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ON SOME SUBMANIFOLDS OF A LOCALLY

PRODUCT MANIFOLD

BY GHEORGHE PITIS

An investigation of properties of submanifolds of the almost product or
locally product Riemannian manifolds has been started in the last years, many
interesting results being obtained. So, Okumura [8], Adati and Miyazawa [1],
Miyazawa [7], studied the hypersurfaces of such manifolds, Adati [2], defined
and studied the invariant, anti-invariant and non-invariant submanifolds, while
Bejancu [4], analyzed the semi-invariant submanifolds which are corresponding
to CR-submanifolds of a Kaehler manifold [3].

The purpose of this paper is to give some properties of the anti-invariant
and semi-invariant submanifolds, by using cohomology groups.

In § 1 we recall the definition of these submanifolds and some known results,
already. An example of semi-invariant submanifold is given.

In §2 we associate to a semi-invariant submanifold a de Rham cohomology
class (as in [5] for CR-submanifolds) and we obtain a connection between the
properties of the invariant and anti-invariant distributions and the cohomology
of the submanifold (theorem 2.2).

The stability of some anti-invariant submanifolds of a locally product
Riemannian manifold is studied in §3 and we give algebraic conditions for
stability.

§ 1. Anti-invariant and semi-invariant submanifolds of a locally product
Riemannian manifold. Let (M, g, F) be a C°°-differentiable almost product
Riemannian manifold, where g is a Riemannian metric and F is a non-trivial
tensor field of type (1.1). Moreover g and F satisfy the following conditions

(1.1) F2=7, (FΦ±I); g(FX, FY)=g(X, Y), XfY^T{M)

where / is the identity and DC(M) is the Lie algebra of vector fields on M.
We denote by 7 the Levi-Civita connection on M with respect to g and

furthermore we assume that M is locally product, that is

(1.2) VXF=O

Let M b s a Riemannian manifold isometrically immersed in M and denote
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by the same symbol g the Riemannian metric induced on M.
If on M there exist two complementary and orthogonals distributions D

and ΌL

y satisfying the following conditions:

F(DX)=DX; F(Di)dTxM
± for each X G M

then M is called a semi-invariant submanifold of the locally product Riemannian
manifold M [4].

Particularly if dim Ώx—dim TXM (dim 1^=0) for each JCGM then M is an
invariant submanifold {anti-invariant submanifold) of M [2].

We have the following results

THEOREM 1.1. [2] In a In-dimensional locally product Riemannian manifold
every anti-invariant submanifold of dimension n is totally geodesic.

THEOREM 1.2. [4] For a semi-invariant submanifold of a locally product
Riemannian manifold the following assertions hold:

a) the distribution D1 is involutive if and only if

g(h(Y, Z\ FX)=0 X, Y<ΞD\ Z^D

where h denote the second fundamental form of M;
b) M is D-geodesic (i.e. h(X, F ) = 0 for X, Y<=D) if and only if D is involutive
and each leaf of D is totally geodesic immersed in M
c) the distribution D is involutive if and only if

h(X, FY)=h(FX, Y) X, YΪΞD.

Example. Let M be a normal metric almost paracontact manifold
[9], [10], with the structure (φ, ξ, ηy g) and denote by D* the distribution
{X<ETM: 7](X)=0}. It is well-known that by putting

(1.3) FX=φ(X), *e£*; Pξ=~)

F defines an almost product metric structure on MxR. The product metric on
MxR satisfies condition (1.1) and as M is normal, it follows that MxR with
this structure is local product. M is a closed submanifold of MxR and from
(1.3) follows that FξtΞTM1, FD*=D* and then M is semi-invariant in MxR.

§ 2. Cohomology of semi-invariant submanif olds. Furthermore we assume
M as a compact without boundary manifold.

If d i m D 1 ^ and &\mD—p then we denote by $D±={Xlf -•- Xq}, $D—
{Xq+1, •••, Xq+p\ two orthonormal local bases in D1, resp. in D.

PROPOSITION 2.1. // the distribution D1 is involutive, then each leaf of D1

is minimal in M.
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Proof. The mean-curvature vector of D1 is

HD±=±£prXix%y
q %=i

where (ΊxX)1 is the component of ΊXX in D.
By applying the Gauss formula

(2.1) ^ ΊxY=lxY+h(X, Y) X, Y(ΞD£(M)

where V is the Riemannian connection on M, induced by 7, from the conditions

(1.1) and (1.2) we have

(2.2) g(Y,VxX)=g(FYyVx(FX))y l e ^ i , Y^D

Now, by using the Weingarten formula

(2.3) VXN=-ANX+!XN NΪΞTM1

from (2.2) we can deduct

(2.4) g(Y, lxX)=-g{PY, AFXX)

and taking into account the known equality

(2.5) g{h(X, Y), N)=g{ANX, Y)

we can write

(2.6) g(Y, ΊxX)=-g{h{X, FY\ FX)

From (2.6) and the theorem 1.2, a) follows g{Y, 7 x X ) = 0 and then HD±=0.

Q. E. D.

PROPOSITION 2.2. For a D-geodesic semi-invariant submamfold the distri-
bution D is minimal.

Proof. If X^BD then there exists Ϊ G D such that FX=X and from (1.1),
(1.2), (2.1), (2.3), (2.5) we obtain

(2.7) g{Y, ΊxX)=g{FY, h(FX, X)),

But M is D-geodesic and then from (2.7) follows g(Y, 7 x Z ) = 0 , hence D is
minimal. Q. E. D.

We define on M the 1-forms ω1, •••, ωq, satisfying the following conditions

(2.8) ω\Z)=0, ZΪΞD; ω\Xj)=δ*, Z . e ^ i ; ι,jtΞΪ~q~.

Then we give the tf-form ω=ω1Λ Λωϊ, globally defined on M and we have
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the following

PROPOSITION 2.3. // the distribution D is invoίutive and DL is minimal then
the q-form ω is closed.

Proof. It is enough to prove that

(2.9) dω(Y,Xl9-,Xq)=0 for Fefl, Xl9 - ,

(2.10) dω{Yu Y2, Xu - , * β - i ) = 0 for Yl9Y2eD9 Xl9

From the definition of the forms ωι it follows

(2.11) dω(Y, Xu - , Xβ)= Σ * ( I T , X%], Xx)

Now, the connection V is Riemannian and then

(2.12) g(Xιt %Xι)=0 X^B^, YEΞD.

Taking into account (2.12), (2.1) follows

(2.13) g{ίY9 XJ, Xι)=g{lXiXι, Y)

But DL is minimal and then from (2.11) and (2.13) we obtain (2.9).

The distribution D being involutive, (2.10) follows from the equality

(2.14) dω{Yly Y2, Xl9 - , X^)=-ω{[_Ylf F J , Xu - , Xq.,).

In the same manner as above we can define on M the 1-forms θq+1, •••, θq+p

by

(2.15) 0*+ι(Z)=O, Z ε f l 1 ; θ«+\Xq+j)=δ], Xq^^BD9 i9 / e l , p.

By using a similar computation as in the proof of the proposition 2.3 we can
state the following

PROPOSITION 2.4. // D is minimal and if D1 is involutive then the p-form
θ = θq+1A"Άθq+p is closed on M.

Now from Propositions 2.3, 2.4 we have θ=*ω and by applying the Hodge-
de Rham theorem we obtain the

THEOREM 2.1. For any compact semi-invariant submamfold M, of a Rie-
mannian locally product manifold, having the distribution D involutive and Dx

minimal, a cohomology de Rham class [ω]e// ?(M, R) is well-defined. This class
is non trivial if D is minimal and DL is involutive.

From Proposition 2.1 and Theorem 2.1 follows
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THEOREM 2.2. Let M be a compact semi-invariant submamfold of a locally
product Riemannian manifold. If the distributions D, D1 are mvolutives and D
is minimal then

, R)ΦO q^dimD1.

From Theorems 1.2, 2.2 and Proposition 2.2 we deduce the following

PROPOSITION 2.5. For every compact and totally geodesic semi-invariant
submanifold of a locally product Riemannian manifold the Betti number bq, q—
dim DL, not vanish.

Now taking into account the Theorem 2.2 and the above example we obtain
the following

PROPOSITION 2.6. Let M be a compact normal metric almost paracontact
mam fold. If the distribution D* is involutive and minimal then

H\M, R)Φ0

Remark. It is well-known that if M is a SP-Sasakian manifold then the
distribution D* is involutive [9], [10].

Next we can make some comments on the obtained results.
A. Let S2n+1 be the unit sphere in R2n+2

} n^2, endowed with the standard
Sasakian structure (/, ξ, η). It is known that the tensor field P given by

g(FX, Y)={lxη)Y

defines a SP-Sasakian structure on S2n+1. Moreover H\S2n+1, R)=Q for n ^ l
and then the sphere S2n+1, n^2, is a semi-invariant submanifold of S2n+1xR,
so that the distribution D* is not minimal.

B. Suppose M is a compact SP-Sasakian manifold totally geodesic immersed
in the Riemannian locally product manifold MxR. From Theorem 1.2 and
Proposition 2.2 it follows that the distribution D* is involutive and minimal.
Hence the first Betti number of M not vanish.

§3. Stability of anti-invariant submanifolds. Let M be a compact n-
dimensional anti-invariant submanifold of the 2n-dimensional locally product
Riemannian manifold M.

By applying (2.1), (2.3) and Theorem 1.1 we have the

LEMMA 3.1. For every X, Y^TM the next equalities holds

) AFXY=0.

Let {Xlf •••, Xn] be a orthonormal local basis in TM and lets denote by
and S the Ricci tensors associated to the manifolds M and M.
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LEMMA 3.2. For every X^TM we have

Σ R{XX, FX, FX} Xι)=S(X, X)-S(X, X).
1

Proof. From (1.1), (1.2) it follows that

(3.1) R(XZ, FX, FX, Xι)=R(FXι, X, X, FX%).

Now the required equality is a consequence of (3.1) and of the Gauss equation

(3.2) R{U, V, W, T)^R{U, V, W, T)+g(h(U, T), h(V, W))

-g{h{U, W), h(V, T)).

Let TV be a normal vector field and denote by cv"{N) the second normal
variation of M induced by N. Then we have ([6], chap. I)

(3.3) cy"(N)=\ ίllV^H2- Σ ta, N, N, Xι)-\\ΛN\\2\dV
JM I ι = l J

where dV is the volume form of M.
On the other hand if η is the 1-form associated to the vector field

then we have the well-known formula ([6], chap. V)

(3.4)

Taking into account the Lemma 3.1 and the Theorem 1.1, from (3.3), (3.4)
follow the

PROPOSITION 3.1. The normal variation induced by the normal vector field
N—FX of the compact anti-invariant submanifold M in a locally product Rie-
mannian manifold is given by

cV»(N)^M{±-\\dη\\2+(δη)2-S(N, N)\dV.

Now we can state the following

THEOREM 3.1. Let M be a compact anti-invariant submanifold of the locally
product Riemannian manifold M.
a) // S is negative definite then M is stable.
b) // Hλ{M, R)ΦQ and S is positive definite then M is unstable.

Proof, a) is an immediate consequence of the Proposition 3.1 because we
obtain q;//(Λ^)>0 for every NZΞTML.
b) Since H1(M, R)Φθ there exists an harmonic 1-form η on M and if X is it
associated vector field, we have dη=δη=O and then WiJPXXQ. Consequently
M is unstable in M.
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