomorphic to 52 n + 1(n-fl), and / is of degree=l, and
at the fixed point set, fz* is also a degree 1 map. By the result of Matumoto
[8], / is a Zg-homotopy equivalence.

For the Z2-equivariant normal cobordism class of our example, we have

THEOREM 2. Wlq+i is Z2-equivariantly normally cobordant to the linear
involution S2n+\n+l).

Finally, by the Z2-surgery theory, we can classify WijΛ1 for all q.

T H E O R E M 3. (Wljίί, T 2 β + 1) and (W%£++\, T2q>+1) are diffeomorphic as involu-

tions if q=q' (mod. 4) or ^ + ^ ' = 3 (mod. 4) holds.

Thus, when n + 2 is not a power of 2, Wl^ and Wt^\\ are Z2-equivariantly
diffeomorphic if and only if they are diffeomorphic forgetting the involution.

§ 2. Z2 X O(n+D-action on W\^}.

Let the action of O(w+1) be defined by A(z0, zu - , zn+1)=(z0> A(zlt •••, zn+1))
on W\ltl and on Σ2

q

n+1,
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A(x,y)=(Ax,Ay), for At=O(n+ϊ).

The orbit space is the 2-disk D2 in either case and the projection maps are
given by

P : WtSϊt — > D\ p(z0, zl9 •- , zn+1)=-zo/ro

where ro>O satisfies Γo+r§5 + 1=l and

π.2q -+D , π(x,y)- \x\*+\y\*

If we give the orbit space D2 the complex conjugate involution, these projections
are equivariant.

From the theory of O(n+l)-manifolds, these two examples are diffeomorphic
as O(τ2+l)-manifolds ([2], [6]). In our case, the involution commutes with the
O(n+l)-action and the fixed point set of the subgroup O(n —1) (i.e. Wlq+1 or Σ\)
meets every O(n+l)-orbit. Therefore, to prove the uniqueness of the involution
which is commutative with the 0(n+l)-action, it is enough to prove the unique-
ness of the involution on Wlq+1 or on Σ\.

The involution τ=τq on Σ\ satisfies the following properties:

(a) τ commutes with the O(2)-action.
(b) T commutes with the projection π onto the orbit space, where the orbit

space D2 is given the conjugation involution.
(c) The fixed point set of τ is S1 and lies over I G Z ) 2 .

LEMMA. The involution on Σ\ which satisfies the three conditions above is
unique up to O(2)~isotopy.

Proof. Express the points of Σ\—SιxD2\JD2xS1 by pairs of complex
Φq

numbers (x, y). The projection π: ΣI-+D2 is given by

and the attaching map can be written as

Φq(χ,y)=((χy)2qχΛχyYqy).

Let D1=ιntD2

f then the portion over Dlf π~1(D1) is an O(2)-bundle which is
usually called the regular bundle, and the singular bundle π~ι(dD2) consists of
the points with orbit type (0(2)/K) where

± 1

On (ΣDK, the N(K)/K (£;Z2)-action is given by (x, y)<-+(-x, -y). Consider
the total space of the singular bundle:



364 YASUHIKO KITADA

Σ<*>=O(2)/KxNlK)/κΣ*.

Identify 0(2)/K with S1 via the identification:

. ( a ~ ε b \ • _

' \b εa/ ' ε~ —

The N(K)/K-acύon corresponds to a+ib^>—(a+ib). The subset Σ{K) of points
having the isotropy type (K) can then be written as Σ{K)—SιXzβ

ι

f where
(z, w)~(—z, —w). The point \_z, w~]<^Σ{K) can be re-parametrized by the point
(u, v)<^S1xS1 such that (u, v)—(zwy w2). Then the O(2)-action on Σ{K) can be
expressed by

A(u, v)=(φ(A)u, v) if A(ΞSO(2) and

v,υ) if i4eO(2)-SO(2),

where ^ : 0(2)->0(2)/K^S1dC. The projection π:ΣiK)-*dD2 is just the second
projection map (w, z;) ->z;. We shall consider the involution τ on the singular
bundle Σ(K\ Given M G S 1 , choose ^ 1 G S 0 ( 2 ) such that 0C4)=κ. Since r com-
mutes with A, we have

r(u, v)=τ(φ(A) l, v)=τA(l, υ)=Aτ(l, v)

—A(σv, v)=(uσv, v),

where σ^ is an element of S1 such that τ(l, v)=(σΌ, v). Let
satisfy φ(B)—l. Then we have

τB(u, v)—τ(uv, v) = (ϋvσυ, v) and

Bτ(u, v)—B{uav1 v) — (ύσυv, v).

Hence vσυ=vσΌ must be real, i.e. συ—±v. However at the fixed point set of
the involution, v—1 and σΌ must be 1. This shows that τ(u, v)=(uv, v) on Σ{K).

Next we shall look at the involution on the regular bundle Σ3

q~Σ(K)-^D1.
Similarly as before, we may write

τ(A, v)=(Apv, v) for (A, v)t=O(2)xD1.

From the relation τ 2=id, we have pvρϋ=I (the identity matrix). Suppose that
pv<^SO(2), then for real v, we have (pυ)

2=I, and ρυ=±I. But since τ has no
fixed points on the regular bundle, pΌ cannot be /. On the other, as υ
approaches 1, the Z2-equivariant map O(2)-*O(2)/K must generate the fixed
point set. Therefore ρυ cannot be —/. This shows that pv$SO(2), and (pυ)

2

—I is always satisfied. Since the Z2-equivariant map

pυ:D1—*O(2)-SO(2)

is unique up to homotopy, the involution on Σ\ is unique up to O(2)-isotopy.
This proves Lemma.
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§3. Z2-Normal Cobordism and Surgery.

We shall next consider the normal cobordism class of the Z2-homotopy
equivalence for Wlq}}-*S2n+1{n+l). By using equivariant deformation or directly
by Theorem 1, we may replace Wlq+ί by a Z2X0(rc+l)-diffeomorphic manifold

(abbreviated Wε) where s is a small positive real number and d—2qJ

rl. Wε is
the boundary of the manifold

Fϊn+2={(zQ, zί9 - , zn

which also has the Z2X O(n+l)-action. Define

g:F*n+*—>D2n+2(n+l)

by g(z0, zu -" , zn+ι)=(wlt w2, -" , wn+ί), where wk=zk/Vl-\z0\
2, (k=l, 2, •••,

72+1). Then degree(g)=d and degree(gZa) = l. The normal bundle vFε of the
embedding of Fε in C?+ 2 is Z2-isomorρhic to CcxFε. Here, Cc is the one
dimensional complex vector space with the conjugation as the Z2-action. The
Z2-real vector bundle isomorphism τ> εxC c=r(C?+ 2) | Fε (τFε: tangent bundle of
Fε) shows that

—> C?+2xD2n+2(n+l)

Fε — > D2n+2(n+l)

is a Z2-normal map of degree=d=2#+l. We shall convert this normal map to
the one with degree=l.

Let ω = exp(2πz/d) be the primitive rf-th root of unity and pm —
(ε1/dωm, 0, •••, 0) (m=0, 1, •••, 2q=d—l) be the d points in Fε which constitute
the inverse image g^Φ, •••, 0). Then the involution fixes p0 and maps pm to
pd-m for m = l , •••, 2q. Let Z)m (m=0, 1, •••, 2#) be a (2n+2)-disk which is
mapped diffeomorphically to

where δ is a small positive real number. Then put

Since its boundary dF' is the disjoint union of dFε and 3Dm (m=0, 1,
jPr is a cobordism between

d-F'=dD0 and
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Next, remove 2q 1-handles from Ff to obtain a cobordism F" between d-Fff=

d-P'=dD0 and d+F"= & (-dDm)#dFε. To be precise, for ro=l, - , 2q take 2q
m=l

curves
Lm={(tε^dω^y ηi{ε{td-l)Y'\ 0, - , 0) [t&t^U],

where η=l (m=l, •••, q) or —1 (m=q+l, •••, 2#), and ^, ^ are real numbers
>1 satisfying

e ( ί ί

t f - l ) = 3 ( l - ί J V / d ) and

ε(t1

d-l)=l-t1

2ε2/d.

Again the involution maps Lm to Ld-m. Lm connects dDm to dFε. Remove 2q
1-handles with core Lm equivariantly and we obtain the cobordism F". By
construction it is easy to see that d+F" is diffeomorphic to dFe=W%lίfte. As
for the map, £ restricted to F' maps F' into D2n+2(n+l)-mt Dδ=S2n+\n+l)Xl,
where we identify dDδ with S 2 7 l + 1 (n+l)x0 and dD2n+2(n+l) with S a n + 1 ( n + l ) x l .
^ maps 3-F' to S 2 7 l + 1 (n+l)x0, but does not map dDmnd+P' to S 2 n + 1 (rc+l)xl
for m ^ l .

To make g a correct normal map, we can move g by homotopy relative to
(S^nδ+F'OwS-F'' to get a map (denoted by g') with g\d+P")cS2n+\n+l)Xl.
Moreover since the original map g maps each core Lm of the 1-handle to a line
in £) 2 n + 2 (n+l) and hence to a point in S2n+1(n..+l), this homotopy can be chosen
to preserve this property. Thus we obtain a Z2-normal map gf of degree=l:

g'\F"—>S2n+1(n+l)Xl,

between 3-/ ? Λ Γ=S 2 n + 1(n+l) and 3+F*=Wrϊfί1

1...

/ Theorem 3.
We begin with the case q'=0. To apply the Z2-surgery theory of Dovermann

[4], we must check three invariants for the normal cobordism F" constructed
above.
(1) At the fixed point set, the cobordism is already a product cobordism. Hence

the Z2 homology obstruction σZ2 vanishes.
(2) r=rank r a i I /if 1 J I + 1 (F^, Z) (mod. 2)

=rank z # 2 n + 1 GP", Z)/2 (mod. 2)
= ( d - l ) / 2 (mod. 2)=^ (mod. 2)

(3) The abstract Kervaire obstruction c (forgetting the Z2-action) is well
known:

JO if 2q+l=Ξ±l (mod. 8)

l l if 2 ? + 1 Ξ Ξ ± 3 (mod. 8).

From (2) and (3), if <?=0 (mod. 4), then all these obstructions vanish. On
the other, when #=3 (mod. 4), only r does not vanish. However, this case can
be handled in the following manner. Consider the involution (x, y)>->(y, x) on
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Sn+1xSn+1. Form a connected sum of P" with Sn+1xSn+1 around a fixed point
in the interior of F", This procedure does not change (1) and (3), but changes
r by one. Therefore surgery is possible when the abstract Kervaire obstruction
c vanishes. Thus by the equivariant s-cobordism theorem of Rothenberg [10],
we have proved Theorem 3 when qf—Q. For the general case, consider the
Z2-normal cobordism between S 2 n + 1 (n+l) and WiJVi. and glue it to F" along
S2n+\n+l) to obtain the Z2-normal cobordism between Wtξί}tt and W|jVi,β.
Then apply the same argument.

There is an alternative proof of Theorem 3 not using the result of Theo-
rem 2:

For two values of g, say q and g', take Fε for each g denoted by F(g) and
F(g') respectively. Then F(q) and F(g') are Z2-quivariantly parallelizable and
hence their connected sum along the boundary around a fixed point F(g)#F(g')
is also equivariantly parallelizable. Consider the equivariant surgery problem
of killing the homotopy groups of F(q)#F(q') relative to the boundary. As before,
we must examine the three invariants. The first obstruction σz* vanishes since
the connected sum of the fixed point sets, each diffeomorphic to Sn, is also
diffeomorphic to Sn. If g and g' satisfies the condition of Theorem 3, then the
third obstruction (abstract Kervaire obstruction) also vanishes. For the obstruc-
tion r, the argument goes similarly as before.
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