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THE CONNECTION BETWEEN THE SYMMETRIC SPACE

#7/SO(12) SO(3) AND PROJECTIVE PLANES

BY KENJI ATSUYAMA

Introduction.

Our aim is to grasp the geometrical and intuitive image of the exceptional
Lie groups. For this purpose we will solve a problem which is given by
H. Freudenthal ([4], p. 175) to justify the B. A. Rozenfeld's assertions for these
groups [6]. The problem asks us how to study, by making use of composition
algebras, the connection between projective planes and the symmetric spaces of
type £ΠI, EVl and EW in the sense of E. Cartan. As for type £ΠI, we in [2]
dealt with the compact and simply connected symmetric space E6/SO(l0)-SO(2).
In this paper we study, in series, the symmetric space E7/SO(12) SO(3) of type
EVl. The conclusion is that the space can be considered a projective plane in
the wider sense. Namely, it has the structure such that two general points are
contained in three and only three lines (Theorem 5.17). The number of such
lines studied in [2] is just one. In the last of this paper we mention the types
of symmetric spaces which are made of the lines passing through two points in
the singular position. The technique of calculations and the idea to obtain the
above results are all contained in [2].

1. Preliminaries.

We explain a model, according to [1], of the compact simple Lie algebra of
type E7 to construct the symmetric space E7/SO(12) SO(3) explicitly.

Let 91 be a composition algebra over the real field R. Define in 9ϊ a
symmetric inner product, a commutator and an associator by (a, b)=(ab+ab)/2,
[a, b~\~ab—ba and (a, b, c)—(ab)c—a(bc) respectively, where a, b, ce9ϊ and
—: a->a is the canonical conjugation of 9ί. Then any inner derivation of 91
can be generated by Da,b> where Da>b{c)=[£a, &], c]—3(α, b, c).

Let 9ϊ(1)(g)M3(g)9l<2) denote a tensor product over R composed of two com-
position algebras 9ϊ( ί) and one 3x3 matrix algebra M 3 with coefficients in R.
If the confusion does not occur, we write aXu instead of a(&X®u, where
βe9ϊ ( 1 \ we9i ( 2 ) and XGM3. A product is introduced into this vector space by
xy=abXYuv for x—aXu and y—bYv. Furthermore, an involution and a trace
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Tr are defined by aXu->άXτΰ and Tr{aXu)—atr{X)Iu respectively, where
T:X-*XT is the transposed operator of matrix, tr{X)={x11

JrX22.+Xzz)β for
X=(xtj)^M\ and / is the 3x3 unit matrix.

Let $1 denote a real vector space which is generated by all elements in
2ϊ(1)(g)M3(g)2ϊ(2) with the trace Tr 0 and the skew-symmetric form with respect
to the involution aXu->άXτU. Let L(2l(1), M3, 2I(2)) be the real vector space
DerW1)@<®l@DerW2) (direct sum), where Der%{i) is the Lie algebra of inner
derivations of 9l ( ί ). In this space we define an anti-commutative product [ , ]
in the following way:

(the Lie product of Der%{ί) (i=j)
(1) [£<*>, D<»1=\

I 0

(2) [ D

(3) For x=aXu and y=bYv in 3ft,

[*, >]=(*, Y){u, v)Daιb+(xy-yx-Tr(xy-yx))MX,

where Z>c<)eZter » ( < ) and (X, 7)=tr(Z, F). Then L(5ί(1), M3, 5ί(2)) becomes a
real Lie algebra by this product. If $ ( 1 ) is the Cay ley algebra © (over R) with
the non-split type, it is a compact simple Lie algebra of type F4, E6, EΊ or E8

according as 2l(2) is R, C, Q or (S, where C and Q are the fields of complex
and quaternion numbers with the non-split types respectively. The Killing
form B of L(6, Λf8, Q) can be given by BiDP+aXu+Di2*, DP+bYv+D^)
= 9 / 2 5 ( 1 W \ Z)2

(1))+216(α, fc)(j?, F)(M, V)+2ΊB™{D[2\ D2

(2)), where 5 ( 1 ) and 5 ( 2 )

are the Killing forms of DerQί and Z^erQ respectively.
For the remaining sections, we give a basis of (£ explicitly:

a b a s i s : £ 0 , β l f •••, β 7

rules of product:

eieJ=-ejeι (ί, / ^ l and

£0 is the unit element,

the canonical conjugation—: eo->eQ, ei-*—eι ( l^z^7).

Then R, C and Q can be realized as subalgebras in (£ which are generated by
{βo}, {βo, &\\ and {e0, eu e2, e3} respectively, and DerQ is also generated by
Dei,e2, De2>e3 a n d De3,ei.

2. Construction of a symmetric space 77.

Let © be the compact real simple Lie algebra of type EΊ, i. e.
©=L((£, M3, Q). We will construct a compact simply connected symmetric
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space 77 by the same method as Section 2 in [2]. It can be realized as a
subset of projections in the set End® of endomorphisms of ®, and its type is
£7/SO(12) SO(3) as a symmetric space.

Let % be the subset in ® consisting of all elements x which satisfy an
identity (ad x)((ad *)2+l)((ad x)2+4)—0, where ad x is the adjoint representation
of x and 1 is the identity transformation of ©. The eigenspaces of ad x,
for each X<Ξ36, can be given by ®0(x)={z(=® | (ad x)z=0} and ®t(x)=
{z^® I (ad x)2z=— ΐ2z}, i—l, 2. Three projections {Pi(x)\ of ®, moreover, can
be defined by P 0(*)=l+5/4(ad x)2+l/4(ad x)\ ΛU)=-4/3(ad x)2-l/3(ad xY and
P2(x)-l/12(adx)2+l/12(adx)4. These satisfy Pi(x)PJ(x)=0 (tΦj) and Po(x)+
P1(x)+P2(x):=:L Each Pt(x) is a projection of ® onto ®i(x). Hence ® has a
direct sum decomposition ®=®o(x)0®1(*)0®2(x), and (®o(x)0®2(*))0®i(*)
becomes a Cartan decomposition of © with respect to an involutive auto-
morphism 1—2Pχ(x) (=exp τr(ad x)).

/0 0 0
# ! = 0 0 1

\0 1 0
EXAMPLE. If we take

can be given by

in yRΓ\X, then the eigenspaces

dimension

DerQ 14+32+3-49,

44+20=64,

10+10-20,

where a, alf a2 (resp. b, blf b2) are linear combinations of eQ®ej and
(resp. eQ®e0 and e^βj), ί = l , 2, •••, 7 and / = 1 , 2, 3.

The action of the adjoint group G of © on End® is defined by g'h=ghg-\
where g e G and h^End®. Let 77 be the orbit of the projection Pλ{Kλ) by G
under this action, i.e. Π — ig-P^Kx) \ g^G). We note g-P^KJ—PiigKi). Then
the eigenspace ®i(g/£i) can be regarded as the tangent space of 77 at Pι{gKx),
and the eigenspace ®o{gK1)@®2(gK1) can also be regarded as the Lie algebra of
the isotropy group at PiigKJ for G. When we introduce a G-invariant Rie-
mannian structure into 77 by restricting the Killing form B of © to each
tangent space ®1{gK1), G equals to the identity component of the isometry
group of 77. Since the compact connected symmetric spaces of type EYl have
one locally isometry class (cf. [3], p. 411), the following assertion can be obtained
finally.
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PROPOSITION 2.1. Π is a simply connected compact symmetric space of type
EWl, that is, EΊ/SO(12)-SO(3) with the dimension 64. Each point P^gK^ of 77
has the geodesic symmetry l—2P1(gKί).

3. Maximal flat tori of 77.

From now on we will write P(x) simply instead of Px{x) as points of 77.
Three elements {Kt} in dί are defined by

where the unit elements e0 and the tensor product ® are omitted.
The matrix representation of a projection P((exρ ί(ad TQ)/^), fe/2, is first

given. We note that <S (=L(6, M\ Q))^Der^@W®DerQ and the set of
elements of © written in (2), (3) and (4) makes a basis of Wl. The following
matrices are the same as ones in [2], Section 3, and the direct product of these
matrices becomes the representation which we want to obtain.

(1) On Der&φDerQ, the form is the 0 matrix,
(2) On the each subspace consisting of eiKxe3, e^βj and eτKze3 (i, j=0 or

i, / ^ l ) , the form is

/ sin2? 0 1/2 sin 2A

0 1 0 ,

\l/2sin2ί 0 cos2ί /

(3) On the each subspace consisting of
o ( ί^ l) , the form is

, eil2eo, o, eiF2e0 and

l/2sin22ί l/2sin22ί

l/2sin22ί l/2sin22ί

0 0

1/4 sin 4ί 1/4 sin 4ί

0 1/2 sin it 0

0 1/2 sin it 0

sin22ί 0 -1/2 sin 2f

0 cos22ί 0

0 0 —1/2 sin 2ί 0 cos'f

/0 0 1
F 2 = 0 0 0

\1 0 0
and F 3 =

/I 0 0\ /0 0 0\ /0 0 0
where Iλ= 0 - 1 0 , / 2 = 0 1 0 , Ft= 0 0 1

\0 0 0/ \0 0 - 1 / \0 1 0
Ό 1 0\
1 0 0 ,
,0 0 0/

(4) On the each subspace consisting of ejιeχy ej2ex, e0Fίeι, e0F2ex and
e0Fset (i^l), the form is the same as that in (3).

LEMMA 3.1. The curve expf(ad/f2) -PCKi) in Π is a simply closed geodesic
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with the initial point P(Kχ) and the tangent vector K2. The period is π and the
length is 12τr.

Proof. We can derive the above assertions except the length / from the
matrix representation of the geodesic r(t)=expt(2LάK2)-P(K1). As B is the
Killing form of ©, —B gives an inner product, being positive definite, by the
definition of the Riemannian structure of Π. Since r(t) has the tangent vector
K2 at each point, its length is

= \\-B(f(t), f(t)))1/2dt=\\-B(K2,
Jo Jo

/

Remark. When the tangent vector of r(t) is eiK2el} i—l, 2 or 3, instead of
K2, the above lemma also holds by direct calculations (or by the same method
as [2], Lemma 3.2).

Let JPCKΊ) be the base point in Π. Since Π has the rank 4 as a symmetric
space and has the tangent space ®i(AΓi) at P(Kχ), the subspace %0 in ©1(^1),
spanned by tangent vectors K2, eιK2eίf e2K2e2 and ezK2ez, is a maximal abelian
subspace. Then the associated set T0={exρ(ad x)-P(Kι) \ x^%0} is a maximal
torus in Π passing through the base point P(/ίi). Next we define a mapping
φ of the 4-dimensional Euclidean space JR4 onto the torus T o by φ: (ί J->
exρ(ad x)-P{K1)> where (tt)=(tlt t2, t3, t4), tt^R, and x=ΣtieiK2eι. This mapping,
however, is not injective, and so we must establish the following criterion,
where Z is the ring of integers.

LEMMA 3.2. It holds that (tι)^φ-\P(K1)) if and only if (1) tt^π/2Z, for
each i, and (2) ΣtteπZ.

Proof. The necessity is first showed. Put a=exp(aά(Σ tieiK2eι)). If a P(Ki)
=P(K1) holds, then we have Pi^a^K^a^aPiK^a^K^a^Pi^K^a^Ks
because JP(AΓI) leaves K3 fixed as a projection of ©. Hence α ' ^ e ® ! ^ ) . The
same method also gives a-KeJ^zβ^®^^. The two relations imply the eight
identities

cos tt sin tj sin tk sin f t = 0 ,

sin tt cos tj cos tk cos tL—0,

where {1, j> k, /} = {1, 2, 3, 4}. These contain the three possible cases
such that, under the condition n ^ e Z for all /,

( i ) ((l/2+no)ίΓ, (1/2+nJπ, (l/2+n2)π, (l/2+n8)πr),
(ii) ((l/2+no)π, (1/2+nx)π, n2π, n3π) and its permutations,
(iii) {noπy n 3 π , n2π, n3π).

In the each case, the above (tι) satisfies the conditions (1) and (2) in the lemma.
Next the sufficiency is showed. If (tι)^Rά satisfies (1) and (2), the possible

cases for (tt) are only (i), (ii) and (iii) above. For (tt) in the each case, that
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^PiKJ can be derived from the fact that exp(adJ niπeiK2eι) P(K1)=P(K1),
, and

COROLLARY 3.3. It holds that φ(tt)=φ(st) if and only if (1) tι~si^π/2Z,
for each /, and (2) Σ(tι—si)<ΞπZ.

In the torus To we next find out the points which are commutative with
the base point P{KX) in Π as endomorphisms of ©.

LEMMA 3.4. A point exp(ad x)'P{Kλ), x ε β i K ) , « commutative with P(KX)
if and only if exρ(ad 2 x)>P(K1)=P(K1).

Proof. Put P=exp(ad x)-P(Kύ. Since the base point P(Kι) has the geodesic
symmetry 1—2P(K1) ( = α simply), we have a: P=α:(exρ(ad A;))α"1 α P(/fi) =
exp{aάax)'P(K1)=exp(ad-x) P(K1). If P and P ^ ) are commutative, it holds
that a-P=aPa-1=Pand, hence, exp(ad2x)-P(/f1)=P(/f1) from the above identity.
Conversely, if this equation holds, a-P=P, i.e. aP—Pa can be obtained. This
implies P(K1)P=PP(K1).

LEMMA 3.5. There are exactly fifteen points except P(KX) itself in the max-
imal torus To which are commutative with P{KX).

Proof. By Corollary 3.3, Lemma 3.4 and (i), (ii), (iii) in Lemma 3.2, the
points in To commuting with P(KX) have the coordinates (f*) with respect to φ:
(iv) (π/4, ττ/4, ίr/4, ττ/4) and (3τr/4, τr/4, τr/4, ττ/4), (v) (ττ/4, π/4, 0, 0), (3τr/4,
π/4, 0, 0) and these permutations, (vi) (τr/2, 0, 0, 0) and (0, 0, 0, 0). Its num-
ber is fifteen except (0, 0, 0, 0).

The points in 77 commuting with P(KX) can be characterized by the follow-
ing assertion.

PROPOSITION 3.6. The orbits of the points in Π, commuting with P(KX),
under the isotropy group at P(Kλ) become two compact connected submanifolds
which are also totally geodesic. One is a symmetric space of type S2 (SO(l2)/U(6))
consisting of the midpoints (the distance 3λ/2τr) of the shortest closed geodesies
with the initial point P(KX). The other is a symmetric space of type SO(12)
/SO(8) SO(4) consisting of the antipodal points {the distance 6π) of P(KX).

Proof. Let U be the isotropy group at P(Kλ) and Uo be its identity com-
ponent. First we show that the points of (v) in Lemma 3.5 are transitive one
another by Uo. Put α=exp7r/2(ad.De

(^e5), a is then an involutive automorphism
of (S and α e ί / 0 . The eigenvalues of a are, with respect to the Cayley numbers,
1 on the linear space {e0, es, e5, e6} and —1 on the linear space {elf e2, eA, en\.
Hence we can see a-φiπ/i, 7r/4, 0, 0) = α (exp7r/4 ad(/Γ2+0i#20i)) PCKi) =
exp π/i adiaKi+aeiKteJ-a-PiKt) = exp π/4 ad(/f8—e1/Γ£e1) P(/if1)=ίS(π/4, —τr/4,
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0, 0)=φ(π/4, 2>π/4, 0, 0) (by Corollary 3.3). Next, put a1=exp3π/2(aάe,K1e3)
and α:2=exp π/2(ad Kλ), it then holds that a1a2^UQ and a1aι φ(π/4, π/4, 0, 0)=
0(0, 0, π/4, π/4). The same method shows the transitivity for the others in (v).
That each point in (v) is the midpoint of the shortest closed geodesic can be
derived from (i), (ii), (iii) in Lemma 3.2.

Secondly, we show that the points of (iv) and (vi) in Lemma 3.5, except
(0, 0, 0, 0), are transitive one another by Uo. Put β=exρπ/4 ad(if1+£1/£1£1+
e^e^e^R^). It then holds that β^U0 and β φ(π/2, 0, 0, 0)=φ(π/4, — π/4,
—π/4, —π/4) (by direct calculations)=0(3π/4, π/4, π/4, π/4) (by Corollary 3.3).
If &=exp—π/2(ad e 4(/i+/ 2K), the inclusion 04(/i+/2K^@o(#i)Θ®2(#i) shows
β1^U0. Then, from β1K2——K2 and β1{eiK2ei)=eiK2eι (z'^1), we can see
βvφ{π/4, π/4, π/4, π/4)=φ(-π/4, π/4, π/4, π/4)=φ(3π/4, π/4, π/4,π/4). Lemma
3.2 implies that these points are antipodal points of P(KX).

From the above arguments and the transitivity of maximal flat tori passing
through the base point P(Kχ), we can obtain that the points, being commutative
with P{KX), make two compact connected submanifolds. That these are totally
geodesic can be seen from the fact that the tangent spaces of these spaces at
P(Kλ) are Lie triple systems (cf. [3], Lemma 2.1).

4. The roots of the symmetric space 77.

The Lie algebra © has a direct sum decomposition ©=(©oCβΊ)Θ®2CKi))Θ
®i(i£i). The subspace ®i(/fi) is the tangent space of Π at P(Kλ), and the sub-
space ©o(#i)Θ®2(#i) is the Lie algebra U of the isotropy group U at P(/Q.
The maximal flat torus To has the tangent space £ 0 at P(KX). This space is
spanned by {eiK2e% \ i=0, 1, 2, 3} and it is a maximal abelian subspace of ©i(ifi).
Now put ξ>0={D%e3+2D%e5, Dge^eMi-Iύeo, /?e(ϊίβ,-2e0(/i~/,)e1}, then this
is a subalgebra of U and gives a Cartan subalgebra ξ> of © such that ξ>=ΦoU£o.
Let Δ denote the set of roots which are obtained by the root space decomposi-
tion of © with respect to £>. We, furthermore, restrict the roots to £ 0 and get
a set Δ%^{1) of positive restricted roots of the symmetric space Π under an
adequate ordering. Define four sets by

(1) n(Q)={x(ΞVί I exp(ad %)•<?=(?}, for Q(=Π,
(2) U($o)={*eU| [x,£o]={O}},
(3) Uχ = {x^Vi I ly, ly, xll=λ(y)2x for any yeΞSo},
(4) Sλ = {QtΞT0 I <?=exρ(ad 3/) P( iQ and λ(y)<=πiZ for some J / G I O ) , where

Then we can have a useful identity U((5)=U(^o)Θ^U^, where Q e T 0 and the
index λ runs over the positive roots λ such that Q^Sχ (cf. [5], p. 64). Note
that the dimension of U(£o) is 9 and that of U; is equal to the multiplicity of
λ. If U(Q)=\X(%o) holds, Q is called a regular point (with respect to the base
point PiKJ). If not so, Q is called a singular point. By the transitivity of
maximal flat tori passing through P ^ ) , the definition can be applied for any
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point Q in Π and it is independent of the choice of maximal flat tori passing
through P(KX) and Q.

Finally we list the positive roots λ with respect to the operation ad(J£ aieiK2et),
a^eJR, and also list the eigenvectors corresponding to λ, i.e. elements in U .̂
The multiplicity of λ is 1 for the roots with the type — 2{aι±aj)i and is 4 for
the others.

Positive roots and eigenvectors.

2a0i:

2aμ: Dl1l

2(aQ±aj)i:

2(fl1±fl2)/:

-2{a2±a,)i:

^ 0 = 1 , 2, 3 and fe=4, 5, 6, 7)

εi, ε2, ε 3 = l or —1 and

5. The connection between Π and projective planes.

We first introduce two geometrical objects, points and lines, into the sym-
metric space 77 by the same method as Section 5 in [2] and study the connection
between Π and projective planes. The aim is to solve a problem by H.
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Freudenthal ([4], p. 175), but the result is different slightly from his conjecture,
namely, we assert that there are exactly three lines passing through two
general points.

Let L(P) denote the set of antipodal points of P. It coincides the set of
points which are commutative with P and have the distance 6π from P. We
call L(P) a line (associated with P) and call P a point again in the sense of
projective geometry. The incidence structure is defined by the inclusion relation
of sets. Let ΠL be the set of all lines in 77, then the structure of a manifold
can be introduced into 77 L from 77 because the correspondence L: P->L{P)
gives a bijection between 77 and 77L (see Lemma 5.1). Since all lines are
transitive one another by the isometry group of 77, they are diffeomorphic to
the line LiPiK^) as manifolds. Therefore, each line is a compact connected
symmetric space with the type SO(12)/SO(8) SO(4) (from Prop. 3.6) and has the
dimension 32.

From now on we will study the number of lines passing through two points
in 77. Our result can be summed up as Theorem 5.17. For this purpose we
begin to prepare some facts. Let U(Q) be the subgroup of U which leaves Q
fixed, where U is the isotropy group at the base point P(UΓi). Then U(Q) in
Section 4 is the Lie algebra of U(Q). Put Qi^PiXI2^Ki-e1Kie1-e2Kie2-ezKiez))y

ι = l , 2, 3, it then holds by direct calculations that Qί=φ(π/4, π/4, τr/4, π/4) and
ς?3=0(3τr/4, π/4, JΓ/4, JΓ/4). Hence Qlf QS^TO (but Q 2 $T 0 ). We can see later
that the set {α (?i | a^U(P(K3))}, denoted as Ω, is a totally geodesic submani-
fold in 77 and becomes a compact connected symmetric space with the type
SO(8)/SO(4) SO(4). Moreover put R^PiXβ^Λ-e^K^Λ-eJi^Λ-e^K^)), t=l,
2, 3, it can be also shown in Lemma 5.3 and Corollary 5.6 that Rx—R^—Rz,
R1} Qi^Ω and the fact that four points Rlt Qx are different from one another.
Note that two groups U(P(K2)) and U(P(KB)) are the same. This fact can be
derived from the identity (1-2P(K1))(1-2P(K2))(1-2P(K3))=1 and the commu-
tativity of these geodesic symmetries. The Lie algebra of U(P(Kd)) has a direct
sum decomposition U(P(/C3))=:SoΘS1 (ss0(8)0so(4)). The basis of So consists of
Der&, βiVh+IJeo ( i^l), ejte^ (*^Ό, and its dimension is 28 (=14+7+7). 2λ

has a basis consisting of eo(2I1+I2)ei—D^]ek, ej2elf where (i, j , k) runs over
the even permutations of (1, 2, 3), and its dimension is 6 (=3+3). Since
exp(adSi) leaves Qx fixed, this becomes only an identity transformation as
isometries of Ω. Finally we make three involutive automorphisms of © as

/I 0 0\ /0 0 1\ /0 1 0\
follows. Put Λ = 0 0 1 , Λ2= 0 1 0 , Λs= 1 0 0 , and define a transforma-

\0 10/ \10 0/ \0 0 1/
tion δi of matrices X for each i by <5*: X-+AιXAι. Since δi becomes an auto-
morphism of the matrix algebra M3, it can be extended as an automorphism of
© by δi:D

(1)+aXu+D™->Dw + a(δiX)u+D(2\ This extended map is also
denoted by δt.

LEMMA 5.1. The correspondence L \Π-+ΠL is a bijective map and also gives
the duality for the incidence structure.
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Proof. From the transitivity of points in 77, it is sufficient to show that
L{P{KX))^L{Q) implies P{KX)=Q. Then there exists aeUiPiKJ) such that
α-QeTo by the transitivity of maximal flat tori passing through P(Kλ). Since
α L(P(/fi))=α L(Q) means L(P(KJ) = L(a-Q)9 the point a Q is commutative
with any point in L{P(KJ>)9 especially with Qίf Q3 and P{K3) in TQ. Moreover
a-Q has the distance 6π from these points. Hence, from the transitivity of
points in To and the proof of Lemma 3.5, it holds that a-Q—PίKx), i.e. Q=
a^-PiK^PiKJ. The equivalence of P^L(Q) and L{P)ΈSQ is an easy con-
sequence of the definition for lines.

LEMMA 5.2. For any point Q in 77, let Vx and V2 are maximal flat ton
passing through P{Kλ) and Q. Then there exists Z<B\X(Q) such that exp(ad z)- Vx— V2.

Proof. This can be shown by the same method as Lemma 5.9 in [2]
essentially.

LEMMA 5.3. The followings hold: (1) Q1=P(χ2)=P(x3), Q*=P(xi)=P(ys)
and QΆ=P(yi)=P(y2), where xi=l/2(e4Fie0+e5Kieί—e6Kie2

JreΊKie3) and yt—
l/2{e,Fie,-e,Kie1+e&Kie2-eΊKie3). (2) RX=R2=R3. (3) Rlt Q^Ω.

Proof. We first show Q2, Q3<^Ω. Put α^exp ττ/2(ad £4(7i+72)£o), then
ae=U(P(K,)) holds because ^(71+72)^e(®o(i;ίi)Θ®2(A:l))Π(®o(^3)Θ®2(^3)). Fur-
thermore, we have a Q^a-φiπ/i, r/4, τr/4, π/A)=φ(—π/i, τr/4, τr/4, π/A) = Qs.
This implies Q^Ω. Next, put /3=exp π/2(ad ejλeo), then β^U(P(Ks)) and
β Qi—Qz hold similarly. We obtain a'1-Qs=P(xs) by direct calculations. This
gives O I = P ( J C 8 ) . When the automorphism ^ acts on the each side of QI=P(JC S ) ,
we obtain Qi=P(x2) because 5i maps eiK\eι, e^F^e^ eιK^e3 to —eiKίelf eAF2e0,
etK2ej respectively. To make use of δ2 and δ3 shows similarly the remaining
equations in (1). By operating exp τr/2(ad 0472£o) on the both sides of Qι—P{x3)}

we can see R^Ω and Ri=Rs from eJ2e0(Ξ\l(P(Ks)). Finally R^R2 follows
from R1=δί-Rί and R^dx-R^.

L E M M A 5.4. L(P(Kί))Γ\L(P(Kj)) = {P(Kk)}uΩ holds, where {i,j, A?} = {1,2,3}.

Proof. We show the lemma in the case of i=l, j=2 and ^—3. The result
P(Kz)<=ΞL(P{Kλ)) is an easy consequence from P(Ks)=φ(π/2, 0, 0, 0) and (vi) in
Lemma 3.5. Operating δz on the each side of this relation, we obtain P(AΓ3)e
L{P(K2)) because δsKs=—K3 and δ3Kχ=K2. Furthermore we can derive P(Kλ)
(ΞL(P(K2)) from δ2K3=-Kί and δ2K2=-K2. By applying expπ/4 aάiK^e^e,
+e2K2e2+e3K2es) to the both sides of PiKJeiLiPiKJ), we have Q^L{P{K2))
because this transformation leaves P{K2) fixed. L(P(Kύ) contains Qx from (iv)
in Lemma 3.5. By the above arguments, we get LiPiK^ίλLiPiK^^PiKu), Qλ.
From U(P(K3))=U(P(K2)) and the definition of Ω, the inclusion L{P{Kx))r\
L(P(K2))Z){P(K3)}uΩ follows.

Next the converse is shown. If Q is any point in L(P(/C1))nL(P(7iί2)), there
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exists a 4-dimensional maximal flat torus TdL{P(K2)) such that
because the line L(P{K2)) has the rank 4 as a symmetric space. On the other
hand, since PiKJeTodLiPiKt)), there exists an element a in the identity
component of the isometry group of L(P(K2)) (i.e. in a subgroup of U(P(K2)))
such that oί-T—To by the transitivity of maximal flat tori in L(P(K2)) passing
through P{Kλ). This implies a-Q^T0. Hence a-Q is commutative with P(Kι)
and has the distance 6π from P{KX). Such points in To are only Qlt Q3 and
P(KS) by Lemma 3.5 and Prop. 3.6. If a'Q=P(K3), Q^a^ PίK^PiK,) holds
because U(P(K2))=U(P(KS)). If a Q=Qly we obtain Q=a-1-Q1^Ω. If a Q=Q3,
Q=a~1β'Q1^Ω holds, where jS=expπ/2(ade4(/1+/2)e0 and hence, β^U(P(K3)).
By the above arguments, we can see KPiK^KJLiPiK^aiPiK^KjΩ. Note
that P{KX\ P(K2), P(KS)$Ω.

In other cases for i, j , k, we can show the lemma by applying the auto-
morphisms <5i and δs to the identical equation showed already. Then note that
δmΏ=Ω. This fact can be given by the following method. First we have
easily 3m-β={3mα-<?1 | a^U(P(Ks))} = {β'δm'Q1 \ β(ΞU(δm'P(KB))}. If ί m = β l f

this set becomes Ω because δ^Qi^Qi and U(δrP(K3))=U(P(K2))=U(P(Ks)). If
3 m = ί 8 , this set equals {£•(?, I β^U{P(Kz))} = {ββ1-Q1 \ β<ΞU(P(Ks))}=Ω, where
jθi=expπ/2(ade4/ie0) and, hence, βλ<=U(P(Kz)). The proof is completed.

We will study further the submanifold Ω in 77. β is defined as the orbit
of £?! under the group U(P(KS)). Let Qα be the base point of Ω. The Lie
algebra of U(P(KS)) is S0ΘSi as before and expCadS^ acts on Ω only as an
identity transformation. Hence 20 is the Lie algebra of the isometry group of
Ω, and the Lie algebra of the isotropy group at Qλ with respect to the group
exρ(adSo) becomes £o,o®£Oli (=S6>(4)0S6>(4)): £o,o has a basis consisting of

h-I^eo and So.i has a basis consisting of D^e.-lD^e^j,
j where (i, ; )=(1, 2), (2, 3) and (3, 1). Then the tangent

space of Ω at Qx is spanned by sixteen vectors ^(/i+/2)^o, ββ

("^+βi^(/i—W^o,
where ί = l , 2, 3 and / = 4 , 5, 6, 7. This space becomes a Lie triple system in
the tangent space of Π at Qx. Hence Ω is also a compact connected symmetric
space with the type SO(8)/SO(4) SO(4) which has the rank 4. Let %Ω be the
maximal abelian subspace spanned by four tangent vectors e4(I1+I2)eo, ^π.e^i
-\-eάh—h)βQ at Qlt and denote the maximal flat torus in Ω associated with %Ω

as TQ. We make here a correspondence γ between TQ and To. Put γ=
expπ/i ^{6^260+e5K2eχ—e6K2e2+eΊK2es), then this is an isometry of 77.

LEMMA 5.5. (1) γ-T0=TΩ holds' especially γ P(K1)=R1, γ P{Kz)=Q2, γ Qx

(2)f=-hnT0.

We can see γ-T0=TΩ from γK2=
:'-eA(I1+I2)eo and γ(eiK2eι)=

eάh—Itteo). That γ2(eiK2ei)=-eiK2eι implies f = - 1 on To. Since
T:Qi=Qi and γ-P{K1) — R2 can be obtained easily by direct calculations, we have
r-Qs=Qs: r φ(?3 = exp π/2(ad βΛe 0) exp π/4(ad(~^i ?

2^ 0+ e^e^e6K2e2 + e7K2e3))
'Qs=expπ/2(aάeAF2e0)'δ2γδ2

1'(δ2'Q1) (by ί2 01=08)=expίr/2(adβ4F tββ) 0 8 (by
(by direct calculations)=(?3 (by Lemma 5.3). Next we give
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γ P{K3) — Q2 by the similar method : γ-P(Ks)=exp π/2(ad e4F2e0) exp π/2(ad Deitβ2)
-δ2-(7'P(K1))=expπ/2(aάeAF2e0)'Ra=P(x1) (by direct calculations)=Q2 (by Lem-

ma 5.3), where the second equality is derived from γ-PiK^ — R^ δ2-Rλ — R3 and

COROLLARY 5.6. (1) Four points R1} Qly Q2 and Q3 are different from one
another. (2) γ TΩ=T0 holds- especially γ-R^P^K,), γ-Q2=P(K3), γ-Q^Qx and

r-Q*=Q*.

LEMMA 5.7. If λ is a root of type —2(at±aj)iJ the set exp(ad Uλ) is con-
tained in

Proof. If λ is such a root, both Q1 and P{K3) are contained in Sλ because
Q1=φ(πμt τr/4, 7r/4, π/4) and P(K3)=φ(π/2, 0, 0, 0). Therefore the inclusion
VLχ(ZVί(Q1)rλVi(P(K3)) holds by the identity VL{Q)=VL(%0)®ΣVίλ. This gives the

lemma.

LEMMA 5.8. Three points Q2, Qs and Ri are fixed by the identity component
of the isotropy group at Qx with respect to the isometry group of Ω.

Proof. Let I(P) denote the isotropy group at P with respect to the isometry
group of 77. Note that U(P(K2))=U(P(KS)) is equivalent to KPiK^ΠKPiK,))
=I(P(K1))ΓΛl(P(Ks)). By operating an isometry expπ/4ad(K1+e1K1e1+e2K1e2+
esK^s) on this relation, we have KPiK^nKQ^IiPiK^nKQs). By making
use of <52 further, 7(P(/Γ3))Π/(C?2)=7(P(/ί3))Π7((51) can be found. It shows
I(Qι)Γ\U{P(Kz))dI{Q2) which asserts the lemma for Q2. For Q3, by the action
of di on this inclusion relation and by U(P(K2))=U(P(K3)), we can see
KQJrMJiPίK^dKQ*). For the case of Rlf by operating γδ2γ on KPiK^ΓλKQ,)
=I(P(K1))ΓλI(Q3), we also obtain /(i>(/iί1))n/(i?1)=/(P(Λ:1))Π/(Oi) from Lemma
5.5 and Corollary 5.6, where γ is the same as the one in Lemma 5.5. This
implies

LEMMA 5.9. If a point P e β is commutative with Qλ and Q3 and P has the
distance 6π from these points, then P=Q2 or i?i hold.

Proof. Let P e β satisfy the assumption in the lemma. Then there exists
a in the identity component of the isotropy group at Qx (with respect to the
isometry group of Ω) such that a-P^Tβ by the transitivity of maximal flat tori
of Ω passing through Qx. Since a Q3=Q3 by Lemma 5.8, a-P satisfies the
same assumption as P. Hence we obtain a P=Q2 or Rx from Lemma 3.5 and
Corollary 5.6. This means P=Q2 or Rλ by Lemma 5.8. Conversely we can see
easily from Corollary 5.6 that Q2 and 7?! satisfy the assumption in the lemma.
The proof is completed.

For QGTO, three sets {Ξt} are defined by Ξι={a-P{K2) \ a<=U(Q)0}, Ξ2=
{a-Q2 I a(ΞU(Q)Q} and Ξ3—{a-R1 \ a<^U(Q)0}, where 0 means the identity com-
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ponent of U(Q). Then we have the following.

PROPOSITION 5.10. Let Q G T 0 . Then a line L(P) passes through two distinct
points P{Kd and Q if and only if P^Ξ1KjΞ2\jΞ3 holds.

Proof. First the necessity is showed. If L(P) is such a line, there exists
in L(P) a maximal flat torus T with the dimension 4 such that P{Kλ), Q^T
because the rank of L(P) is 4 as a symmetric space. Moreover, there exists
zeU(Q) by Lemma 5.2 such that a-To^T, where α=exp(adz) and so a^U(Q)0.
This means TQcL{a~1'P). Hence a~^P is commutative with P(KX), P{K3), Qx

and Qs, and a~x-P has the distance 6π from the points. From these facts it
holds a-^P^LiPiK^ΓλLiPiK,)) and, therefore, we have a~1-P=P(K2) or
α ^ P e i ϊ by Lemma 5.4. In the first case, P=a'P(K2)^Ξ1. In the latter case,
a-1'P—Qz or Rx by Lemma 5.9. This implies P<=Ξ2uΞ3.

Next the sufficiency is showed. Let P be contained, for instance, in Ξ3.
Then there exists aGU(Q)0 such that P=a-Rι. On the other hand, since
R^ΩdLiPiK,)) from Lemma 5.4, we have P{KX)^L{R1) by the duality of L
(see Lemma 5.1). Since To is spanned by {expί(ad eiK2et)} as an orbit of P{KX)
and these transformations leave R2 (=/?i) fixed, we obtain ToCZLiRx). Hence
α T o cL(P). This shows that the line L{P) passes through P(KX) and Q because
a leaves P(Kχ) and Q fixed. In the case of P&ΞX or Ξ2, the assertion can be
showed similarly. The proof is completed.

Let Q be a regular point in To, i.e. satisfying U(Q)=U(X0). Since U(Q)0=
exp(ad U(<?)) and U(<?)Ctt(<?i)nU(P(iQ) hold, we obtain UiQ^aUiQύnUiP^)).
This implies by Lemma 5.8 that U(Q)0 leaves Q2 and Rx fixed. U(Q)0 also does
P{K2) fixed because U(P(K2))=U(P(K3)). Therefore, for the above lemma, we
can assert the following.

COROLLARY 5.11. // Q e T 0 zs a regular point for P(Kλ), there exist exactly
three lines L(P{K2))y L(Q2) and L(RX) which pass through P{Kχ) and Q.

For any positive root λ^AτQ the set Sχ becomes a 3-dimensional flat torus
in To because there exists X G I 0 such that λ(x)=πi and exρ(ad x)-P(K1)=P(K1).
Hence Sλ is said to be the torus associated with λ. If Q^Sλ> we say that λ
passes through Q. From the list of the positive roots in Section 4, each Sλ has
three shortest closed geodesies of Π as generating elements. If λ—— 2aoi, for
example, such the geodesies {r<(0} can be defined by r1{t)=expt(ad(e1K2eί+

r2(t)=expt(aά(e1K2e1-e,K2e2))'P(K1) and r3(t)=expt(aά(e2K2e2+
The volume of each torus Si is 432ττ3, 432VΎTΓ3 or 432;r3

according as the root λ has the type —2αii1 —2(αι±αJ)i or — (αo±αι±α2±α3)i.
From now on we will study the converse of the above facts. The result

is given in Prop. 5.13. Put x — αiπ/2eiK2ei

Jrαjπ/2ejK2eJf where iΦj and
αt, αjψZ— {0}. Assume that the geodesic r(0=expf(ad x)-P(Kx) satisfies
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LEMMA 5.12. // r{t) first returns to P(Kλ) at t=l, one has (alf a^-^l or
2, where <, > means the greatest common divior.

Proof. Put <αt, aJ)—2ιni where n is a positive integer such that <n, 2>=1.
Since r(l)=P(K1), we have ai

JraJ—2m) m<^Z, from Lemma 3.2. There exists
mo^Z such that m—nmQ because <n, 2>=1. Then ajn, aj/n^Z and ai/n+aj/n
=2m0 hold. This gives r(l/n)=P(Kύ by Lemma 3.2. If n=£l, it contradicts
the our assumption because 0 < l / n < l . So we may consider only the case
<at, <z,>=2£. If /^2, r(l/2)=P(/if1) again by the same reason as above. This
also contradicts ours. Therefore we obtain /=0 or 1, i.e. (al} a^—l or 2.

PROPOSITION 5.13. Let T3 be any 3-dimensιonal torus in To. Assume T 3

contains P(Kj) and has the minimal value of volume. Then T3 ts oue of the
twelve tori associated with the roots of type —2aii and —(ao±a1±a2±a3)i. The
minimal value is 432π3.

Proof. Let T3 be such a torus in To. T3 has three geodesies
'P{KX) as generating elements, where zλ=Σ aιπ/2eiK2elf z2=Σbίπ/2eiK2eι and
zs=Σcιπ/2eiK2eι. Assume these geodesies first return to P{Kλ) at t=l. Then
we obtain from Lemma 3.2 that aιy bu c-t^Z and Σ alf Σbif Σct^2Z. Define
a mapping φ of the 3-dimensional Euclidean space R3 onto T3 by ψ(tlf t2, ί 3)=

First we consider the case of az=b3—c3=0. Moreover, if a2—b2=c2—Q)

this leads to a contradiction because {zi) are linearly independent. So we may
assume a2Φθ without the loss of generality. If b2φ0, put w2—a2z2—bίzι. Then
w2^%0 and expί(ad w^-PiK^^T3. Note that zlf w2, z3 are also linearly inde-
pendent. Since exp(ad w2) P(K1)=P(K1), there exists the minimal value ίo^(0, 1]
such that exρίo(ad w2)-P(K1)=P(K1). Write again z1} t0w2, z3 as z1} z2, z3 respec-
tively, then b2 can be considered to be 0. By the same reason, c2=0. Since
bχφθ and c0φ0 can be assumed, we may say a1=c1=0 and ao=b0=0. After
all, the above argument asserts that T3 can have three tangent vectors zx—
a2π/2e2K2e2, z2=bλπl2eji<ιex and zz=coπ/2K2 (α2, bu co>0) such that each geo-
desic exp f(ad zt)-PC/if!) first returns to P(Kύ at ί = l . Then Lemma 3.2 gives
a2=b1=Co=2. T3 turns out the torus associated with the root —2a3i. The
volume vol(T3) can be calculated by making use of the fact that ψ is a bijective
map for 0 ^ < l and 0^t2, t3<l/2:

51/2fl/2fl ,
V g dt1dt2dt3=432π3

fo Jo Jo

where g=det(gtJ) with glJ= — B(zl, zj).
Secondly suppose that one of a3, b3, c3 is not 0 at least. Then there remain

in essential three cases to study. We consider these by the same method as the
first case.

( i ) In this case {zj satisfy that z1=a2π/2e2K2e2+a3π/2e3K2e3, z2—πe1K2e1

and z3—πK2f where α2, a3^Z— {0} and a2+a3<^2Z. If a2, a3 are even numbers
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and α 2 + α 3 + 2 e 4 Z , ψ is an injective map on the set {(tlf t2, tz)<=RB | 0 ^ ί i < l ,

0 ^ 2 < l / 2 , 0^ί 3 <l/2}. Then we have vol(T3)=21β(αi4-αl)1/27r3^432V5"π3. The

equality holds, for instance, when α 2 =4 and az~2. If a2, α3 are not so, since

φ is injective for OgfKl, 0 ^ 2 < l / 2 , 0^* 8 <l, we get vol(T 3)^432VIV. The

equality can be given by α 2 = l and α 8 = — 1 .

(ii) This is the case that {zt} have the forms that zx — aoπ/2K2+a3π/2esK2e3,
z2—b^π/2K2-\-b2π/2e2K2e2 and zz—πeλK2e1, where aQ, α3, δ0, b2^Z— {0} and α o +β 3 ,
& 0 +6 2 <Ξ2Z. Since both zx and z2 satisfy the assumption in Lemma 5.12, we
obtain <α0, 08>, <60, &2>=1 or 2. If |& 2 |=1, ^ is an injective map on the set
{(flf t2, ί ,)εff I O g ί K l / U β l , 0^f 8 <l, 0 ^ 3 < l } . Hence vol(T3)^432((α<A/α3)

2

+bl+bΐ)1/*π*>432V~2π*. If | f t a |>l, since φ is injective for 0 ^ ί 1 < l / | α 3 | ,
0 ^ 2 < l , 0£ts<l/2, we have vol(r3)^216V"5 τr3>432π3.

(iii) In this case {zj have the forms that z1=aoπ/2K2

Jra3π/2eBK2e3f z2—
b0π/2K2+b2π/2e2K2e2 a n d zz—Cιπ/2e1K2e1

J

Γc2π/2e2K2e2, w h e r e aOf as, •••, c 2 e Z

— {0} and α o + β 3 , ^0+^2, ct+c2^2Z. Lemma 5.12 gives <α0, α3>, <̂ o, ̂ 2>, <Ci, <:2>
= 1 or 2. If |6 0 | = | 6 2 | = l does not hold, φ is an injective map on the
set {fo, ί2, ί 3 )e/2 3 I 0 ^ ί 1 < l / | α 3 l , 0 ^ ί 2 < l , 0 ^ ί 8 < l / k i | } . Hence vol(T3) ^
216((α0Vβ3)2+(V2/ci)2+62

0+^)1 / 2π3>4327r3. If |6 0 | = | f t 8 |= l holds and | α o | =
| α 8 | = l does not hold, φ is injective for 0 g ί i < l , 0 ^ 2 < l , 0 ^ ί 8 < l / k i | . Then
we obtain vol(T3)^216((α3ί:2/c1)

2+αS+2α!)1/V>4327r3. Finally, if |6 0 | = |6 8 | =
| α o | = | α 8 | = l , since φ is injective for 0^tu t2, ί β <l, we have vol(T3)^216(3c2+
cl)1/2π3^432ττ3. The equality can be established when | C l | = k 2 | = l . Then T 3

is associated with a root of type — (ao±a1±a2±a3)i.
The above argument shows that the minimal volume of 3-dimensional flat

tori in To is 432;r3 and its value is attained by the tori associated with the roots
of type — 2ati or —{ao±a1±a2±as)i. The proof is completed.

COROLLARY 5.14. Let T 3 be a ^dimensional torus in 77. // T 3 has the
minimal volume, it has three shortest closed geodesies as generating elements.

Definition. (1) Two distinct points in 77 are said to be in the general posi-
tion if any 3-dimensional flat torus with the minimal volume does not contain
both of them. If not so, they are said to be in the singular position. (2) Two
distinct lines L(P) and L{Q) in 77 are said to be in the general (resp. singular)
position if P and Q are in the general (resp. singular) position.

PROPOSITION 5.15. A point Q in 77 is a singular point with respect to P(KX)
if and only if there exists a ^-dimensional flat torus passing through P(Kt) and
Q such that it has three shortest closed geodesies with the initial point P(KX) as
generating elements.

Proof. We first show the necessity. Let Q be such a singular point. There
exists α ε ί / such that α QeT 0 , where U is the isotropy group at P(Kλ). Since
a Q is also a singular point, we can find a root λ^ΔTQ such that a-Q&Sχ. Sλ
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is generated by three shortest closed geodesies. Hence a'^Sx contains Q and
satisfies the condition in the proposition. Next the sufficiency is showed. Let
T 3 be the torus satisfying the condition. From the transitivity of maximal flat
tori, we may assume Q<=TsaT0. (v) in Lemma 3.5 gives all the shortest closed
geodesies in To with the initial point P(KJ: φ(tπ/4, far/4, 0, 0), — , $5(0, 0, tπ/i,
—tπ/4), where 0^t<2. The number of the geodesies is 12. Moreover, since
any 3-dimensional flat torus determined by three geodesies in them is certainly
associated with some positive root λ, therefore Q^T3=Sλ holds. This means
that Q is a singular point.

COROLLARY 5.16. // P(Kί) and Q are in the singular position, Q is a
singular point with respect to P(Kι). The converse is not always true.

THEOREM 5.17. Π is a projective plane in the wider sense, that is, Π satis-
fies the following properties :

(1) For two distinct points there exist exactly three lines passing through
them if the points are in the general position. If in the singular position, the
set of lines passing through the points forms a symmetric space as a manifold.

(2) The correspondence L asserts the duality of (1) for two distinct lines.

Proof. Since (2) can be derived from (1) and Lemma 5.1, we show only
(1). Let P and Q be two distinct points in Π> We may assume P—PiK^ and
£?eT0 by the transitivity of points and of maximal flat tori. Let a line L(R)
pass through P(KX) and Q. Then R^Ξ1\jΞ2uΞB by Prop. 5.10. If P(Kλ) and
Q are in the general position, Prop. 5.13 gives (i) Q is a regular point with
respect to P{KX) or (ii) Q is the point which only the roots of type —2(aι±aj)i
pass through. If (i) holds, Corollary 5.11 shows R=P(Kt), Q2 or Rλ. If (ii)
holds, Lemma 5.7 and 5.8 give the fact again since U(Q)=U(X0)Θ^τUyι for some
λ of type —2{at±a3)i. On the other hand, if P{Kλ) and Q are in the singular
position, the following lemma finishes the proof.

LEMMA 5.18. // P(Kι) and Q are in the singular position, the set of lines
passing through them makes six kinds of symmetric spaces as submanifolds in
ΠL, that is, (1) SO(n+4)/SO(n)-SO(4:)U{one isolated point} ( n = l , 2, 3, 4), (2)
Sp@)/Sp(2) Sp(X) and St/(6)/S(ί/(4) ί/(2)).

Proof. Let ΠL have the differential structure introduced by L from Π.
Let ΓdΠL be the set of lines passing through P(KX) and Q. We may assume
Q<=T0. Denote by n{λ) the number of positive roots λ such that Q^Sλ. First
we consider the case of n(λ)=l. If λ—— 2a0i, U(Q)Q leaves P(K2) fixed because
U«?)=U($o)ΘU-2αoί and hence U(<?)C©0(#2)®®2(iQ by the list in Section 4.
Moreover, exp π/2(ad x) Q2=R2 holds, where x=β 4 (/ 1 +/ ! )β 0 and so x6U-8 β oι.
This shows by Prop. 5.10 that ( i ) Ξx is an isolated point P(K2) and (ii) ΞzKjΞs

is a connected symmetric space with the type VL(Q)/\l(Xo) (sso(5)/so(4)). In fact
turns out to be the 4-dimensional sphere S\ Therefore L " 1 ^ ) —
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S4KJ{P(K2)}. When λ has the type —2ati (i^>l) or — (aQ±a1±a2±az)i> we also
get the same result. For instance, if λ = —(a0— flj—a2—as)i, put a —
exp-π/4aά(K1+e1K1e1+e2K1e2+eiiK1e3). Then a TQ^T0, a PiK^Pdd) and
a\Xx=VL-2aQi hold. Hence, by this a, the argument for λ comes back to that
for -2aoi. Therefore, since a P(K2)=Q2, a-Q2=P(K2) and a R^R^ we
can obtain L'1{Γ)=^Si\J{Q2). Next, if Λ= —(α o +αi+α 8 +α8)i , put α =
exp —π/4ad(^i^o+^δ^i^i—^6^i^2+^7^i^). Noting that a*P{K2)—R2f a-R2—
P(K2) and a-Q2—Q2, we have L"1(Γ)=S4W{i?i} by the same method.

Secondly we consider the case of w(Λ)Ξ>2. Then there remain in essential
six cases to study, (i) {λ} = {-2a0i, -2axiy -2{ao±a1)ί): Then L~\Γ)=
SO(6)/SO(2)'SO(A)\J{P(K2)} holds, (ii) {λ} = {-2aoi, -2(fl1+fl2)ί}: This is the
same case as {λ} = {-2aoi}. Hence L-1(Γ)=Si\J{P(K2)}. (iii) μ} = {-2βoί,
-(flo+fii-fl2-fl3)i, -(fl o -fl i+β2+ββ)i}: We have L-1(Γ)-=Sp(3)/Sp(2)-Sp(l).
This is the quaternion projective plane, (iv) {Λ} = {—2α</, —2(α ί+fl ;)ι}, (/,/=
0,1,2): Then L-1(/τ)=SO(7)/SO(3) SO(4)U{P(/ζ!)}. (v) {̂ } = {~2αoί,-2fl!Ϊ,
—2(αo±αi)i, —2(α2+α3)ί, — (αo±fli— fl2—α8)i, —(ao±a1+a2+a3)i}: We have
L-1(Γ)=SU(6)/S(U(4)'U(2)). This is a maximal submanifold in Z Γ ^ Γ ) with
respect to the inclusion relation, (vi) {Λ} = {— 2aiii —2(aι±aj)i}f (z, j^O): We
obtain L-1(Γ)=5O(8)/SO(4) SO(4). This is maximal too.

As a consequence, we can assert the following. If Q is a singular point,
S4W{P) is minimal in {L'ι{Γ)}f where P is some isolated point. This manifold
has three possible kinds of extension: (i) SO(n+4)/SO(n) SO(4)W{P} (n=
2,3,4). (ii) Sp(3)/Sp(2)'Sp(l)CZSU(6)/S(U(4)'U(2)). (iii) SO(6)/S0(2) SO(4)C
S£7(6)/S(t/(4).ί/(2)).
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