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ON THE AUTOMORPHISM GROUPS OF A COMPACT

BORDERED RIEMANN SURFACE OF GENUS FIVE

BY KENJI NAKAGAWA

§ 1. Introduction.

Let 5 be a compact bordered Riemann surface of genus g with k boundary
components. If 2g-\-k—1^2, the automorphism group of S is a finite group.
Then, we put N(g, k) the maximum order of automorphism groups of S where
the maximum is taken over all S of genus g with k boundary components. It
is well known that N(g, k) is equal to the maximum order of automorphism
groups of compact Riemann surfaces of genus g deleted k points, and every
automorphism group of S is isomorphic to that of a compact Riemann surface
(Oikawa [7]). For every k^O, N(0, k), N(l, k), N{2, k), N(3, k) and 7V(4, k)
are determined by Heins [2], Oikawa [7], Tsuji [8], Tsuji [9] and Kato [4],
respectively. In the present paper, we shall determine N(5, k).

Theorem. JV(5, k) is

(1) 192 for k=0, 24, 64, 88 (mod 96),
(2) 160 for k=0, 32 (mod40) except the case (1),
(3) 120 for k=0f 12, 40, 52 (mod60) except the cases (1), (2),
(4) 96 for £ = 16, 32, 40, 48, 56, 72 (mod 96) except the cases (2), (3),
(5) 80 for k = 16 (mod40) except the cases (1), (2), (4),
(6) 64 for k=0 (mod8) except the cases (1)~(5),
(7) 60 for £ΞΞ20, 32 (mod60) except the cases (1), (2), (4)~(6),
(8) 48 for k=Q, 4 (mod 12) except the cases (1)~(7),
(9) 40 for k=0, 2 (mod 10) except the cases (1)~(8),
(10) 32 for k~i (mod 16) except the cases (1)~(5), (7)~(9),
(11) 30 for &ΞΞΞO, 2, 5, 7 (mod 15) except the cases (l)~(10),
(12) 24 for k=2, 6, 10, 14, 20 (mod 24) except the cases (1)~(5), (7),

( ) ( ) ,

(13) 22 for &ΞΞ0, 1, 2, 3 (mod 11) except the cases (1)~(12),
(14) 20 for k = ly 5, 7, 11 (mod 20) except the cases (1)~(8), (10)~(13),
(15) 16 for &ΞΞ2, 6 (mod 16) except the cases (1)~(5), (7)~(9), (11)~(14),
(16) 15 for fe = l, 6 (mod 15) except the cases (l)~(10), (12)~(15),
(17) 12 for ^ Ξ O , 1, 3, 4 (mod 6) except the cases (1)~(5), (7), (9)~(12),
(18) 8 otherwise.
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§ 2. Notation.

Let S be a compact Riemann surface of genus g^2, let G be a conformal
automorphism group of S and let N be the order of G. Let So—S/G be the
quotient surface with conformal structure induced from S through π, where π
is the projection mapping of S onto So. Let g0 be the genus of So. At p^S
and at po—π(p)^So, by a suitable choice of local parameters, π is represented
locally by zQ—zv

y where v is a positive integer, z, z0 are the local parameters
at p, po, respectively. If v>l, p is called a branch point of multiplicity v. If
π(Pi):=π(p2) (Pi, p2^S), then the multiplicity of pλ is equal to that of p2.
Therefore we can define the multiplicity over po^S by the multiplicity of
p^π-1(p0). Let {qly •••, qt) be the set of points on So which are the projection
of all the branch points on S. Let vly •••, vt be the multiplicities over qlt •••, qt,
respectively. We call the set of integers g0, vly •••, vt the signature of G and
denote it by (go; vly •••, vt). Without loss of generality, we may assume

Ξ ••* ^J-v For simplicity's sake, we shall denote (0; vlt •••, vt) by

§ 3. Lemmas.

LEMMA 1. (the Riemann-Hurwitz relation)

2g-2=N(2go-2)+N± ( l - l / ^ ).

LEMMA 2. (Harvey [1]) There exist a compact Riemann surface S and a
cyclic automorphism group ZN on S of order N with signature (go; vλy •••, vt) if
and only if this signature satisfies the following L c. m. condition (1)~(4), where
M—Lc.m. (vlf •••, ut): the least common multiple of vίf •••, vt.

(1) M=L c. m. (vly - , VJf ... , vt). (/=1, - , t)
Here, v3 denetes the omission of v3.

(2) M\N and if go=O, then M=N.
(3) tΦl and if go=O, then ί^3.
(4) // 2|M, the number of v/s which are divisible by the maximum power

of 2 that divides M is even.

LEMMA 3. // S has an automorphism group of order N with signature
t

(go', V\> *•• y v{), then for k=mN+ Σ £jN/pJf N(g, k)^N, where m is a non-

negative integer and ε ; = 0 or 1 0 = 1 , •••, t).
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By Lemma 3, N(g, k) is completely determined by the signature of auto-
morphism groups rather than by automorphism groups themselves. We do not
look for the group of maximum order for a given integer k, or rather, we look
for k points to be deleted from a compact Riemann surface so that these k
points are invariant by the automorphism group with given signature.

LEMMA 4. If p^S is a fixed point of some non-trivial automorphism in G,
then the stabilizer subgroup of p in G is a cyclic group. Then, the order N of
G must be a multiple of the order of the stabilizer subgroup of p.

Proof, An automorphism h which fixes p is expanded locally as

h(z)=az+bz2+ - (aΦΰ),

by a local parameter z at p. Here a is independent on the choice of local
parameter. If the order of h is v, a is a primitive vth root of unity. We
claim that if α = l, then h is indeed the identity automorphism. Let D={\w\ <1}
be the universal covering surface of S and φ be the covering projection such
that φ(0)=p. By the covering surface theory, there is an automorphism H of
D such that

and H fixes the origin w=0. Then H is an elliptic transformation and has the
expansion

H(w)=w+ -".

Then H is the identity. This implies that h is also the identity automorphism.
Since the set of all the automorphisms h% fixing p is a group, the set of all the
leading coefficients at of the expansions of those automorphisms also forms a
group. This group of coefficients {αj is a cyclic group. By the above argue-
ment, at=aj implies that hι—h3. Thus, we conclude that the stabilizer subgroup
is a cyclic group.

LEMMA 5. (Wiman [10], Nakagawa [6]) // v is the order of a stabilizer
subgroup of G, then 2 ^ v ^

LEMMA 6. There exists neither an automorphism of order 7 nor that of
order 9 on any compact Riemann surface of genus 5.

Proof. If N-Ί, by Lemma 4, Vj=7 (/=1, •••, t). Then by the Riemann-
Hurwitz relation we obtain

Since go^O, f^O, this equation has no integer solution. Then the automorphism
of order 7 does not exist. If Λfc9, by Lemma 4, v3—?> or 9. Then, by the
Riemann-Hurwitz relation we obtain
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This equation has the integer solutions (1 9) and (0 3, 3, 3, 9). But these two
solutions do not satisfy the 1. c. m. condition.

LEMMA 7. For all k^O, N(5, k)^8.

Proof. Let S be the Riemann surface defined by

where a is a complex number which is not equal to 0, 1. Let h be the auto-
morphism of S defined by

h(x, y)=(x, exp(πt/4)y).

The automorphism group </z> is of order 8 with signature (2, 4, 8, 8). Since
&—8m+4ε1+2ε2+ε3+ε4 represents arbitrary integer by a suitable choice of m
and Sj 0 — 1, •••, 4), then by Lemma 3 we obtain that N(5f &)^8.

From now on we are going to determine whether the automorphism group
with a given signature exists or not on a compact Riemann surface of genus
5. By Lemma 7, it is not necessary to consider the groups of order ^ 8 . We
assume N>8. By the Riemann-Hurwitz relation we obtain go^l, *^5 . So by
Lemma 5, it is enough to consider at most finite number of signatures. Among
these signatures, say, (2, 3, 7) does not exist, since by Lemma 6, a cyclic group
of order 7 does not exist. (2, 3, 15) also does not exist, for the order 80 is not
a multiple of 3. In a similar way, using Lemmas 1, 4 and 6, we find that
many signatures do not exist. Then, it is enough to consider the following
signatures:

order signature

192 (2, 3, 8) 160 (2, 4, 5) 120 (2, 3, 10) 96 (2, 3, 12)
96 (2, 4, 6) 96 (3, 3, 4) 80 (2, 5, 5) 66 (2, 3, 22)
64 (2, 4, 8) 60 (2, 5, 6) 60 (3, 3, 5) 48 (2, 4, 12)
48 (2, 6, 6) 48 (3, 3, 6) 48 (3, 4, 4) 40 (2, 4, 20)
40 (2, 5, 10) 33 (3, 3, 11) 32 (2, 8, 8) 32 (4, 4, 4)
30 (2, 6, 15) 30 (3, 3, 15) 30 (3, 5, 5) 24 (2, 12, 12)
24 (3, 4, 12) 24 (3, 6, 6) 24 (4, 4, 6) 22 (2, 11, 22)
20 (2, 20, 20) 20 (4, 4, 10) 20 (5, 5, 5) 16 (4, 8, 8)
15 (3, 15, 15) 15 (5, 5, 15) 12 (6, 12, 12) 11 (11, 11, 11)
48 (2, 2, 2, 3) 32 (2, 2, 2, 4) 24 (2, 2, 2, 6) 24 (2, 2, 3, 3)
20 (2, 2, 2, 10) 16 (2, 2, 4, 4) 12 (2, 2, 4, 12) 12 (2, 2, 6, 6)
12 (2, 3, 3, 6) 12 (2, 3, 4, 4) 12 (3, 3, 3, 3) 10 (2, 2, 10, 10)
16 (2, 2, 2, 2, 2) 12 (2, 2, 2, 2, 3) 10 (2, 2, 2, 2, 5) 16 (1 2)
12 (1 3) 10 (1 5)
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§ 4. The existence of hyperelliptic surfaces.

L E M M A 8. Let a1} •••, #2^+2 be distinct complex numbers and let f be a
linear transformation of the sphere which leaves the set {aly ••• , a2g+2] invariant.
Then, there are two automorphisms h1} h2 on the hyperelliptic surface defined by

such that f°x = x°hj (j = l, 2).

At first, using Lemma 8, we show the existence of the group with signature
(2, 3, 10) of order 120. On the Riemann sphere we choose the set of 12 points
oti, •••, a12 which forms the verteces of the icosahedron. The icosahedral group
leaves the set of these 12 points invariant and its order is 60. Then by Lemma
8 the hyperelliptic surface defined by

has the automorphism group of order 120 with signature (2, 3, 10). Secondly,
we show the existence of the group with signature (2, 4, 12) of order 48. We
put arn=exρ(;rin/6) (w=0, 1, •••, 11). The dihedral group generated by the linear
transformations

x—>exp(m/6)x, x->l/x

leaves {an} invariant and its order is 24. Thus the hyperelliptic surface defined
by

has the automorphism group of order 48 with signature (2, 4, 12). By the similar
way we can show the existence of the following signatures. We shall list up
the order N of G, the signature, {an} and Go (the group of linear transforma-
tions of the sphere that leaves {an} invariant.)

N signature {an} Go

120 (2, 3, 10) vertices of icosahedron icosahedral group I
48 (2, 4, 12) exp(πm/β) (n=0, 1, •••, 11) dihedral group D12

40 (2, 4, 20) 0, 00, exp(πin/5) (n=0, 1, •••, 9) dihedral group D10

24 (2, 12, 12) exp(πm/β) ( n = 0 , 1, •••, 11) cyclic group Z12

24 (4, 4, 6) exp(πm/6) (τι=0, 1, •••, 11) dihedral group D6

24 (2, 2, 3, 3) 12 points invariant by T tetrahedral group T
22 (2, 11, 22) 0, exp(2πin/11) (n=0, 1, •••, 10) cyclic group Zn

20 (2, 20, 20) 0, co, exp(*m/5) ( n = 0 , 1, •••, 9) cyclic group Z10

20 (4, 4, 10) 0, 00, exp(πin/5) (n=0, 1, •••, 9) dihedral group D6

12 (2, 3, 4, 4) exp(2τr m/3)/2, exp(2π in/3), dihedral group D3

2 exp(2π inβ) (n=0, 1, 2)
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Finally we show the existence of the signature (6, 12, 12). On the surface
defined by

y12=x(x-l),

let h be the automorphism

h(x, y)=(x, exp(πi/6)y).

Then </z> is a group with signature (6, 12, 12). The existence of the group of
order 60 with signature (3, 3, 5) is shown later in § 5.

§ 5. The existence of non-hyperelliptic surfaces.

According to Wiman [11], there exist the automorphism groups of orders
192, 160, 96 and 64. The signature of the group of order 192 is (2, 3, 8). Then
there are a Fuchsian triangle group Γ with signature (2, 3, 8) and the normal
subgroup K of Γ of index 192 without elliptic elements such that G is isomorphic
to Γ/K. We construct the non-Euclidean triangle ABC in the unit disk in
w/-plane, as follows. The angles at the vertices A, B and C are ττ/8, π/2 and
π/3, respectively. Put A at the origin w=0, B on the non-Euclidean half line
{argw=0} and C on the half line {^rgw—πβ}. We define a by the rotation
at A of angle π/4, b by the elliptic transformation with fixed points B and 5*
(the inverse point of B with respect to the unit circle) of angle π and c by the
elliptic transformation with fixed points C and C* of angle 2ττ/3. Then a^—b2

=c3=abc=id, and Γ is generated by a, b and c. If we put a, b and c the K
cosets of a, b and c, respectively, then G=(ά, b). a2 is the rotation at the
origin of angle π/2. Then <α2, c} is a Fuchsian group whose fundamental
region has the non-Euclidean area twice that of Γ. Then <#2, c} is the auto-
morphism group of order 96 with signature (3, 3, 4). ba2b is the elliptic trans-
formation of angle π/2 with fixed points b(A) and b(A)*. Then <α, ba2b} is a
Fuchsian group whose fundamental region has the non-Euclidean area thrice
that of Γ. Then <#, bά2b} is the automorphism group of order 64 with signature
(2, 4, 8). ba*b is the elliptic transformation of angle π with fixed points b(A)
and b(A)*. Then <α, b^b} is the automorphism group of order 32 with signature
(2, 8, 8). babaAbab is the elliptic transformation of angle π/A with fixed points
ba4b(A) and ba4b(A)*. Then <ά, bάbά4bάb} is the automorphism group of order
16 with signature (4, 8, 8). The signature of the group of order 160 is (2, 4, 5).
This group is isomorphic to Γ/K, where Γ is a Fuchsian group with signature
(2,4,5): Γ=(a, b, c\a5=b2=c4=abc=id>. Then <ά, c2> is the automorphism
group of order 80 with signature (2, 5, 5). Now we show the signature of the
group of order 96 in Wiman's paper [11] is (2, 4, 6). We shall show later in
§ 6, that the group of order 96 with signature (2, 3, 12) does not exist. So the
signature of the group of order 96 must be (3, 3, 4) or (2, 4, 6). On the curve
in Wiman's paper:



212 KENJI NAKAGAWA

the points *(1, j , j 2 , 0, ± 0 are the fixed points of the linear transformation of

" 0 0 - 1 0 0

- 1 0 0 0 0

0 - 1 0 0 0

0 0 0 j 0

L 0 0 0 0 - y 2 J

of order 6. Then the automorphism group of this curve has the signature
(2, 4, 6). Finally we show the existence of (2, 6, 15) and (3, 15, 15). On the
surface defined by

put hx(x, 3θ=(exp(27κ/5)x, exp(4ίrί/15)3θ and h2(x, 3θ=(l/*, -y/xB). Then (hά,
(hlf Λ2> are the automorphism groups with signature (3, 15, 15), (2, β, 15),
respectively. Here, we show the existence of (3, 3, 5) described in § 4. The
group of order 120 with signature (2, 3, 10) is isomorphic to Γ/K, where Γ is
a Fuchsian group with signature (2,3,10): Γ=(a, b, c\aι°—b2~cz=abc—id).
Then <ά2, c> is an automorphism group of order 60 with signature (3, 3, 5).

§6. The non-existence of signatures.

The universal covering surface of 5 is the unit disk D={\w\<l}. Let
be a branch point of π of multiplicity u, and φ the projection such that

ψ(0)=p. A generator h of the stabilizer subgroup of p is lifted to the rotation

w

Then, the Dirichlet region Pκ of K centered at 0 (i.e. FK={w\d(0, w)^
d(τθ, w), r e i f } , where d(,) denotes the non-Euclidean distance in D) is sym-
metric with respect to the rotation w-^exρ(2πi/v)w. Now there is a Fuchsian
group Γ such that G is isomorphic to Γ/K. So Fκ is a finite union of FΓ the
Dirichlet region of Γ. The number of FΓ's in one Fκ is equal to N. Since
Fκ is symmetric with respect to the rotation w-*exp(2πi/v)w, there are N/v
Fp's in the region O^arg w<2π/v. Using this fact, for example, (3, 3, 11) does
not exist. If such a signature existed, the order of the automorphism group
would be 33. Three (=33/11) fundamental regions of a Fuchsian group with
signature (3, 3, 11) do not form one eleventh part of the fundamental region of
any Fuchsian group since the angle at a vertex of a fundamental region must
be 2π/m, where m is an integer. In the same way, we find that (2, 5, 10),
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(3, 3, 11), (3, 3, 15), (3, 5, 5) and (5, 5, 5) do not exist. Next, we show that
(5, 5, 15) and (2, 2, 4, 12) do not exist. If these signatures existed, the auto-
morphism group would be cyclic. But these signatures do not satisfy the 1. c. m.
condition. Furthermore, (2, 3, 12), (2, 3, 22) and (3, 4, 12) do not exist. The
surface having an automorphism of order 12 or 22 is conformally equivalent to
the hyperelliptic surface defined by

yt^x^-l or y2^x(xn-l),

respectively, on which 12 Weierstrass points exist. If p^S is a Weierstrass
point, every point in G-orbit of p is also a Weierstrass point. Then for each
signature (2, 3, 12), (2, 3, 22) and (3, 4, 12) the number of Weierstrass points
should be represented as 96m+48ε1+32ε2+8s3, 6βm+33s1+22ε2+3ε3, and 24m+
8s!+6s 2+2s 3, respectively, where m is an integer and εj=0 or 1 (/=1, 2, 3).
But 12 cannot be represented in these ways. Then (2, 3, 12), (2, 3, 22) and
(3, 4, 12) do not exist.

Finally we show the non-existence of (2, 5, 6). Suppose that the group of
order 60 with signature (2, 5, 6) exists. 10 branch points of multiplicity 6 is
regarded as branch points of multiplicity 3. The signature of the cyclic group
generated by an automorphism of order 3 is (0 3, 3, 3, 3, 3, 3, 3) or (1 3, 3, 3, 3).
If the signature were the former, the surface would be conformally equivalent
to the surface defined by

y3~(x— ax)\x—a2)\x—α8) ••• (* — aΊ),

where alf •••, aΊ are distinct complex numbers. But the Weierstrass gap
sequence at (alf 0) and at (α8, 0) are different. This contradicts that 10 branch
points are equivalent under the group. Therefore, the signature of the cyclic
group of order 3 must be (1; 3, 3, 3, 3). If two automorphism groups </ij> and
<Λ2> of order 3 have a common fixed point then (hί}=(h2>. So the branch
points of multiplicity 3 are divided into equivalence classes, and each class
consists of 4 points. But 10 is not divisible by 4. Thus, (2, 5, 6) does not exist.

By virture of the existence of the group of order 64 with signature (2, 4, 8),
for k=0 (mod 8), N(5, &)2>64. And by virture of the existence of the group of
order 48 with signature (2, 4, 12), for £ΞΞ0, 4 (mod 12), N(5, &)^48. So it is not
necessary to consider the groups of order 48 with signatures (2, 6, 6), (3, 3, 6),
(3, 4, 4) and (2, 2, 2, 3). Similarly, by virture of the existence of the signatures
shown in §§ 4, 5, it is not necessary to consider the following signatures.

48 (2, 6, 6) 48 (3, 3, 6) 48 (3, 4, 4) 48 (2, 2, 2, 3)
32 (4, 4, 4) 32 (2, 2, 2, 4) 24 (3, 6, 6) 24 (2, 2, 2, 6)
20 (2, 2, 2, 10) 16 (2, 2, 4, 4) 16 (2, 2, 2, 2, 2) 16 (1 2)
12 (2, 2, 6, 6) 12 (2, 3, 3, 6) 12 (3, 3, 3, 3) 12 (2, 2, 2, 2, 3)
12 (1 3) 11 (11, 11, 11) 10 (2, 2, 10, 10) 10 (2, 2, 2, 2, 5)
10 (1 5)
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Summing up, we obtain our theorem.
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