H. YUZAN AND G. SHI-ANKODAI MATH. J.9 (1986), 256-265

ON ALGEBROID FUNCTIONS TAKING THE SAME VALUES AT THE SAME POINTS

By He Yuzan and Gao Shi-An

1. It is well known that if two meromorphic functions w(z) and $\hat{w}(z)$ take five values at the same points, then $w(z) \equiv \hat{w}(z)$, and if w(z) and $\hat{w}(z)$ share only four values, usually $w(z) \equiv \hat{w}(z)$, but there exists some relations between w(z)and $\hat{w}(z)$. Recently G. Gundersen [1] proved that if two meromorphic functions share three values, then the proportion of their characteristic functions is finite. On the v-valued algebroid functions G. Valiron [5] pointed out that if two ν -valued algebroid functions w(z) and $\hat{w}(z)$ take $4\nu+1$ values at the same points with same multiple order, then $w(z) \equiv \hat{w}(z)$. In [3], we proved a uniqueness theorem which refined the result of Valiron. In present paper we first prove that if two v-valued algebroid functions w(z) and $\hat{w}(z)$ share 4v values, then there exists some relations between w(z) and $\hat{w}(z)$, and we construct two different ν -valued algebroid functions sharing 4ν values. Secondly we proved that if two ν -valued algebroid functions share $2\nu + \lambda$ values with $1 \leq \lambda \leq 2\nu - 1$, then the ratio of their characteristic functions is finite, and we give two ν -valued algebroid functions sharing 2ν values, but the ratio of their characteristic functions is infinite. We also obtain some results concerning the multiplicity.

2. Let w(z) be a ν -valued algebroid function defined by the following irreducible equation

$$\psi(z, w) \equiv A_{\nu}(z)w^{\nu} + A_{\nu-1}(z)w^{\nu-1} + \dots + A_0(z) = 0$$
(1)

where $A_{j}(z)$ $(j=0, 1, \dots, \nu)$ are entire functions in C. Set

$$N(r, \frac{1}{w-a}) = \frac{1}{\nu} N(r, \frac{1}{\psi(z, a)}) = \frac{1}{\nu} \int_{0}^{r} \frac{n(t, \frac{1}{w-a}) - n(0, \frac{1}{w-a})}{t} dt + \frac{1}{\nu} n(0, \frac{1}{w-a}) \log r, \quad a \in C$$

and

$$N(r, w) = \frac{1}{\nu} N\left(r, \frac{1}{A_{\nu}}\right) = \frac{1}{\nu} \int_{0}^{r} \frac{n(t, w) - n(0, w)}{t} dt + \frac{1}{\nu} n(0, w) \log r, \quad a = \infty$$

Received November 18, 1985

where $n(t, \frac{1}{w-a})$ is the number of the zeroes of w(z)-a in |z| < t being counted the multiply. We denote by $J(z) = [A_{\nu}(z)]^{2(\nu-1)} \prod_{1 \le j < k \le \nu} [w_j(z) - w_k(z)]^2$ or

$$I(z) = \begin{vmatrix} 1, A_{\nu-1}(z), \cdots, A_0(z), 0, \cdots, 0 \\ 0, A_{\nu}(z), A_1(z), \cdots, A_0(z), 0, \cdots, 0 \\ \cdots \cdots \cdots \\ 0, \cdots, 0, A_{\nu}(z), A_{\nu-1}(z), \cdots, A_0(z) \\ \nu, (\nu-1)A_{\nu-1}(z), \cdots, A_1(z), 0, \cdots, 0 \\ 0, \nu A_{\nu}(z), (\nu-1)A_{\nu-1}(z), \cdots, A_1(z), 0, \cdots, 0 \\ \cdots \cdots \cdots \\ 0, \cdots, 0, \nu A_{\nu}(z), (\nu-1)A_{\nu-1}(z), \cdots, A_1(z) \end{vmatrix} \right\} \nu - 1$$

the discriminant, and it is well known that each branch point of w(z) is a zero of J(z). Let L denote a curve joining all zeroes of J(z), then the determinations $w_j(z)$ of w(z) $(j=1, 2, \dots, \nu)$ are simple-valued functions in $C \ L$. We set

$$m\left(r, \frac{1}{w-a}\right) = \frac{1}{\nu} \sum_{j=1}^{\nu} m\left(r, \frac{1}{w_j-a}\right) = \frac{1}{\nu} \sum_{j=1}^{\nu} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \frac{1}{|w_j(re^{i\varphi})-a|} d\varphi,$$

$$a \in C$$

and

$$m(r, w) = \frac{1}{\nu} \sum_{j=1}^{\nu} m(r, w_j) = \frac{1}{\nu} \sum_{j=1}^{\nu} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |w_j(re^{i\varphi})| \, d\varphi \,, \qquad a = \infty$$

and we call

$$T(r, w) = m(r, w) + N(r, w)$$

the characteristic function of w(z). We have (cf. [5] or [6])

THEOREM A. (The first fundamental theorem). If a is any complex number, then

$$m\left(r, \frac{1}{w-a}\right) + N\left(r, \frac{1}{w-a}\right) = T(r, w) + \frac{1}{\nu} \log \left| \frac{\phi(0, a)}{A_{\nu}(0)} \right| + \in (r, a), \quad (2)$$

where

$$|\epsilon(r, a)| \leq \log^+ |a| + \log 2$$

THEOREM B. (The second fundamental theorem). Let w(z) be a ν -valued algebroid function and $a_j \in \hat{C}$ $(j=1, 2, \dots, p)$ be p different number, then

$$(p-2\nu)T(r, w) < \sum_{j=1}^{p} N\left(r, \frac{1}{w-a_{j}}\right) - N_{1}(r, w) + S(r, w)$$
 (3)

where $N_1(r, w)$ is the counting function for all multiple value-points of w(z), but a τ -fold value-point is counted only $\tau - 1$ times and S(r, w) is the remainder term.

We denote by
$$\overline{n}\left(t, \frac{1}{w-a}\right)$$
 the number of distinct roots of $w(z)=a$ in $|z| < t$

and define

$$\bar{N}\left(r, \frac{1}{w-a}\right) = \frac{1}{\nu} \int_{0}^{r} \frac{\bar{n}\left(t, \frac{1}{w-a}\right) - \bar{n}\left(0, \frac{1}{w-a}\right)}{t} dt + \frac{1}{\nu} \bar{n}\left(0, \frac{1}{w-a}\right) \log r$$

then the second fundamental theorem can be written as the form.

THEOREM B'. Suppose w(z) and $a_j \in C$ are the same as theorem B, then

$$(p-2\nu)T(r, w) < \sum_{j=1}^{\phi} \overline{N}\left(r, \frac{1}{w-a_j}\right) + O\left\{\log(rT(r, w))\right\}$$
(4)

outside a certain exceptional set of finite linear measure.

Let $\overline{E}(a, w)$ denote the set of distinct roots of w(z)=a, then we have

THEOREM 1. Let w(z) and $\hat{w}(z)$ be two algebroid functions definied by (1) and

$$\Phi(z, \hat{w}) \equiv B_{\nu}(z)\hat{w}^{\nu} + B_{\nu-1}(z)\hat{w}^{\nu-1} + \dots + B_{0}(z) = 0$$
(1)'

respectively. If $\overline{E}(a_j, w) = \overline{E}(a_j, \hat{w})$ for $a_j \in \hat{C}$, $(j=1, 2, \dots, 4\nu)$, then it must be

(i)
$$\lim_{\substack{r \to \infty \\ r \in E}} \frac{T(r, w)}{T(r, \hat{w})} = 1, \qquad (5)$$

(ii)
$$\lim_{\substack{r\to\infty\\r\in E}}\sum_{j=1}^{4\nu}\frac{\overline{N}\left(r,\frac{1}{w-a_{j}}\right)}{T(r,w)} = \lim_{\substack{r\to\infty\\r\in E}}\sum_{j=1}^{4\nu}\frac{\overline{N}\left(r,\frac{1}{w-a_{j}}\right)}{T(r,w)} = 2\nu, \qquad (6)$$

(iii) for any $a \neq a_{j}$, then

$$\lim_{\substack{r \to \infty \\ r \in E}} \frac{\overline{N}\left(r, \frac{1}{w-a}\right)}{T(r, w)} = \lim_{\substack{r \to \infty \\ r \in E}} \frac{\overline{N}\left(r, \frac{1}{w-a}\right)}{T(r, w)} = 1, \qquad (7)$$

where E is a set with finite linear measure.

Proof. (i) Suppose $w(z) \not\equiv \hat{w}(z)$ and $\bar{n}_0(t, a)$ denotes the number of the common roots of w(z) = a and $\hat{w}(z) = a$ containing in |z| < t and each common root is counted only once. We define

$$\overline{N}_0(r, a) = \frac{1}{\nu} \int_0^r \frac{\overline{n}_0(t, a) - \overline{n}_0(0, a)}{t} dt + \frac{1}{\nu} \overline{n}_0(0, a) \log r.$$

It is easy to know that

$$\sum \bar{n}_0(r, a_j) \leq n\left(r, \frac{1}{R(\psi, \Phi)}\right)$$

where $R(\phi, \Phi)$ is the resultant of (1) and (1)', i.e.

$$R(\phi, \Phi) = \begin{bmatrix} A_{\nu}(z)B_{\nu}(z) \end{bmatrix}^{\nu} \prod_{\substack{1 \le j \le \nu \\ 1 \le k \le \nu}} \begin{bmatrix} w_{j}(z) - \hat{w}_{k}(z) \end{bmatrix}$$

$$= \begin{bmatrix} A_{\nu}(z), A_{\nu-1}(z), \cdots, A_{0}(z), 0, \cdots, 0 \\ 0, A_{\nu}(z), A_{\nu-1}(z), \cdots, A_{0}(z), 0, \cdots, 0 \\ 0, \cdots, 0, A_{\nu}(z), A_{\nu-1}(z), \cdots, A_{0}(z) \\ B_{\nu}(z), B_{\nu-1}(z), \cdots, B_{0}(z), 0, \cdots, 0 \\ 0, B_{\nu}(z), B_{\nu-1}(z), \cdots, B_{0}(z), 0, \cdots, 0 \\ 0, \cdots, 0, B_{\nu}(z), B_{\nu-1}(z), \cdots, B_{0}(z) \end{bmatrix} \right\} \nu$$

by using the Jensen's formula we get

$$N\left(r, \frac{1}{R(\phi, \Phi)}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |R(\phi, \Phi)| \, d\phi + \log \left|\frac{1}{R(\phi, \Phi)}\right|_{z=0}$$

$$= \frac{\nu}{2\pi} \int_{0}^{2\pi} \log |A_{\nu}(re^{i\phi})| \, d\phi + \frac{\nu}{2\pi} \int_{0}^{2\pi} \log |B_{\nu}(re^{i\phi})| \, d\phi$$

$$+ \frac{1}{2\pi} \int_{0}^{2\pi} \log |\prod_{\substack{1 \le j \le \nu \\ 1 \le k \le \nu}} [w_{j}(re^{i\phi}) - \hat{w}_{k}(re^{i\phi})] \, |d\phi + \log \left|\frac{1}{R(\phi, \Phi)}\right|_{z=0}$$

$$\leq \nu N\left(r, \frac{1}{A_{\nu}}\right) + \nu N\left(r, \frac{1}{B_{\nu}}\right) + \nu \sum_{j=1}^{\nu} m(r, w_{j}) + \nu \sum_{k=1}^{\nu} m(r, \hat{w}_{k}) + O(1)$$

$$= \nu^{2} [T(r, w) + T(r, \hat{w})] + O(1)$$

hence

$$\sum_{j=1}^{4\nu} \overline{N}_{0}(r, a_{j}) \leq \nu [T(r, w) + T(r, \hat{w})] + O(1)$$
(8)

applying Theorem B' to w(z), $\{a_j\}$ and $\hat{w}(z)$, $\{a_j\}$, we have

$$2\nu T(r, w) < \sum_{j=1}^{4\nu} \overline{N}\left(r, \frac{1}{w-a_j}\right) + O\{T(r, w)\}$$
(4)'

and

$$2\nu T(r, \hat{w}) < \sum_{j=1}^{4\nu} \overline{N}\left(r, \frac{1}{\hat{w} - a_j}\right) + O\left\{T(r, \hat{w})\right\}$$
(4)"

outside of a possible exceptional set E with a finite linear measure. Since $\overline{N}\left(r, \frac{1}{w-a_j}\right) = \overline{N}_0(r, a_j)$, noting (8) we get

$$2\nu T(r, w) < \sum_{j=1}^{4\nu} \overline{N}_0(r, a_j) + O\{T(r, w)\}$$
$$\leq \nu [T(r, w) + T(r, \hat{w})] + O\{T(r, w)\}$$
(9)

thus

$$T(r, w) < T(r, \hat{w}) + O\{T(r, w)\}$$
(10)

by a similar argument we have

$$T(r, \hat{w}) < T(r, w) + O\{T(r, \hat{w})\}$$
 (11)

From (10) and (11), it follows (5).

(ii) Combining (4)' with (9) and (11) we get

$$(2\nu + O(1))T(r, w) \leq \sum_{j=1}^{4\nu} \overline{N}\left(r, \frac{1}{w - a_j}\right) = \sum_{j=1}^{4\nu} \overline{N}_0(r, a_j)$$
$$\leq (2\nu + O(1))T(r, w)$$

it shows that the first equality of (6) holds. Similarly we have the second one of (6).

(iii) Applying the theorem B' to w(z), a_j $(j=1, 2, \dots, 4\nu)$ and a, and noting (8) and (11) we obtain

$$\begin{aligned} (2\nu+1)T(r, w) &< \sum_{j=1}^{4\nu} \overline{N}\Big(r, \frac{1}{w-a_j}\Big) + \overline{N}\Big(r, \frac{1}{w-a}\Big) + S(r, w) \\ &= \sum_{j=1}^{4\nu} \overline{N}_0(r, a_j) + \overline{N}\Big(r, \frac{1}{w-a}\Big) + O\{T(r, w)\} \\ &= (2\nu+O(1))T(r, w) + \overline{N}\Big(r, \frac{1}{w-a}\Big) \end{aligned}$$

therefore

$$T(r, w) \leq \overline{N}\left(r, \frac{1}{w-a}\right) + O\left\{T(r, w)\right\} \leq (1+O(1))T(r, w)$$

Similarly

$$T(r, \hat{w}) \leq \overline{N}\left(r, \frac{1}{\hat{w}-a}\right) + O\left\{T(r, w)\right\} \leq (1+O(1))T(r, \hat{w})$$

it follows (7).

Now we give two different ν -valued algebroid functions which take 4ν values at the same points and satisfy the conclusions given by Theorem 1.

Let w(z) and $\hat{w}(z)$ be two ν -valued algebroid functions defined by

$$\psi(z, w) \equiv (a + bc^z)w^{\nu} - (c + de^z) = 0$$

and

$$\Phi(z, \hat{w}) \equiv (a + bc^{-z})\hat{w}^{\nu} - (c + de^{-z}) = 0$$

respectively, where a, b, c and d are different non-zero complex numbers with $ad-bc\neq 0$ and $\frac{c+d}{a+b}\neq 0$, ∞ .

It is obvious that $w(z) \not\equiv \hat{w}(z)$. Suppose $a_j = \left|\frac{c}{a}\right|^{1/\nu} e^{i(\alpha/\nu+2\pi j/\nu)}$ $(j=1, 2, \dots, \nu)$ with $\alpha = \arg \frac{c}{a}$, $b_k = \left|\frac{d}{b}\right|^{1/\nu} e^{i(\beta/\nu+2k\pi/\nu)}$ $(k=1, 2, \dots, \nu)$ with $\beta = \arg \frac{d}{b}$, $c_l = \left|\frac{c+d}{a+b}\right|^{1/\nu} e^{i(\gamma/\nu+2\pi l/\nu)}$ $(l=1, 2, \dots, \nu)$ with $\gamma = \arg \frac{c+d}{a+b}$, $d_m = \left|\frac{c-d}{a-b}\right|^{1/\nu} e^{i(\delta/\nu+2\pi m/\nu)}$ $(m=1, 2, \dots, \nu)$ with $\delta = \arg \frac{c-d}{a-b}$. [We can show that $\overline{E}(a_j, w) = \overline{E}(a_j, \hat{w})$, $\overline{E}(b_k, w)$ $= \overline{E}(b_k, \hat{w})$, $\overline{E}(c_l, w) = \overline{E}(c_l, \hat{w})$, $\overline{E}(d_m, w) = \overline{E}(d_m, \hat{w})$, $(j, k, l, m=1, 2, \dots, \nu)$.

Noting the roots of w(z)=a (or $\hat{w}(z)=a$) are the zeroes of $\psi(z, a)=0$ (or $\Phi(z, a)=0$), we have

$$\psi(z, a_j) = \frac{bc-ad}{a} e^z \neq 0$$
, $(j=1, 2, \dots, \nu)$

thus a_j $(j=1, 2, \dots, \nu)$ are the Picard exceptional values of w(z) i.e. $\overline{E}(a_j, w) = \emptyset$ $(j=1, 2, \dots, \nu)$. Similarly

$$\Phi(z, a_j) = \frac{bc - ad}{a} e^{-z} \neq 0$$

 a_j $(j=1, 2, \dots, \nu)$ are also the Picard exceptional values of $\hat{w}(z)$ i.e. $\overline{E}(a_j, \hat{w}) = \emptyset$ $(j=1, 2, \dots, \nu)$. For b_k $(k=1, 2, \dots, \nu)$, because

$$\psi(z, b_k) = a - c = \Phi(z, b_k)$$

we have b_k $(k=1, 2, \dots, \nu)$ are also the Picard exceptional values of w(z) and $\hat{w}(z)$, and therefore $\overline{E}(b_k, w) = \overline{E}(b_k, \hat{w}) = \emptyset$ $(k=1, 2, \dots, \nu)$. For c_l $(l=1, 2, \dots, \nu)$, since

$$\psi(z, c_l) = \frac{ad-bc}{a+b} (1-e^z),$$

we have $\overline{E}(c_l, w) = \{2\pi ni, n \in \mathbb{Z}\}$, on the other hand, since

$$\Phi(z, c_l) = \frac{ad-bc}{a+b}(1-e^{-z})$$

we have $\overline{E}(c_l, \hat{w}) = \{2\pi ni, n \in \mathbb{Z}\}$, it shows that $\overline{E}(c_l, w) = \overline{E}(c_l, \hat{w}) \ (l=1, 2, \dots, \nu)$. Finally for d_m , since

$$\psi(z, d_m) = -\frac{ad-bc}{a-b}(1+e^z)$$

and

$$\Phi(z, d_m) = -\frac{ad-bc}{a-b}(1+e^{-z})$$

 $(m=1, 2, \dots, \nu)$, we get $\overline{E}(d_m, w) = \overline{E}(d_m, \hat{w}) = \{(2n+1)\pi i, n \in \mathbb{Z}\}$. It shows that w(z) and $\hat{w}(z)$ take 4ν values at the same points, but $w(z) \equiv \hat{w}(z)$.

We can point out that w(z) and $\hat{w}(z)$ satisfy the conclusions of theorem 1. In fact, it is easy to show that

$$T(r, w) = \frac{r}{\nu \pi} + O(1)$$
 and $T(r, \hat{w}) = \frac{r}{\nu \pi} + O(1)$

thus

$$\lim_{r \to \infty} \frac{T(r, w)}{T(r, \hat{w})} = 1$$

since $\overline{N}_0(r, a_j) = \overline{N}_0(r, b_k) = 0$, $(j, k = 1, 2, \dots, \nu)$, $\overline{N}_0(r, c_l) = \frac{r}{\nu \pi} + O(1)$ and $\overline{N}_0(r, d_m)$

ON ALGEBROID FUNCTIONS

 $=\frac{r}{\nu\pi}+O(1), (l, m=1, 2, \dots, \nu),$ we get

$$\lim_{r \to \infty} \sum_{j=1}^{\nu} \frac{! \overline{N}_0(r, a_j) + \overline{N}_0(r, b_j) + \overline{N}_0(r, c_j) + \overline{N}_0(r, d_j)}{T(r, w)}$$
$$= \lim_{r \to \infty} \sum_{j=1}^{\nu} \frac{\overline{N}_0(r, a_j) + \overline{N}_0(r, b_j) + \overline{N}_0(r, c_j) + \overline{N}_0(r, d_j)}{T(r, w)} = 2\nu$$

Finally if $s \neq a_{j}$, b_{k} , c_{l} and d_{m} , then $\frac{c-as^{\nu}}{bs^{\nu}-d} \neq 0$, ∞ , since

$$\psi(z, s) = (a + be^z)s^{\nu} - (c + de^z) = 0$$
 and $\Phi(z, s) = (a + be^{-z})s^{\nu} - (c + de^{-z}) = 0$

we get $\overline{E}(s, w) = \left\{ \log \frac{c-as^{\nu}}{bs^{\nu}-d} + 2n\pi i, n \in \mathbb{Z} \right\}$ and $\overline{E}(s, w) = \left\{ \log \frac{bs^{\nu}-d}{c-as^{\nu}} + 2n\pi i, n \in \mathbb{Z} \right\}$ therefore $\overline{N}\left(r, \frac{1}{w-s}\right) = \frac{r}{\nu\pi} + O(1)$ and $\overline{N}\left(r, \frac{1}{w-s}\right) = \frac{r}{\nu\pi} + O(1)$, it follows that

$$\lim_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{w-s}\right)}{T(r, w)} = \lim_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{w-s}\right)}{T(r, w)} = 1$$

it shows that w(z) and $\hat{w}(z)$ satisfy all conclusions in theorem 1.

THEOREM 2. Let w(z) and $\hat{w}(z)$ be two ν -valued algebroid functions, if $\overline{E}(a_j, w) = \overline{E}(a_j, \hat{w})$ for $a_j \in \hat{C}$ $(j=1, 2, \dots, 2\nu+\lambda)$ with $1 \leq \lambda \leq 2\nu-1$, then there exists a finite non-zero number $K = K(\nu, \lambda)$ such that

$$\frac{1}{K} \leq \lim_{\substack{r \neq w \\ r \neq eE}} \frac{T(r, w)}{T(r, \hat{w})} \leq K$$
(12)

where E denotes a set with a finite linear mearsure.

Proof. Applying theorem B' to w(z), $\{a_j\}$, $(j=1, 2, \dots, 2\nu+\lambda)$, we get

$$\lambda T(r, w) < \sum_{j=1}^{2\nu+\lambda} \overline{N}\left(r, \frac{1}{w-a_j}\right) + S(r, w)$$

noting $\overline{N}\left(r, \frac{1}{w-a_{j}}\right) = \overline{N}\left(r, \frac{1}{\widehat{w}-a_{j}}\right) \leq T(r, \widehat{w}) + O(1)$, we have

$$\lambda T(r, w) < \sum_{j=1}^{2\nu+\lambda} \overline{N}\left(r, \frac{1}{\widehat{w} - a_j}\right) + O\{T(r, w)\}$$
$$\leq (2\nu + \lambda)T(r, \widehat{w}) + O\{T(r, w)\}$$

then for any $\epsilon > 0$, there exists r_0 such that if $r \ge r_0$ and $r \in E$, we have

$$\left(\frac{\lambda}{2\nu+\lambda}-\epsilon\right)T(r, w) < T(r, \hat{w}).$$

Similarly we get

$$\left(\frac{\lambda}{2\gamma+\lambda}-\epsilon\right)T(r, \hat{w}) < T(r, w)$$

where E is a set of finite linear measure. Thus

$$\left(\frac{\lambda}{2\nu+\lambda}-\epsilon\right) \leq \lim_{\substack{r \to \infty \\ r \in E}} \frac{T(r, w)}{T(r, w)} \leq \left(\frac{\lambda}{2\nu+\gamma}-\epsilon\right)^{-1}$$

because of the arbitrariness of ϵ , it follows (12).

The following example shows that if two ν -valued algebroid functions take only 2ν values at the same points, then the ratio of their characteristic functions may be infinite. Let w(z) and w(z) be two algebroid functions defined by

$$\psi(z, w) \equiv (1 + e^{z})w^{\nu} - (a + be^{z}) = 0$$
$$\Phi(z, w) \equiv (1 + e^{e^{z}})w^{\nu} - (a + b^{e^{z}}) = 0$$

and

respectivelly, where a and b are non-zero and distinct complex numbers. Set $a = |a|e^{ia}$ and $a_j = |a|^{1/\nu}e^{i(a/\nu+2\pi j/\nu)}$, $(j=1, 2, \dots, \nu)$, $b = |b|e^{i\beta}$ and $b_k = |b|^{1/\nu}e^{i(\beta/\nu+2\pi k/\nu)}$, $(k=1, 2, \dots, \nu)$. Since $\phi(z, a_j) = (a-b)e^z \neq 0$, a_j $(j=1, 2, \dots, \nu)$ are the Picard exceptional values of w(z), i. e. $\overline{E}(a_j, w) = \emptyset$. On the other hand, $\Phi(z, a_j) = (a-b)e^{e^z} \neq 0$, it means $\overline{E}(a_j, \hat{w}) = \emptyset$, hence $\overline{E}(a_j, w) = \overline{E}(a_j, \hat{w})$, $(j=1, 2, \dots, \nu)$. Because $\phi(z, b_k) = \Phi(z, b_k) = b-a$, $k=1, 2, \dots, \nu$, thus again $\overline{E}(b_k, w) = \overline{E}(b_k, \hat{w})$, $k=1, 2, \dots, \nu$. In other words, w(z) and $\hat{w}(z)$ share 2ν values. But it is easy to show that $T(r, w) = \frac{r}{\nu\pi} + O(1)$ and $T(r, \hat{w}) = \frac{e^r}{\nu\sqrt{2\pi^3}r}(1+O(1))$ (cf. Hayman [2]), it follows that $\frac{T(r, \hat{w})}{T(r, w)} \rightarrow \infty$, as $r \rightarrow \infty$.

3. Let $\gamma(\geq 1)$ be an integer and $\overline{E}^{\gamma}(a, w)$ be the set of the distinct zeroes of w(z)-a which multiple order $\leq \gamma$. We denote by $\overline{N}^{\gamma}(r, \frac{1}{w-a})$ the counting function of the corresponding *a*-points of w(z). We have

THEOREM 3. Let w(z) and $\hat{w}(z)$ be two ν -valued algebroid functions and γ (≥ 1) be an integer which divides exactly 2ν . If for $a_j \in \hat{C}$, $\overline{E}^{\gamma}(a_j, w) = \overline{E}^{\gamma}(a_j, \hat{w})$, $j=1, 2, \dots, p_{\gamma}, p_{\gamma} = 4\nu + \frac{2\nu}{\gamma}$, then

(i)
$$\lim_{\substack{r \to \infty \\ r \in E}} \frac{T(r, w)}{T(r, \hat{w})} = 1$$

(ii)
$$\lim_{\substack{r\to\infty\\r\in E}}\sum_{j=1}^{p_{T}}\frac{\overline{N}^{r_{j}}\left(r,\frac{1}{w-a_{j}}\right)}{T(r,w)}\lim_{\substack{r\to\infty\\r\in E}}\sum_{j=1}^{p_{T}}\frac{\overline{N}^{r_{j}}\left(r,\frac{1}{\widehat{w}-a_{j}}\right)}{T(r,\widehat{w})}=2\nu$$

and (iii) for $a \neq a_{j}$, we have

$$\lim_{\substack{r \to \infty \\ r \in E}} \frac{\overline{N}^{r_{1}}\left(r, \frac{1}{w-a}\right)}{T(r, w)} \lim_{\substack{r \to \infty \\ r \in E}} \frac{\overline{N}^{r_{1}}\left(r, \frac{1}{\hat{w}-a}\right)}{T(r, \hat{w})} = 1$$

where E is a set with finite linear measure.

Especially, if $\gamma = 1, 2, \dots, \nu$, then $p_r = 6\nu, 5\nu, 4\nu + 2$, respectively.

Proof. Set

$$\overline{N}^{(r)}\left(r,\frac{1}{w-a}\right) = \overline{N}\left(r,\frac{1}{w-a}\right) - \overline{N}^{(r)}\left(r,\frac{1}{w-a}\right)$$

it is easy to know that $\overline{N}^{(\gamma)}\left(r, \frac{1}{w-a}\right) \leq \frac{1}{\gamma+1} N^{(\gamma)}\left(r, \frac{1}{w-a}\right)$ where $N^{(\gamma)}\left(r, \frac{1}{w-a}\right)$ is the counting function of the zeroes of w(z)-a which multiple order $>\gamma$ and being counted multiply. Since

$$\overline{N}\left(r,\frac{1}{w-a}\right) \leq \overline{N}^{\gamma}\left(r,\frac{1}{w-a}\right) + \frac{1}{\gamma+1}N^{(\gamma)}\left(r,\frac{1}{w-a}\right)$$
$$\leq \frac{\gamma}{\gamma+1}\overline{N}^{\gamma}\left(r,\frac{1}{w-a}\right) + \frac{1}{\gamma+1}N\left(r,\frac{1}{w-a}\right)$$
$$\leq \frac{\gamma}{\gamma+1}\overline{N}^{\gamma}\left(r,\frac{1}{w-a}\right) + \frac{1}{\gamma+1}T(r,w) + O(1)$$

(4) can be written as the following form

$$(p-2\nu)T(r, w) < \sum_{j=1}^{p} \overline{N}\left(r, \frac{1}{w-a_{j}}\right) + S(r, w)$$
$$\leq \frac{\gamma}{\gamma+1} \sum_{j=1}^{p} \overline{N}^{\gamma}\left(r, \frac{1}{w-a_{j}}\right) + \frac{p}{\gamma+1}T(r, w) + S(r, w)$$

thus (4) becomes

$$(p\gamma - 2\nu(\gamma+1))T(r, w) < \gamma \sum_{j=1}^{p} \overline{N}^{\gamma}(r, \frac{1}{w-a_{j}}) + S_{\gamma}(r, w), \qquad (13)$$

By using (13) to w(z), $\{a_j\}$ and $\hat{w}(z)$, $\{a_j\}$, $j=1, 2, \cdots$, p_{γ} we get (13) and

$$(p_{\gamma}\gamma-2\nu(\gamma+1))T(r, \hat{w}) < \gamma \sum_{j=1}^{p_{\gamma}} \overline{N}^{\gamma}\left(r, \frac{1}{\hat{w}-a_{j}}\right) + S_{\gamma}(r, \hat{w}).$$
(13)'

By a argument similar to the proof of theorem 1, we can prove theorem 3. Similarly we have the following

THEOREM 4. Let w(z) and $\hat{w}(z)$ be two ν -valued algebroid functions and γ (≥ 1) an integer which divides exactly 2ν , if $\overline{E}^{\gamma}(a_j, w) = \overline{E}^{\gamma}(a_j, \hat{w})$ for $a_j \in \hat{C}$, $j=1, 2, \dots, p_{\gamma\lambda}, p_{\gamma\lambda}=2\nu+\lambda+\frac{2\nu}{\gamma}$ with $1\leq \lambda\leq 2\nu-1$, then

HE YUZAN AND GAO SHI-AN

$$\frac{\lambda\gamma}{2\nu(\gamma+1)+\lambda\gamma} \leq \lim_{\substack{r\to\infty\\r\in E}} \frac{T(r, w)}{T(r, w)} \leq \frac{2\nu(\gamma+1)+\lambda\gamma}{\lambda\gamma}.$$

Especially, if $\gamma=1, 2$ and ν , then $p_{\gamma\lambda}=4\nu+\lambda, 3\nu+\lambda$ and $2(\nu+1)+\lambda$.

The authors wish to thank to Professor K. Niino for his valuable advice and careful examination.

References

- G.G. GUNDERSEN, Meromorphic functions that share three or four values, J. London Math. Soc. 20 (1979), 457-466.
- [2] W.K. HAYMAN, Meromorphic functions, Oxford, 1964.
- [3] He YUZAN, Sur un Problème d'unicité relatif aux fonctions algébroïdes, Sci. Sinica, 14 (1965), 174-180.
- [4] He YUZAN, On multiple values of algebroid functions, Acta Math. Sinica 22 (1979), 733-742.
- [5] E. ULLRICH, Über den Einfluss der verzwiegtheit einer Algebroide auf ihre Weitverteilung, J. Reine Ang. Math. 169 (1931), 198-220.
- [6] G. VALIRON, Sur la dérivée der fonctions algébroïdes, Bull. Soc. Math. Fr. 59 (1929), 17-39.
- [7] G. VALIRON, Sur quelques propriétés des fonctions algébroïdes, C.R. Acad. Sci. Paris 189 (1929), 824-826.

Institute of Mathematics	Department of Mathematics
Academia Sinica Beijing	South China Normal University
China	China