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ON ALGEBROID FUNCTIONS TAKING THE
SAME VALUES AT THE SAME POINTS

By HE YuzaN AND GAO SHI-AN

1. It is well known that if two meromorphic functions w(z) and w(z) take
five values at the same points, then w(z)=w(z), and if w(z) and w(z) share only
four values, usually w(z)Z®(z), but there exists some relations between w(z)
and @(z). Recently G. Gundersen [1] proved that if two meromorphic functions
share three values, then the proportion of their characteristic functions is finite.
On the y-valued algebroid functions G. Valiron [5] pointed out that if two
v-valued algebroid functions w(z) and @(z) take 4v-+1 values at the same points
with same multiple order, then w(z)=w(z). In [3], we proved a uniqueness
theorem which refined the result of Valiron. In present paper we first prove
that if two y-valued algebroid functions w(z) and w(z) share 4v values, then
there exists some relations between w(z) and @(z), and we construct two different
y-valued algebroid functions sharing 4y values. Secondly we proved that if two
v-valued algebroid functions share 2v+2A values with 1<1=<2v—1, then the ratio
of their characteristic functions is finite, and we give two v-valued algebroid
functions sharing 2v values, but the ratio of their characteristic functions is
infinite. We also obtain some results concerning the multiplicity.

2. Let w(z) be a v-valued algebroid function defined by the following irre-
ducible equation

¢(2, W)= A 2w+ Ay ()W -+ + Ag(2)=0 (1)

where A,(z) (=0, 1, -+, v) are entire functions in C. Set

N(r, wia>:—i—N<r’ gb(z{ a)>:%50 = t

+%n(0,

w__a)logr, aceC

and

1 1\ 1¢at, w—n0,w) , , 1 B
N(r, w)——;N(T, ——)——XJ—SO——F— dH—;n(O, w)logr, a=oo
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where n(t, wia> is the number of the zeroes of w(z)—a in |z|<¢ being

counted the multiply. We denote by j(z)=|:A,(z):|“"‘”15 gs [wji(z)—w(z)]? or
7 v

]-; Av—l(z): Tt A0(2>y 0, T 0

0: A,(Z), Al(z)’ T AO(Z)I 0, R 0

ttttttt y—l
](Z): Oy T 0; AV(Z)) Av—l(z)y ) AO(Z)

v, (y—l)Av-l(z)) T Al(z)) 0) ttty 0

0; VA,,(Z), (D—I)Ay—l(z)y *tty Al(z)r 0) R 0 v

Oy T Oy VA»(Z), (u—l)Av-l(Z)} R AI(Z)

the discriminant, and it is well known that each branch point of w(z) is a zero
of J(z). Let L denote a curve joining all zeroes of J(z), then the determinations
wj(z) of w(z) (=1, 2, -+, v) are simple-valued functions in C\L. We set

1 - 1 » 1 —_i v i‘ 2 . 1
m(r, w—a)— Y Zm(r, w;—a >_ y ;-Zx ZnSo log |wire**)—al do,

acsC
and

< | =

> mir, w,)= > %S:nlog* |w,(re*?)|de, a=o0

=1

and we call
T(r, w)=m(r, w)+N(r, w)

the characteristic function of w(z). We have (cf. [5] or [6])

THEOREM A. (The first fundamental theorem). If a is any complex number,
then
(0, a)

a):m, w)—i—%log’ ;m)—i+e(r, a), (2)

m(r, 1 )—i—N(r, w_l_

w—a.
where
le(r, a)| =log*|a|+log 2

THEOREM B. (The second fundamental theorem). Let w(z) be a v-valued
algebroid function and ajeé' (7=1, 2, .-, p) be p different number, then

>—Amn1w+50,w) (3)

J

(b—2)T(r, w)< B N(r,
J=1

where Ny(r, w) is the counting function for all multiple value-points of w(z), but
a r-fold value-point is counted only t—1 times and S(r, w) is the remainder term.

We denote by ﬁ(t, wi

a> the number of distinct roots of w(z)=a in |z| <t
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50 )

N(r, wia):%go ¢ dt—l_%ﬁ(o’ w—l—

then the second fundamental theorem can be written as the form.

and define

a)logr

THEOREM B’. Suppose w(z) and a,eC are the same as theorem B, then

1

P _
(P—2)T(r, )< TN (r, )—i—O{log(rT(r, w))} (4)
=1 w
outside a certain exceptional set of finite linear measure.

Let E(a, w) denote the set of distinct roots of w(z)=a, then we have

THEOREM 1. Let w(z) and W(z) be two algebroid functions definied by (1)

and
D(z, 0)=B,(2) 0"+ B,-,(2)®* "'+ -+ +Bo(2)=0 (ry

respectively. If E(a,, w)y=E(a,, ®) for a,€C, (j=1, 2, -, 4v), then 1t must be
T(r, w) -1

) BT D) )
r€EE
4 N<r’ wia ) 4y N(r’ wia )
(ii) lim > —— 22— =lim 3 ———— =2, (6)
roo =1 T(r, w) e =1 T(r, @)
r€EE rek

(iii) for any a#a,, then

lim——————=lim—(—+— =1, (7)

where E is a set with finite linear measure.

Proof. (i) Suppose w(z)¥£w(z) and 7i,(f, a) denotes the number of the
common roots of w(z)=a and ®W(z)=a containing in |z| <t and each common
root is counted only once. We define

NO(T’, a):%S: 7o(t, a)'t‘ﬁo(O, a)

dt—}—%ﬁo(o, a)logr.
It is easy to know that
1
> Aiolr, aj)én(f’, W)

where R(¢, @) is the resultant of (1) and (1), i.e.
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R(¢, @)=[A»(Z)BV(Z)]”ISI;ISv[wj(Z)—wk(Z)]

1sksy
A,,(Z), Ay—l(z)) R) AO(Z)) 0’ T 0
0) Av(z)) Au—l(z)y Tt AO(Z)) 0: Tty 0

v
— 07 R 0’ Ay(z)y Av—l(z)’ R AO(Z) J
Bv(z)! Bv-—l(z): Tty BO(Z), Oy Tt 0
0: B,,.(Z), Bv—l(z)y Tt BO(Z): 0: ) 0 v

07 Tt 0} Bv(z)’ Bv-l(z); ) BO(Z)

by using the Jensen’s formula we get

z=0

0

——”—S“lo | A(re)| d +LS"10 | B,(re)|d
=orx), 0814 P o), 08ITe ¢

1 (2= . . 1
+ESO Iogliél;[’é;[wj(re P)— 1, (re S")]ldgo—l—log‘—R(gb’ )

z2=0

=vN(r, 1 +vN(r, 1 v Somr, wj)+v S mlr, 4)+0(1)
A» Bv J=1 k=1

=y’ [T(r, w)+T(r, ®)]+0(1)

hence

2 No(r, a)=v[T(r, w)+T(r, ©)]+0(1) (8)
applying Theorem B’ to w(z), {a;} and @(z), {a;}, we have

i

2T, w)< 3N (r, =y )+01{T(r, w)) (4)

and
N 4y __ ]_ . ”
2T, )< ZN(r, 5=,-)+O1T(, D)) (4)

outside of a possible exceptional set E with a finite linear measure. Since

N (r,

w—d, )=N0(r, a;), noting (8) we get

WT(r, w)< 3 No(r, a)+0{T(r, )}
J=1

=u[T(r, w)+T(r, @)]4+0{T(, w)} (9)
thus
T(r, w)<T(@r, )+0{T(r, w)} (10)

by a similar argument we have
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T(r, w)<T(r, w)+O0{T(r, w)} (1D

From (10) and (11), it follows (5).
(i) Combining (4)’ with (9) and (11) we get

@+OWT(, w= N (r, )= Rtr. a)

=Qv+0NT(r, w)
it shows that the first equality of (6) holds. Similarly we have the second one of (6).

(iii) Applying the theorem B’ to w(z), a, (=1, 2, -+, 4y) and a, and
noting (8) and (11) we obtain

1
—a,

@A+DT(, w)< 3N (r ——)+N(r, L Vst w

LS — — l
=J§1 o7, a]H—N(r, —a )+O{T(r, w)}

1
=@ +0T(r, w+N(r, ——)

therefore
Tir, =N (r, ) +0{T(r, ) <U+OWNT(r, w)
w—a
Similarly

1) +O0(T(, ) U+OWIT(r, @)

T(r, ﬁ))éN(n

it follows (7).

Now we give two different v-valued algebroid functions which take 4y
values at the same points and satisfy the conclusions given by Theorem 1.

Let w(z) and @(z) be two y-valued algebroid functions defined by

Pz, w)=(a+be*)w—(c+de*)=0
and
D(z, W)=(a+bc?)D*—(c+de*)=0

respectively, where a, b, ¢ and d are different non-zero complex numbers with

c+d
ad—bc+0 and ?$0
It is obvious that w(z)==®(z). Suppose a,-l—‘ gitan+esily (3 =1 2 .- p)
with a—arg—, bk—,—’ ot Brvrzkr ) (p— 12 u) with B=arg—, ¢,=
c-l-d 1/v PN [ i(ﬁ/v+27:m/u>
la—l—b e (=12, -,v) with y= arg ’——

(m=1, 2, ---, v) with d=arg Z__z . [We can show that E(a,, w)=E(a, @), E(bs, w)
=E(bk! w)r E(cly W):E(C[, w)’ E(dm; IU):E(dmy w)’ (j; k’ l) m:]-y 2; Tty )J),
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Noting the roots of w(z)=a (or @W(z)=a) are the zeroes of ¢(z, a)=0 (or D(z, a)
=0), we have

¢(z, aj)z bc—(;ad ezi()’ (]:1! 2; Ty y)
thus a, (j=1, 2, ---, v) are the Picard exceptional values of w(z) i.e. E(a 5 W)
=@ (j=1, 2, -, v). Similarly
&z, a,)= be—ad ..

a, (j=1, 2, -, v) are also the Picard exceptional values of w(z) i.e. E(a,, ©)
=@ (=1, 2, ---,v). For b, (k=1, 2, ---, v), because

¢(2r bk)za—C=@(Z, bk)

we have b, (k=1, 2, ---, v) are also the Picard exceptional values of w(z) and
0(z), and therefore E(by, w)=E by, #)=@ (k=1, 2, ---, v). For ¢; (=1, 2, -, v),
since

ad—bc N
Oz, )= aTb (1—e’),
we have E(c,, w)={2zni, n=Z}, on the other hand, since
ad—bc ,
D(z, c))= b (I—e™)

we have E(c,, ®)={2zni, n=Z}, it shows that E(c,, w)=E(c,, ®) (=1, 2, -, v).
Finally for d,, since

ad—bc )
Oz, dm)=— 2=b (1+e%)
and
ad—bc .
D(z, dpn)=— a—p Lte™

(m=1,2, -, v), we get E(dn, w)=E(dn, ®)={@2n+Dni, neZ}. It shows that
w(z) and @(z) take 4v values at the same points, but w(z)Z£®(z).

We can point out that w(z) and @(z) satisfy the conclusions of theorem 1.
In fact, it is easy to show that

TG, w)=%—l—0(l) and T(, w>=%+o<1>

thus

. T, w)
I @)

since Ny(r, a;))=Ny(r, b)=0, (7, k=1, 2, ---, v), Ny(r, Cz)=;%+0(1) and Ny, d.,)
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=L+0(1), (1) m=l, 2} Tty ”)’ we get
v

. 2 ’No(r, aj)‘}‘No(r, bj)+1vo(7’y Cj)+j\70(7’, dj)
LIE ng T(r, w)
& Nor, @) +No(r, b))+ No(r, c)+No(r, d;)
=lim 2 TG, ) =2.
Finally if s#a,, by, ¢; and d,, then Z;ij +0, oo, since
Oz, s)=(a+be*)s*—(c+de’)=0 and O(z, s)=(a+be*)s*—(c+de *)=0
we get E(s, w)={log—z;—ij—-l—2mri, neZ} and E(s, ﬁ;)———{log Ic)s_;sdv +2nxi,
— 1 r — 1 r .
neZ} therefore N(r, s )—;;-1—0(1) and N(r, P—s >-—E+O(l)’ it fol-
lows that

@ L) N wl_s)
m—r 0y Ty L

it shows that w(z) and @(z) satisfy all conclusions in theorem 1.

THEOREM 2. Let w(z) and w(z) be two v-valued algebroid functions, if
E(a,, w)=E(a,, ®) for a;e€C (j=1, 2, -, 2v+2) with 1<A=<2v—1, then there
exists a finite non-zero number K=K, 2) such that

1 . T, w)
— <
K SImomo =
r€EE

where E denotes a set with a finite linear mearsure.

=K (12)

Proof. Applying theorem B’ to w(z), {a;}, (=1, 2, -+, 2v+2), we get

AT(r, w)<2:=i:1v(r, )+5(7’, w)

w—a,

noting N(r, 1 )=1\7(r, z?)ia )éT(r, D)+0(1), we have

w—a, 1

1
h—

v+ A
T, w) <5 N(r, )+0{T(r, w))
J=1 a,
ST (r, )+0{T(r, w)}
then for any €>0, there exists r, such that if »=7, and »€E, we have

(T'EH—E)TO’, w)<T(r, ).
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Similarly we get
A _
(m—e)T(r, 0)<T(r, w)
where E is a set of finite linear measure. Thus

2  T(row) _y A -
(m“f>%g§ To o) §(2u+7 —¢)"

because of the arbitrariness of ¢, it follows (12).

The following example shows that if two vy-valued algebroid functions take
only 2v values at the same points, then the ratio of their characteristic functions
may be infinite. Let w(z) and w(z) be two algebroid functions defined by

P(z, w)=(1+e)w*—(a+be)=0
and
D(z, ®)=1+e)0*—(a+b*)=0

respectivelly, where & and b are non-zero and distinct complex numbers.
Set a=|lale™ and a;=|al|Yveter2miv (5=1,2, -, v), b=|ble*® and b,=
|| retBrrzakivy  (p=1, 2, ---,v). Since ¢(z, a=(a—0b)e*+0, a, (j=1,2, =, v)
are the Picard exceptional values of w(z), i.e. E(a » w)=@. On the other hand,
D(z, a)=(a—Db)e®*+0, it means E(a,, ®)=@, hence E(a,, w)=E(a,, ®), (j=1,
2, -+, v). Because ¢(z, by)=®(z, by)=b—a, k=1, 2, .-, v, thus again E(bs, w)
=E(b,, W), k=1,2, -, v. In other words, w(z) and #@(z) share 2v values. But

it is easy to show that T(r, w)=;%+0(1) and T(r, m:%(wou» (cf.

. T, @)
Hayman [2]), it follows that m-—»w, as r—oo,

3. Let y(=1) be an integer and EM(a, w) be the set of the distinct zeroes

1 ) the count-
—a

of w(z)—a which multiple order <y. We denote by N—T’(n ”

ing function of the corresponding a-points of w(z). We have

THEOREM 3. Let w(z) and @w(z) be two v-valued algebroid functions and 7y
(1) be an integer which divides exactly 2v. If for ajeé, E”(a,, w)=E”(a], ),

].-:1’ 2, o, pT’ p7:4y+-27—?~’ then

® iy =L
r€EE ’
- 1 = 1
N (r N (r
p 4 — D » T AT
(ii) lim 3 o “f) lim 35 _Luf_)_ _o,

To00 =1 T(T, W) T j=1 T(?’, u7)
E r€EE
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and (iii) for a+a,, we have

NT’(r, wia) Nr)(,,, zizl—a)

lim lim — =1
o Tew o oD

where E is a set with finite linear measure.
Especially, if y=1, 2, -+, v, then p,=6y, 5v, 4v+2, respectively.

Proof. Set

NW(“ wia)zlv(r’ wia)_Nn(r’ wia)

= 1 1 1 1
. o < ¢
it is easy to know that N (r, z )= | a> where N <V, a)

is the counting function of the zeroes of w(z)—a which multiple order >y and
being counted multiply. Since

N‘f(r,

_ — 1 1 1
< 7 - 7

N(r, w—a>=N (r, w—a >+ r+1 N (r, w—a)

T ~on 1 1 1
= r+1 Nt (r, w—a)+ r+1 N(r, w——a)
T 5 ) _1_~
=N =)t T w0
(4) can be written as the following form
)T SN L Vs
(p—20)T(r, w)<]§)l (r, w_a]>+ (r, w)

_b_
-——a,>+ ] T, w)+Sr, w)

thus (4) becomes

(br =2+ )T (r, )<y S N7,

w—a, >+Sr(r, w), 13)

By using (13) to w(z), {a;} and @(2), {a;}, j=1, 2, ---, p, we get (13) and

(b =2y +D)T(r, 2)<7 ]p_z’l No(r, V+Sir, ). (13

w—a,

By a argument similar to the proof of theorem 1, we can prove theorem 3.
Similarly we have the following

THEOREM 4. Let w(z) and @(z) be two v-valued algebroid functions and 7
(=1) an integer which divides exactly 2v, if E"(a,, w)=E"(a,, @) for a,eé,

7=1,2, -, pyas pﬂ=zu+z+%”— with 1<2<2v—1, then
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Ay <lim T(r, 112) < 20(+1D+2y .
2u(r+1)+4r —sz T(r, ) — Ar

TE

Especially, 1f y=1, 2 and v, then p,;=4v+24, 3v+2 and 2(v+1)4A.

The authors wish to thank to Professor K. Niino for his valuable advice
and careful examination.
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