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I. Introduction.

Let / be an isometric minimal immersion: Sm(l)-^Sn~\r) and let g be a
rotation: Sw(l)->5m(l). Then fog: 5m(l)->57i"1(r) is also an isometric minimal
immersion. Though the point set f°g(Sm(l)) is equal to the point set f(Sm(l)),
f°g is not in general the same with /. If fog is equivalent to / in the sense
of do Carmo and Wallach [1], then we say that / is a ^--invariant immersion.
In general there exist isometric minimal immersions which are not ^-invariant
if w ^ 3 .

Let K be a skew (m+l)X(m+l) matrix of Rm+1 in which Sm(l) is embedded
as the unit hypersphere and k be the one-parameter subgroup of S0(m+l)
generated by K, so that k{t)—eκt. If, for every t, f°k(t) is equivalent to /,
we say that / is if-in variant or k-invariant. The element C of W2 (see [2],
[3]) associated with / is then said to be i^-invariant or ^-invariant.

This notion can be extended as follows.
Let Ku •-•, Kp be skew (m+l)X(m+l) matrices and k be the subgroup of

S0(m+l) generated by Kl9 •••, Kp. If C is invariant by Klf •••, Kp, C is said
to be (Klf •••, A^-invariant or ^-invariant.

Then there arise, for example, the following problems.
(a) Find all continuous subgroups k of S0(m+l) such that there exist non-

trivial ^-invariant elements of W2.
(β) Find the set (£ of elements C of W2 such that, if C is an element of

(ξ, then there exists a non-trivial continuous subgroup of S0(m+l) which leaves
C invariant.

(γ) When a subgroup k of SO(m+l) is given, find all &-invariant elements
C of W2.

(δ) When an element C of W2 is given, find all subgroups k of S0(m+l)
such that C is /^-invariant.

The purpose of the present paper is, on the one hand, to study such prob-
lems in some easier cases. On the other hand the paper contains some theorems
on geodesies. Geodesies in minimal immersions were studied by some authors.
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For example, it has been reported by K. Tsukada that a standard minimal
immersion, namely an isometric minimal immersion such that the corresponding
C vanishes, is a helical immersion [5], [6], that is, an immersion such that
every geodesic has constant curvatures which do not depend on the choice of
the geodesic. In general a geodesic in a non-standard isometric minimal
immersion has curvatures which are not constant and depend on the choice of
the geodesic. But, in some isometric minimal immersions all geodesies have
constant curvatures and there exists some set of geodesies such that each
member of the set has constant curvatures which are independent of the choice
of the member.

First we recollect the general theory of isometric minimal immersions such
as was given in [1], [2], [3], [4]. In § 2 if-invariant elements C of W2 are
defined and their property is studied. In §3 ^-invariant isometric minimal
immersions are studied. §4 is devoted to isometric minimal immersions of S3

into S24. First, some results in [3] are recollected and then invariant elements
of W2(3, 4) are studied. In §5 some special elements of W2 with m—Z, s>4
are studied. We define there contraction of elements of W2 and the effect of
contraction is studied. § 6 is devoted to the property of geodesies in the case
53->524.

Isometric minimal immersions / of spheres into spheres in general cases
were studied by M. P. do Carmo and N. R. Wallach [1]. Guided by this study
the present author also studied the same subject in the form / : Sm(l)->Sn"1(r)
using a different method and found that there exists a linear space DftS of
some bi-symmetric harmonic tensors of bi-degree (5, s) [2], [4]. As this space
is essentially the space W2 of do Carmo and Wallach, we prefer the notation
W2(m, s) to DftS.

We consider isometric minimal immersions / of the form Sm(l)->Sn~1(r)
where

and the radius r satisfies

—1)).

As the number s plays an important role, the immersion may be denoted by fs.
Sm(l) is considered as the unit hypersphere of Rm+1 where an orthonormal basis
{βi, '" , βm+i) is fixed and Sn~\r) is considered as a hypersphere with center at
the origin of Rn where an orthonormal basis {eίf •••, en} is fixed. Thus /, is
given by n homogeneous harmonic polynomials fΛ (A—I, •••, n) of degree s, so
that, if x is a point of Sm(l) and u(x)—u%(x)e% is the position vector in Rm+1

of x, then we have iofg(x)=fΛ(u(x))eA, where i is the isometric embedding
i: Sn-\r)->Rn.

From the polynomials fΛ we get symmetric tensors FΛ of degree s in Rm+1

satisfying fΛ(u)=FΛ(u, •••, u) and

, et, v, ..., v)=0,
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m + i

where Σ ι stands for Σ and v is an arbitrary vector of Rm+1. FA are called
t = l

tensors of degree s associated with /,.
From the tensors FA we defined in [2] a tensor /,,, of degree 2s by

(1.1) ΪS.^ΈAFA®FA

n

where Σ Λ stands for Σ .
A=l

As a special case we have a standard minimal immersion hs. In this special
case FA is denoted by HA and fStS by h8t8, hence

(1.2) hs,s=^AH
A®HA.

The tensors FA and HA depend on the choice of the orthonormal basis
{βi, •" > en}> but /,,, and hs>s do not. Moreover, if /, and f's belong to the same
equivalence class in the sense of do Carmo and Wallach, then fs,s—fs,s [2].
Hence there exists only one h8t8.

In [2] the role of the tensor C defined by

(1.3) C=/,. ,-λ, , ,

is given. If we take all isometric minimal immersions fs and all numbers t^R,
then t(fs,s—hs>s) fill a linear space now denoted by W2(m, s). As there exists
only one hSιS, the tensor C is called the element of W2(m, s) associated with the
given immersion fs. When an element C of W2(τn, s) is taken arbitrarily, it
may happen that there exist no /, satisfying (1.3). But taking a number t
suitably, we have fs satisfying tC=fStS—hs,s. Any such fs is called an immer-
sion subject to C.

A necessary and sufficient condition for a bi-symmetric tensor C of bi-degree
is, s) to be an element of W2(m, s) is that C satisfies for any vectors a, b of Rm+1

ΣiC(elf et, a, •- , a; b, •••, 6 ) = 0 ,

C(a, a, b, •••, b; b, •••, b)=0.

DEFINITION 1.1. When C is an element of W2(m, s) we define C(p, q) as the
f u n c t i o n C(p, q): Rm+1xRm+ί-^R s u c h t h a t

aXb*-*C(a, •••, a, b, •••, b; a, •••, a, b, •••, b)

where in the right hand side a appears p times before the semicolon and q
times after the semicolon.

As C is bi-symmetric C is determined when the function C(s, 0) is given,
namely, if Cx and C2 are elements of W2(m, s) such that d ( α , •••, a; b, •••, b)
=C2(a, •••, a; b, •••, b) for arbitrary vectors a, b, then C1=CZ.

DEFINITION 1.2. Let C be an element of W2{m, s) and g be an element of
SO(ra+l). Then a bi-symmetric tensor A is determined by
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A(a, -', a; b, •••, b)=C(g~ιa, •••, g~ιa g-% •••, g-*b)

and, as it is easy to verify, A belongs to W2(m, s). A is called.the transform
of C by g and is denoted by gC.

Let <, > be the ordinary inner product of vectors or of tensors of the same
degree. If Cx and C2 are elements of W2(m, s), then we have (gCu gC2}
=<C19 C2> [3].

DEFINITION 1.3. If gC—C we say that C is ^-invariant.

2. iίΓ-invariant elements of W2(m, s).

Let if be a skew (m+l)X(m+l) matrix, namely, an element of the Lie
algebra of SO(m+l), k be the one-parameter subgroup of SO(m+l) generated
by K and put k{t)=eKt.

DEFINITION 2.1. If C<^W2(m, s) is ^-invariant, that is, k(t)-invariant for
every t, we say that C is if-invariant.

THEOREM 2.1. An element C of W2(m, s) is K-invariant if and only if C
satisfies, for every vectors a, b of Rm+1,

(2.1) C(Ka, a, •••, a; b, •••, b)+C(a, •••, a; Kb, b, •••, & ) = 0 .

Proof. If C is if-invariant, we have

(2.2) C ( e κ t a , •••, e κ t a e κ t b , •••, e κ t b ) = C ( a , •••, a b, •••, b ) .

Differentiating with respect to t and putting f=0, we get (2.1). If (2.1) is
satisfied for arbitrary vectors α, b, we have, replacing a and b with eκta and
eκ%

C(Keκta, eκta, •••, eκta; eκtb, •••, eκtb)

+C(eκta, •••, eκta; Keκtb, eκtb, •••, eκtb)=0,
hence

{ d / d t ) C { e κ t a , - , e κ t a ; e κ t b , •••,

Thus we get (2.2).
As we have gkg-χgC—gkC—gC if C is ^-invariant, we have the following

theorem.

THEOREM 2.2. Let C be a k-invariant element of W2{m, s) and g be an
element of S0(m+l). Then the transform gC is gkg~λ-invariant.

The following theorem gives a way of constructing a /ί-invariant element
of W2(m, s) in some cases.
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T H E O R E M 2.3. Let C be any element of W2(m, s) and K be such that the
one-parameter subgroup k generated by K has τ as a period so that eKτ=l. Then
Cκ defined by

(2.3) τCκ(a, •••, a b, •••, b)=[c(eKta, •••, eκta eκtb, •••, eκtb)dt
Jo

is a K-invariant element of W2(m, s).

Proof. The integrand is (e~κtC){a, - , a; b, •••, b) where e~κtC belongs to
W2(m, s). Hence Cκ belongs to W2(m, s). On the other hand we have, for any
number u,

τeKuCκ(a, -,a; b, - , b)

=τCκ(e~Kua, •••, e~Kua e~Kub, •••, e~Kub)

C(eκu-u)a, ••• , eK{t~u)a eK{t~u)b, ••• , eK{t~u)b)dt

C(eκta, ••• , eκta eκtb, ••• , eκtb)dt

as eκt has period τ.
It may happen that Cκ vanishes.

3. Invariant minimal immersions.

Any element B of the space Bs>8 of bi-symmetric harmonic tensors of
bi-degree (s, 5) is determined when the function B(s, 0): Rm+1xRm+1->R such
that B(s,Q): aXb^>B(a, •••, a; b, •••, b) is given. The element U of BStS

defined by

(3.1) ί/(α, -,a; b, •••, b)

=<a, bY+ax(a, by-\a9 α><ft, b>+ ••• + α σ < α , bys~2σ<a, a>σ<b, by

where σ=[s/2] is the largest integer satisfying s—2σ^0 and au •••, aσ satisfy
αo^l and

(s-2p+2)(s-2p+l)ap-1+2p(2s+m-2p-l)ap=0 p = l, •••, a

acts as the unit element in BSιS [2]. U is expressed in terms of HΛ by

(3.2) U

where c / =
In view of (3.1) and

(eκta, eκtb} = <a, b>

which is valid for any vectors a, b of Rm+1, we have
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U ( e κ t a , - , eκta eκ% •••, e κ t b ) = U ( a , •••, a b, •••, b ) .

This shows the invariant property of U, which in fact follows naturally from
the uniqueness of the unit element.

Let /, be a full isometric minimal immersion and C be the element of
Wt(m, s) given by (1.3), namely, C-=Σ,AFA<S>FA-ΣAHA^)HA where FA are
tensors associated with /,. When a is given let us denote k(t)a by a(t), hence
α = α(0). As we let the vector a move freely on Sm(l), each of FA{a{t), •••, a(t))
determines a tensor FA(t) such that FA(a(t), •••, a(t))^FA(t)(af •••, α) and FA=
FΛ(0). As &(0 is an orthogonal matrix, FA(t) are harmonic and are the tensors
associated with an isometric minimal immersion fs(t): Sm(l)->5π"1(r) such that
fs(t): x^fs(k(t)u(x)), which we can write /β(O=Λ(0) £(f). As ί/ is /C-invariant,

is also K-invariant, and we have

Though the image of Sm(l) by /°/s(0 is, as a point set, the same with the
image of Sm(l) by ι /,(0), /«(0 i s n o t i n general the same with /,(0). But, if C
is /Γ-invariant, namely k(t)C=C, then fs(t) is equivalent to /,(0) in the sense of
do Carmo and Wallach. In this case there exists one and only one isometry
7X0 of Sn~\r) such that fs(t)=T(t)fs(O) as /, is full. As we have fs(t1+t2)
=fs(O)k(t1+t2)=fs(O)k(t1)k(t2)=fs(t1)k(t2)> we get

Thus w e can put T(t)=e
τt
 and get

Λ(ίi)exρ(ϋβ
2
)=exp(7

1
ί

2
)/

β
(ί

1
).

If / is an immersion subject to C and R is an element of SO(n), then
Rf—f is also an immersion subject to C. If C is K invariant and / is full,
f; is also full. Then there exist only one T and only one Tf satisfying f°eκt

=eτt°f, fΌeκt=eτttof', hence

eτ>t=ReτtR-\

Thus we have the following theorem.

THEOREM 3.1. Let K be a skew (m + l )x(m + l) matrix and C be a
K-invariant element of W2(m, s). Then for each full isometric minimal immersion
f subject to C there exists a skew nXn matrix T(f) satisfying

and
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where R is any element of SO(n).

4. Isometric minimal immersions of 5:i into S24.

We recollect some results from [3]. Let us fix an orthonormal basis
{βi,-e2, es, βi] in i?4. On the other hand, we take a rectangular coordinate
system in R3 and express a point p of R3 by p=(x, y, z). If we take linear
transformations Jp—xJ\-\-yJ2Λ-zJz defined by

Jpe2=xe1—yei—zeS

then Jp is an orthogonal transformation when p is a point of the unit sphere
S2(l) of R3. Ju J2, / 8 satisfy the well-known formula, ΛΛ^-ΛΛ^/i, Λ/i =

Similarly, let Ip^xh+yh+zU be defined by

Ipe1 ——xe2

Jrye3

Jrzei

Ipe2=xe1+yei—zes,

Then Ip is an orthogonal transformation when p is a point of the unit sphere
and Iu I2f /3 satisfy I2Iz^—IJ2~Ily IJ^—IJ^I^ IJ2=—I2I1=I3. Moreover
we have

(4.1) JJi=IxJK,

(4.2) Σi<Jκet,Iλet}=0

where, here and in the sequel, we use indices κy λ, μ, v=lf 2, 3.
Denoting the identity transformation in R4 by Jo and also by Io, we have

(4.3) Jμ

Thus {ah+bh+ch+dh, a2+b2+c2+d2=l) is a subgroup of SO(4) which we
write 0/ and {ajo+bji+cjt+dji, a2+b2+c2+d2=l} is a subgroup of S0(4)
which we write Oj. 0Σ and Oj commute and generate S0(4).

In what follows we denote the point p by (x1, x2

t x3). A homogeneous
harmonic polynomial Λ(x) in R3 of degree 4 can be written Λ{x)=Λκχμ^xκxλxμxu

or A(x)—Aκλμvxκxλxμxv. Λκλμv are symmetric and satisfy
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2—iK-**KKμv \J

DEFINITION 4.1. The bi-symmetric tensor C given by

(4.4) (C(4, 0))(α, b)=A«λvχjκb, a><Jλb, a><Jμb, a><JJ>, a}

is an element of W2(3, 4) and is denoted by C(/\ Similarly the bi-symmetric
tensor C given by

(4.5) (C(4, 0))(fl, b)=B*λ*\IJ>, aXIχb, a><Iμb, α></A a}

is an element of W2(3, 4) and is denoted by C\B). The linear subspace of
W2(3, 4) composed of the elements of the type C(jΛ) is denoted by Wj. The
subspace WΣ is defined similarly.

Every C(jΛ) is O/-invariant and every C]S ) is Oj-invariant because of (4.1).
On the other hand it is written in pageχ357 of [3] that any element C of
W2(3, 4) can be written in the form x

(4.6) c=C(/>+QB\

Thus, for example, C is /^invariant if and only if C(jA) is /^invariant.
Jx is an element of the Lie algebra of Oj and the infinitesimal action of J1

on C(jΛ) is given in page 356 of [3], or can be easily obtained from (4.3) and
(4.4), in the form

(4.7) 4[Cy)C/>, v, v, v; w, w, w, w)+C(/\v, v, v, v; Jxw, w, w, w)~\

=CϊrA>)(v, v, v, v; w, w, w, w)

where

(4.8) A'^^^

Thus C is /j-invariant if and only if A'κλμv vanish, hence

(4.9) Λ(x, y, z)=c(Sxi-24x2(y2j

rz
2)+3{y2+z2)2)

where c is an arbitrary number [3].

In order to get a /-invariant C where

(4.10) J=aJ1+aJ2+aJ3, (αi)2+(α8)8+(fl8)8=l,

we take a rotation of R3 such that

(4.11)
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Then C(jB) is /-invariant if and only if B is given by

(4.12) B(x, y, ̂ )-C[8( /%)4-24(^)2(( /3;)2+(^)2)H-3((»2+( /z)2)2] ,

where c is an arbitrary number. It is clear that B depends only on alt a2, az

on account of

Similarly an /-invariant C is obtained if / is given by

(4.13) 7 = f l 1 / 1 + α 2 / 2 + β 8 / 8 , (fli)2+(fl2)
2+(fl8)

2=l

in the form C=QB) where B is given by (4.12).
Thus we get the following theorems (see [3]).

THEOREM 4.1. Let J (resp. I) be given by (4.10) (resp. (4.13)). Then any
J-mvariant (resp. I-invariant) element C of W2(m, s) is given by

C=QA)+C(jB) resp. C=C(jA)+QB)

where A is an arbitrary homogeneous harmonic polynomial in R3 of degree 4 and
B is given by (4.11) and (4.12).

THEOREM 4.2. Let us take J and I such that

(4.14) J^aJΛaJz+aJ,, (a1)
2+(a2)

2+(fl3)
2-l,

(4.15) I^h+bJi+bJs, (

and consider the subgroup G of SO(4) generated by J and I. Then any G-invanant
C is given by

where a and b are arbitrary numbers and

(4.16) A(x, y, z)=S(a1

(4.17) B(x, y, z)=8(b1

DEFINITION 4.2. A one-parameter subgroup of Oj is called a /-type sub-
group of SO(4). Similarly an /-type subgroup is defined. A one-parameter
subgroup of SO(4) which is not /-type nor /-type is called a mixed type subgroup.

As the dimension of the space of homogeneous harmonic polynomials in Rz
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of degree 4 is 9, we have the following theorem.

THEOREM 4.3. Let k be a one-parameter subgroup of SO(4). Then there
exist k-invariant elements of W2{Z, 4). // k is of mixed type, then the set of
k-invariant elements is a two-dimensional linear subspace of W2(3, 4) spanned by a
one-dimensional linear subspace of Wj and a one-dimensional linear subspace of
Wj. If k is of J-type or of I-type, then the set of k-invariant elements is a
ten-dimensional linear subspace of W2(3, 4) containing WΣ or Wj.

Now let us take two mixed type one-parameter subgroups klf k2 of SO(4)
and let G be the subgroup generated by klt k2. The Lie algebra of G is
denoted by g. Taking a suitable coordinate system of R3 we can consider that
g is generated by one of the following pairs of elements of g

( i ) Ji+a1I1+a2I2

J

Γa3I3, W1+W2+W8,
(ii) Jx+aJi+aJi+aJs, Jt+bJx+bJz+bzh,
(iii) Λ+a iΛ+a J2+a Jz, bjx+bj2+bjz,
(iv) I1+aJ1+a2J2+a3J3, It+b1J1+bJ2+bzJz.

But, in order to find the property of G, we need to consider only (i) and (ii).
We take vectors a and b of R3 with components (au a2, α3) and (bu b2> bs)

respectively. We consider also that Iu I2) /3 are the components of an imaginary
vector /. Then we can write (i) and (ii) tersely in the form

(i) ' i Γ i - Λ + ί β , / ) , Kt=(h,I) (a,bΦ0),
(ii)' /WrKa,/) , K2^J2+(byI) (aΦO)

where (,) is the inner product in R3. Let us use notations [α, b~\ and [α, b, c]
used in vector algebra of R3.

If we have (i) r, then g contains (c, I) where

The simplest case occurs when the vectors a and b are not linearly independ-
ent. Then g is spanned by Jx and (a, I). If a and b are linearly independent,
we have Ks=(c, /)eg and

»-(/iC1/C-JK,/iC1)=([fl, c], /)=(α, b)(a, / ) - ( α , a){b,

j(K2K3-K3K2)=&b, c], /)=(fc, b)(a, 7)-(fl, «(

As we have (α, ά)φ, b)>{a, b)2 by assumption, we get (α, 7)eg, (6, 7)eg, hence
g contains Ilf I2, 78.

If we have (ii)', we define Kz by

( / C / f / ϊ A ' ) / + ( c , 7), c = [fl, A] .
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Then we have

/ri-y(/f2K8-/Ca/f2) = (fl, /)-[ft, C, /] ,

K2-^{K,K1-KιK^{b) I)-lc, a, Π ,

hence g contains

# 4 =(l-( f t , ft))(α, 7)+(α, ft)(ft,/),

If α and 6 are not linearly independent, then c=0. Hence g contains / 3

and consequently Jλ and /2. Thus g i s spanned by /j, /2, / 3 and (α, /).
Assume a and ft are linearly independent. As we have

7^-2(0, ft)(^, 7),

K1Kδ-K5K1=2(l-(af a)){c, 7),

we get (c, /)6Q except the case (α, ft)=0, (α, α ) = l . Similarly, from KAK2—K2KA

=2(1—(ft, ft))(c, /) we get (<:, 7)eg if (ft, ft)^l. If (c, /)εg, then g contains (a, I)
and (ft, /) and is spanned by Jly J2, Jz, Ilt I2, 73.

If

(4.18) (fl,6)=0, (α, α ) = l , (ft, 6)=1

is satisfied, then /ί4 and /C5 vanish. In this case g is spanned by Λ+(α, /),
Jt+Φ, I), Jz+(c, I) where [α, ft] = c, [ft, c] = α, \_c, α]=ft.

To sum up we have the following cases.

(i. 1) a and ft are not linearly independent. Then g is spanned by Jx and
{a, I)

(i. 2) a and ft are linearly independent. Then g is spanned by Jlf I1} I2, 73.
(ii. 1) a and ft are not linearly independent. Then g is spanned by Ju J2, J3,

{a, I).
(ii. 2) a and ft are linearly independent and (4.18) is satisfied. Then g is

spanned by Jx+{a9 /), /,+(&, /), J*+(c, I).
(ii. 3) a and ft are linearly independent and (4.18) is not satisfied. Then g

is spanned by Ju J2, J3, Ilt I2, 78.

Thus we have the following theorem.

THEOREM 4.4. Let G be the subgroup of SO(4) generated by two one-param-
eter subgroups klf k2 of mixed type. Then there exist the following four cases.

(a) G is generated by a J-type one-parameter subgroup and an I-type one-
parameter subgroup,

(β) G is generated by a J-type one-parameter subgroup and OIf or by an
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I-type one-parameter subgroup and Oj.
(γ) G is generated by / i+(α, /), J2+(b, I), Js+(c, I) where a and b satisfy

(4.18) and c=[α, &].
(δ) G=SO(4).

If (γ) or {δ) is the case, then no G-invariant elements of W2(3, 4) exist except
the trivial element 0. If (a) is the case, G-invariant elements are obtained by
Theorem 4.2. If (β) is the case, the set of G-invariant elements is a one-
dimensional linear subspace of Wj or of WΣ and can be obtained with the use
of Theorem 4.1.

5. Some invariant elements of W2(m, s).

Let K be an element of W2(m, 4). Then K(3, 0)=0 [2], [4]. The bi-sym-
metric tensor given by

(5.1) (C(s, 0))(α, b)= Σcp<a, a>*<b, b>p<a, b>-**-\K(4, 0))(α, b),
p = 0

where σ = [ s / 2 ] and c0, cu •••, cσ-2 satisfy

(5.2) 2p(m+2s-2p-ϊ)Cp+(s-2p-2)(s-2p-3)cp-1=0,

is an element of W2(m, s). We have the following theorem.

THEOREM 5.1. Let k be a subgroup of SO(7n+l) and K be k-mvariant. Then
C is also k-invariant.

Proof is easy as (ga, gb}=(a, b} for g&SO(m+ϊ).

Remark. It is also easy to prove that C belongs to W2(mf s). C is bi-sym-
metric and satisfies C(2, 0)=0. That C is harmonic is assured by (5.2).

DEFINITION 5.1. Let C be an element of W2(m, s). The bi-symmetric tensor
C1 of bi-degree (s—1, s—1) given by

CKs-1, 0)=ΣzC(α, - , a, ex b, - , b, e%)

is called the first contraction of C.

LEMMA 5.2. C1 zs an element of W2{my s — l).

Proof. As C is harmonic, C1 is also harmonic. On the other hand, from
C(a, a, b, '",b; b, •••, fe)=0, we get

Σ*C(fl, α, 6, •••, by ex ft, •••, b, et)=0,

hence C\a, a, by •••, b; b> •••, fr)=0.



GROUPS OF MOTIONS AND MINIMAL IMMERSIONS 203

THEOREM 5.3. Let k be a subgroup of SO(ra+l) and C be a k-invariant
element of W2(m, s). Then C1 is also k-invaήant.

Proof is easy as {geu •••, gem+1], where g^SO(m + ϊ), is also an orthonormal
basis.

6. Geodesies.

We consider geodesies in isometric minimal immersions / : S3(l)->S24(r),
r 2 =l/8, namely the case m=3, s=4. A geodesic γ in S3(l) can be written

(6.1) u{t)—a cos t+b sin t

where a and b are orthonormal vectors in RA and t is a parameter such that
u'=du/dt is a unit vector. Γ=i°f(γ) is a geodesic in the image z°/(S3(l)) and
the unit tangent vector of Γ is ifeA where ΐ?=dFΛ(u, u, u, u)/dt=4FΛ(u, u, u, u').

Let us define Fj (p=0, 1, 2, 3, 4) by F$=FΛ(u, —, u') where p of u in
F^(w, w, u, u) are replaced with u'. Then, as we have u" — — u, we get

(6.2)

hence

Let us define Cp>q and ί/P)5, which are obtained from C(u, u, u, u; u, u, u, u)
and U(u, u, u, u; u, u, u, u) when some of u are replaced with u\ by

Cp,q(u, uf)—C{uf -" , ur u, •" , u'),

Uv,q{u,u')=U{u, .-.,u'; u, ~'}u')

where in the right hand side of each formula u' appears p times before the
semicolon and q times after the semicolon. As it is written in page 347 of [3],
C satisfies

w , o — 4 C 3 > i — Ό G 2 ) 2

and Cp.g^O if ί + ^ ^ 4 , and this leads to dCp,q/dt=O. On the other hand, as U
is given by (3.1), Up,q is a constant depending only on p and #, and especially
Up,q=0 if ί + # is an odd number.

The relation between Cp,q, Up>q and Fj, F^ is, as it is obtained from (1.3)
and (3.2),

(6.3) ΈAFiFt=Cp,q(u, u')+crυv,q{u, u').
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This proves that ΣAFJF£ does not depend on t, but depends only on p, q and
C(a, a, a, a; b, b, b, b).

The Frenet formula of Γ is written in the form

(it)'=hit

Uty^-kjt+kji,
(ϊA\t— U ήA\U A
\!>%) — #2^2 "Ί #3^4 >

( Ay u :A

First, we have

(6.4) ( W ' -

-16 ΣA(FA)2-96 ΣAFiFi+144:

and this proves that (&i)'=0. Next we get

pA\(s). (;A\n u (;A\r. i u \v.;A\u u :A

hence

which proves (k2)'=0. In this way we also get (k3Y—0, hence the following
theorem.

THEOREM 6.1. Every geodesic Γ in the image z°/(S3(l)) has constant cur-
vatures kl9 k2, ks which depend on the choice of the geodesic.

We can compute straightforwardly the curvatures kly k2> kz from the Frenet
formula, (6.2) and (6.3) in detail and get as a result the following theorem.

THEOREM 6.2. The curvatures klf k2, k3 of any geodesic Γ=i°f{γ) are con-
stants which depend only on C(a, a, a, a; b, b, b, b) if γ is given by (6.1) and C
is the element of W2(3, 4) associated with f.

Let g be an element of SO(4) and take another geodesic f=gγ, where we
have ύ(t)=ga cos t+gb sin t. Then, as a result of Theorem 6.2, we find that
the curvatures ku k2, kz satisfy kι=k1, k2—k2i k3—k3 if g~1C—C.

Thus we have the following theorem.

THEOREM 6.3. Let f be an isometric minimal immersion S3(l)->S24(r), r 2 =l/8,
such that the element C associated with f is g-invariant where g is an element of
SO(4). Then, for any geodesic γ of S3(l), the geodesies i°f(γ) and i°f(gγ) have
the same set of curvatures ku k2, kz.

As the trivial element 0 of W2(3, 4) is SO(4)-invariant, this theorem also
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proves that a standard minimal immersion is a helical immersion [5], [6].

Let / be given by (4.14). When P is a point of S\l) we say that the locus
{eJtP, t^R} is a /-orbit. As any/-orbit is a geodesic and carried into a/-orbit
by any element of OI} we get the following theorem.

THEOREM 6.4. Let J be given by (4.14), / be an isometric minimal immersion

S3(l)-+S24(r), r 2 =l/8, subject to C(jΛ) where A is given by (4.16) and let kίf k2, k3

be the curvatures of the geodesic Γ=i°f(γ) of z°/(S3(l)) where γ is the J-orbit

passing a point a of S3(l). Then each of these curvatures is independent of the

choice of the point a.

The theorem is valid when we take / instead of /.
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