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I. Introduction.

Let f be an isometric minimal immersion: S™(1)—S™-!(r) and let g be a
rotation: S™(1)-»S™(1). Then feog:S™(1)—>S"*(r) is also an isometric minimal
immersion. Though the point set f-g(S™(1)) is equal to the point set f(S™(1)),
feg is not in general the same with f. If f.g is equivalent to f in the sense
of do Carmo and Wallach [1], then we say that f is a g-invariant immersion.
In general there exist isometric minimal immersions which are not g-invariant
if m=3.

Let K be a skew (m+1)X(m-+1) matrix of R™*! in which S™(1) is embedded
as the unit hypersphere and %, be the one-parameter subgroup of SO(m+1)
generated by K, so that k(t)=eX’. If, for every ¢, fok(t) is equivalent to f,
we say that f is K-invariant or k-invariant. The element C of W, (see [2],
[3]) associated with f is then said to be K-invariant or k-invariant.

This notion can be extended as follows.

Let K, ---, K, be skew (m+1)X(m-+1) matrices and # be the subgroup of
SO(m+-1) generated by K, ---, K,. If C is invariant by K,, ---, K, C is said
to be (K, -+, Kp)-invariant or k-invariant.

Then there arise, for example, the following problems.

(o) Find all continuous subgroups £ of SO(m+1) such that there exist non-
trivial k-invariant elements of W,.

(B) Find the set € of elements C of W, such that, if C is an element of
@, then there exists a non-trivial continuous subgroup of SO(m+1) which leaves
C invariant.

(r) When a subgroup 2 of SO(m-+1) is given, find all k-invariant elements
C of W,.

() When an element C of W, is given, find all subgroups £ of SO(m+1)
such that C is k-invariant.

The purpose of the present paper is, on the one hand, to study such prob-
lems in some easier cases. On the other hand the paper contains some theorems
on geodesics. Geodesics in minimal immersions were studied by some authors.
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For example, it has been reported by K. Tsukada that a standard minimal
immersion, namely an isometric minimal immersion such that the corresponding
C vanishes, is a helical immersion [5], [6], that is, an immersion such that
every geodesic has constant curvatures which do not depend on the choice of
the geodesic. In general a geodesic in a non-standard isometric minimal
immersion has curvatures which are not constant and depend on the choice of
the geodesic. But, in some isometric minimal immersions all geodesics have
constant curvatures and there exists some set of geodesics such that each
member of the set has constant curvatures which are independent of the choice
of the member.

First we recollect the general theory of isometric minimal immersions such
as was given in [1], [2], [3], [4]. In §2 K-invariant elements C of W, are
defined and their property is studied. In §3 k-invariant isometric minimal
immersions are studied. §4 is devoted to isometric minimal immersions of S?*
into S%. First, some results in [3] are recollected and then invariant elements
of W,(3, 4) are studied. In §5 some special elements of W, with m=3, s>4
are studied. We define there contraction of elements of W, and the effect of
contraction is studied. §6 is devoted to the property of geodesics in the case
S—S%,

Isometric minimal immersions f of spheres into spheres in general cases
were studied by M.P. do Carmo and N.R. Wallach [1]. Guided by this study
the present author also studied the same subject in the form f:S™(1)—>S"(r)
using a different method and found that there exists a linear space DT, of
some bi-symmetric harmonic tensors of bi-degree (s, s) [2], [4]. As this space
is essentially the space W, of do Carmo and Wallach, we prefer the notation
Wy(m, s) to D,.

We consider isometric minimal immersions f of the form S™(1)—S""(r)
where

n=02s+m—1)(s+m—2)!/(s ' (m—1)")

and the radius r» satisfies
ri=m/(s(s+m—1)).

As the number s plays an important role, the immersion may be denoted by f..
S™(1) is considered as the unit hypersphere of R™*! where an orthonormal basis
{es, *+, em+1} is fixed and S™-*(r) is considered as a hypersphere with center at
the origin of R™ where an orthonormal basis {¢,, ---, &,} is fixed. Thus f; is
given by n homogeneous harmonic polynomials f4 (A=1, ---, n) of degree s, so
that, if x is a point of S™(1) and u(x)=u%(x)e, is the position vector in R™*!
of x, then we have iof,(x)=f4(u(x))¢,, where { is the isometric embedding
7:S"Xr)—R",

From the polynomials /4 we get symmetric tensors F4 of degree s in R™*!
satisfying f*(u)=F4(u, -, u) and

ZLFA(el’ e, v, =, v)=0,
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m+1
where 3, stands for 3 and v is an arbitrary vector of R™*. F4 are called
1=1

tensors of degree s associated with f,.
From the tensors F4 we defined in [2] a tensor f; ; of degree 2s by

(1.1 fs,szzAFA®FA

where X4 stands for Af}.

=1
As a special case we have a standard minimal immersion A,. In this special
case F4 is denoted by H4 and f; by hs, hence

(1.2) hs,szzAHA®HA-

The tensors F4 and H#4 depend on the choice of the orthonormal basis
{é,, -, &,}, but f, s and h,, do not. Moreover, if f; and f; belong to the same
equivalence class in the sense of do Carmo and Wallach, then f; ,=f;, [2].
Hence there exists only one h; ;.

In [2] the role of the tensor C defined by

(13) C:fs,s—hs,s

is given. If we take all isometric minimal immersions f; and all numbers t< R,
then #(f, s—h, ) fill a linear space now denoted by W,(m, s). As there exists
only one h, , the tensor C is called the element of W,(m, s) associated with the
given immersion f,, When an element C of W,(m, s) is taken arbitrarily, it
may happen that there exist no f, satisfying (1.3). But taking a number ¢
suitably, we have f; satisfying ¢tC=f; ;—h; . Any such f; is called an immer-
sion subject to C.

A necessary and sufficient condition for a bi-symmetric tensor C of bi-degree
(s, s) to be an element of W,(m, s) is that C satisfies for any vectors a, b of R™*!

Eic(elr e, a, -+, a; b: Tty b):()y
Cla, a, b, -, b; b, ---, b)=0.

DEFINITION 1.1. When C is an element of W,(m, s) we define C(p, ¢q) as the
function C(p, ¢): R™**X R™"'—R such that

aXbHC(aJ e, a, b’ Tty b; a, -, a, b; Tty b)

where in the right hand side a appears p times before the semicolon and ¢
times after the semicolon.

As C is bi-symmetric C is determined when the function C(s, 0) is given,
namely, if C, and C, are elements of W,(m, s) such that Ci(a, ---, a; b, -, b)
=Cy(a, -+, a; b, ---, b) for arbitrary vectors a, b, then C,=C,.

DEFINITION 1.2. Let C be an element of W,(m, s) and g be an element of
SO(m+1). Then a bi-symmetric tensor A is determined by
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A(a) e, a4y b) Sty b)=c(g_la, ttty g—la; g—lb’ 0y g_lb)

and, as it is easy to verify, A belongs to Wy(m, s). A is called. the transform
of C by g and is denoted by gC.

Let <, > be the ordinary inner product of vectors or of tensors of the same
degree. If C, and C, are elements of W,(m, s), then we have {(gC,, gC,>

=<C1; Co [3]

DEerFINITION 1.3. If gC=C we say that C is g-invariant.

2. K-invariant elements of W,(m, s).

Let K be a skew (m+1)X(m-+1) matrix, namely, an element of the Lie
algebra of SO(m-+1), k& be the one-parameter subgroup of SO(m-+1) generated
by K and put k(t)=e*:.

DEFINITION 2.1. If CeWy(m, s) is k-invariant, that is, k(f)-invariant for
every t, we say that C is K-invariant.

THEOREM 2.1. An element C of Wy(m, s) s K-invariant if and only if C
satisfies, for every vectors a, b of R™*,

2.1) C(Ka, a, -+, a; b, ---, b)+C(a, -+, a; Kb, b, ---, b)=0.
Proof. 1f C is K-invariant, we have
(2.2) C(eKta’ e, eKta; eKtb’ e, gK‘b)-_—_C(a’ e, an b’ e, b).

Differentiating with respect to ¢ and putting (=0, we get (2.1). If (2.1) is
satisfied for arbitrary vectors a, b, we have, replacing a and b with ¢X’a and
eXth,
C(KeXta, eXta, -+, eXta; eXth, ---, eXth)
+C(eXta, -+, eXta; KeX'b, eXth, -+, e¥ib)=0,
hence
(d/dt)C(e¥ta, -, eXta; eXtb, ---, eXtb)=0.

Thus we get (2.2).
As we have gkg'gC=gkC=gC if C is k-invariant, we have the following

theorem.

THEOREM 2.2. Let C be a k-invariant element of Wyim, s) and g be an
element of SO(m+1). Then the transform gC is gkg~'-invariant.

The following theorem gives a way of constructing a K-invariant element
of Wy(m, s) in some cases.
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THEOREM 2.3. Let C be any element of Wyim, s) and K be such that the
one-parameter subgroup k generaled by K has t as a period so that e¥*=1. Then
Ck defined by

@2.3)  tCxla, ~,a; b, -, b)=S:C(e’“a, o, eKtas oKt .. | eKth)dt
1s a K-invariant element of W,(m, s).
Proof. The integrand is (e *‘C)(a, -+, a; b, -, b) where e *‘C belongs to

Wy(m, s). Hence Cx belongs to Wy(m, s). On the other hand we have, for any
number u,

TeKuCK(ay ey, A by Tty b)
=tCx(e X*a, .-, e X%q; e K¥p, ..., o~ Kup)
T
:S C(e’““"’a, e eK(L—u)a; eK(t—u)b’ e eK”'“)b)dl
0
T
=SOC(eK‘a, o, eBta eXp, - eXih)dt

as e®! has period 7.
It may happen that Cx vanishes.

3. Invariant minimal immersions.

Any element B of the space B, ; of bi-symmetric harmonic tensors of
bi-degree (s, s) is determined when the function B(s, 0): R™*'X R™*'—-R such
that B(s,0):axb—B(a, ---, a; b, ---,b) is given. The element U of B;;
defined by

(3.1) U(a’ e, an b, v b)
:<(l, b)s—l—al(a, b>8-—2<a’ a><b, b>+ +aa<a, b>s—2o‘<a, a>g<b, b>‘7

where ¢=[s/2] is the largest integer satisfying s—2¢=0 and a,, ---, a, satisfy
a,=1 and

(s—2p+2)(s—2p+1)a,-,+2p2s+m—2p—1)a,=0 p=1, -, 0
acts as the unit element in B, , [2]. U is expressed in terms of H4 by
(3.2) U=(1/6) 2 HAQH*

where ¢'=r*/(1+a,+ -+ +a,).
In view of (3.1) and

eXta, eXtby={(a, b)

which is valid for any vectors a, b of R™*!, we have
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U(eXta, -, eXta; X', ---, eX0)=U(a, -, a; b, ---, b).

This shows the invariant property of U, which in fact follows naturally from
the uniqueness of the unit element.

Let f; be a full isometric minimal immersion and C be the element of
Wa(m, s) given by (1.3), namely, C=X,FAQF4—> H*QH* where F* are
tensors associated with f,. When a is given let us denote k(t)a by a(¢), hence
a=a(0). As we let the vector a move freely on S™(1), each of F4(a(?), ---, a(t))
determines a tensor F4(¢) such that F4(a(t), ---, a(t))=F4(t)a, ---, a) and F4=
F4(0). As k() is an orthogonal matrix, F4(¢) are harmonic and are the tensors
associated with an isometric minimal immersion f(¢):S™(1)—>S*"!(») such that
fs@): x—f(k()u(x)), which we can write f(t)=f;(0)-2(¢). As U is K-invariant,
S HARH* is also K-invariant, and we have

SaFARQF4(t) — X HAQH*
=24 FAORQF4(t) = HAOQHA(t)
=k(—1)C.

Though the image of S™(1) by i-f,(¢) is, as a point set, the same with the
image of S™(1) by 7-fs(0), fs(¢) is not in general the same with f,(0). But, if C
is K-invariant, namely k(t)C=C, then f(¢) is equivalent to f(0) in the sense of
do Carmo and Wallach. In this case there exists one and only one isometry

T(t) of S™r) such that f,&)=T(@)fs0) as f; is full. As we have f(t,+1,)
=f(0) ket +t) =10 k() k(t)=F(t) k(t;), We get

T(t+1)f (0)=T#)f s(t)=T ()T (t)f 5(0) .
Thus we can put T(t)=e”* and get
[s(t)exp(Kt,)=exp(Tt,)f s(t,) .

If f is an immersion subject to C and R is an element of SO(n), then
Rf=f’is also an immersion subject to C. If C is K-invariant and f is full,
f’ is also full. Then there exist only one T and only one 7’ satisfying fo.eX®
=eTtof, floeKt=¢T't-f’, hence

eT't=Re 'R,
Thus we have the following theorem.

THEOREM 3.1. Let K be a skew (m+1)X(m-+1) matrix and C be a
K-invariant element of Wy(m, s). Then for each full isometric munimal immersion
f subject to C there exists a skew nXxXn matrix T(f) satisfying

foeKt:eT(f)tof
and
R exp(T(/))R-*=exp(T(Rf)t)
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where R is any element of SO(n).

4. Isometric minimal immersions of S® into S*.

We recollect some results from [3]. Let us fix an orthonormal basis
{es,.e,, €5, ¢,} in R On the other hand, we take a rectangular coordinate
system in R® and express a point p of R® by p=(x, ¥, z). If we take linear
transformations J,=x/,+y/J,+2/; defined by

Jper=—xe,+ye;—ze,,
Jpes=xe;—ye,—zey,
]pe:i:_'xeei_yel_*_zez ,
Jres=xes+yest+ze,

then /, is an orthogonal transformation when p is a point of the unit sphere
S¥1) of R%. ]y, J,, Js satisfy the well-known formula, [,/.=—/;/,=/,, J:Ji=

_]1]82.]2) 11]2:“]2]12./3-
Similarly, let I,=xI,+yl,+zI; be defined by

I,e;=—xe,t+yestze,,
I,e,=xe,+ye,—ze;,
Ip,es=xe,~—ye,+ze,,
I,e,=—xe;—ye,—ze, .

Then I, is an orthogonal transformation when p is a point of the unit sphere
al’ld Il, 12, 13 SatiSfY 12[3:—[312:[1, 13[1:—[113212, [1[2:—[2[1:]3. MOFeOVer
we have

(4.1) ]l:[lzlljlc’
(4.2) 2ilJser, L20=0

where, here and in the sequel, we use indices &, 1, g, v=1, 2, 3.
Denoting the identity transformation in R* by J, and also by [,, we have

(4.3) Jy]l+jz]p:—25p1]0y
L3 +1 0 =—28,,1,.

Thus {aly+bl,+cl,+dI, a®*+b*+c*+d?=1} is a subgroup of SO(4) which we
write O; and {a],+bJ,+c],+dJs, a*+b*+c*+d*=1} is a subgroup of SO(4)
which we write O,. O; and O; commute and generate SO(4).

In what follows we denote the point p by (x!, x% x°%. A homogeneous
harmonic polynomial A(x) in R® of degree 4 can be written A(x)=A,;,x"x*x*x”
or A(x)=Ar*x*xx#x". A, are symmetric and satisfy
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2/: Al:/c;w:O .
DEFINITION 4.1. The bi-symmetric tensor C given by

4.9 (C4, 0))a, by=A*#{]b, a><[J1b, a><J.b, a>{].b, a>

is an element of W,(3, 4) and is denoted by C%¥. Similarly the bi-symmetric
tensor C given by

(4.5) (C4, 0))a, by=B**<Lb, ay<I;b, ay<I.b, a><L.b, a>

is an element of W,(3, 4) and is denoted by C{®. The linear subspace of
W3, 4) composed of the elements of the type C# is denoted by W,. The
subspace W ; is defined similarly.

Every C# is O;-invariant and every C{® is O,-invariant because of (4.1).
On the other hand it is written in page, 357 of [3] that any element C of
W43, 4) can be written in the form

(4.6) C=C¥+CP.

Thus, for example, C is J;-invariant if and only if C{# is J,-invariant.

J: is an element of the Lie algebra of O, and the infinitesimal action of J,
on C$¥ is given in page 356 of [3], or can be easily obtained from (4.3) and
(4.4), in the form

4.7 A[CA(Jw, v, v, v; w, w, w, W)+CH W, v, v, v; Jiw, w, w, w)]
=CHA(w, v, v, v; w, w, w, W)
where
4.8) ARy =2(55 APA#Y - GE AV 58 AR -Gy AP AH
—O5 APy — B AEY — 38 AT — Y ALY,
Thus C is J,-invariant if and only if A’**** vanish, hence
(4.9) Alx, v, 2)=c(8x'—24x*(y*+2")+3(y*+2")")

where ¢ is an arbitrary number [3].
In order to get a J-invariant C where

(4.10) J=a]i+a ], +as]s,  (a)*+(ay)’+(ay)'=
we take a rotation of R® such that

‘x=a,x+a,y+asz,
(4.11) Ty=mx+myy+msz,

‘z=nx+n,y+n,z.
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Then C¥® is J-invariant if and only if B is given by
(4.12) B(x, 3, 2)=c[8("x)*'—24("x)X(("y)*+("2))+3(("y)*+("2)],

where ¢ is an arbitrary number. It is clear that B depends only on a,, a,, a;
on account of
(yy4(z)l=x4+y*+22—(a,x+a,y+asz)”

Similarly an I-invariant C is obtained if I is given by
(4.13) I=a,l,+a.l,+a,l;, (a,)+(a,)*+(a;)}?=1

in the form C=C{® where B is given by (4.12).
Thus we get the following theorems (see [3]).

THEOREM 4.1. Let [ (resp. I) be given by (4.10) (resp. (4.13)). Then any
Jnvariant (resp. I-invariant) element C of Wy(m, s) is given by

C=CH#+CP resp. C=C¥*+C®
where A is an arbitrary homogeneous harmonic polynomial in R? of degree 4 and
B is given by (4.11) and (4.12).
THEOREM 4.2. Let us take J and I such that
(4.19) J=a it a.]otas]s,  (@)*+(ay)*+(as)=1,
(4.15) I=b,0,+b,1,+bsls, (b)) (by)*+(bs)2=1

and consider the subgroup G of SO(4) generated by J and I. Then any G-invariant
C is given by
C=aCH+bCs®

where a and b are arbitrary numbers and
(4.16) Alx, v, 2)=8(ayx+a,y+asz)*—24(a, x+ a,y+ a,z)*
X(x®+y:+22—(a,x+a,y+as2)?)
+3(x*+y 42" (@ x +a,y+a2)?),
4.17) B(x, v, 2)=8(byx+b,y+b32)*—24(b, x + b,y +bsz)?
X (224 y2+22—(byx + b,y +5,2)°)
+3(x%+ y? 22— (b x by +bs2)?)’.
DEFINITION 4.2. A one-parameter subgroup of O, is called a J-type sub-
group of SO(4). Similarly an I-type subgroup is defined. A one-parameter

subgroup of SO(4) which is not J-type nor I-type is called a mixed type subgroup.
As the dimension of the space of homogeneous harmonic polynomials in R?®
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of degree 4 is 9, we have the following theorem.

THEOREM 4.3. Let k be a one-parameter subgroup of SO(4). Then there
exist k-invariant elements of W3, 4). If k is of mixed type, then the set of
k-invariant elements is a two-dimensional linear subspace of Wy(3, 4) spanned by a
one-dimensional linear subspace of W, and a one-dimensional linear subspace of
Wi If k is of J-type or of I-type, then the set of k-invariant elements is a
ten-dimensional linear subspace of W,(3, 4) containing W, or W,.

Now let us take two mixed type one-parameter subgroups k2, k, of SO(4)
and let G be the subgroup generated by k,, k,. The Lie algebra of G is
denoted by g. Taking a suitable coordinate system of R® we can consider that
g is generated by one of the following pairs of elements of g

(i) Jit+ad,+a.l,+asly, bidy+b.0s+bsls,

(ii) Jitai+asl+asls, Jobidi,+b1:4-bsl5,
(i) Li+aJi+as].+asfs, biJi+boJo+bsfs,
(iv) Ii+a,Ji+ax),+as)s, I+b.Ji+b.],+b:]s.

But, in order to find the property of G, we need to consider only (i) and (ii).

We take vectors a and b of R® with components (a,, a,, as) and (b,, b,, by)
respectively. We consider also that I,, I,, I; are the components of an imaginary
vector . Then we can write (i) and (ii) tersely in the form

(i)Y Ki=/li+(a, ), K.=0,1) (a, b+0),
(i) Ki=Ji+(a, ), Ky=J4(b, I) (a=+0)

where (, ) is the inner product in R®. Let us use notations [a, b] and [a, b, ]
used in vector algebra of R®.
If we have (i)’, then g contains (¢, I) where

c=[a, b].

The simplest case occurs when the vectors a and b are not linearly independ-
ent. Then ¢ is spanned by J, and (a, I). If a and b are linearly independent,
we have K;=(c, [)=g and

3 (KK~ K K)=((a, c], D=(a, b)(a, D~(a, a)b, D

1
-2—(K2K3—K3K2)=([b, cl, =(b, b)a, I)—(a, b)b, I)Eg.
As we have (a, a)(b, b)>(a, b)? by assumption, we get (a, [)g, (b, [)=g, hence
g contains I, I,, I,.
If we have (ii)’, we define K by

1
Ksz‘é‘(Ksz—‘Ksz):js'*‘(c’ D, c=[a, b].
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Then we have

Ky (Koo~ KoK =(a, D—Th, ¢, 11,

K= (KoK= K K=, ~Te, 0, 11,

hence g contains
K,=(1~—(b, b))a, I)+(a, b)b, I),

Ks=(a, b)a, D+(1—(a, a))(b, I).

If a and b are not linearly independent, then ¢=0. Hence g contains J,
and consequently J; and J,. Thus g'is spanned by J;, /., /s and (a, I).
Assume ¢ and b are linearly independent. As we have

K K. —K,K,=2a, b)c, I),
K\ Ki—K;K,=2(1—(a, a))c, I),

we get (¢, [)Eg except the case (a, b)=0, (a, a)=1. Similarly, from K,K,—K,K,
=2(1—(b, b))(c, I) we get (¢, I)eg if (b, b)+#1. If (¢, I)eg, then g contains (a, I)
and (b, I) and is spanned by [, [, Js, I, 1o, Is.

If

(4.18) (a, 0)=0, (a, a)=1, (b, b)=1

is satisfied, then K, and K; vanish. In this case g is spanned by J,+(a, I),
]2+(b7 I); ja‘i“(C, 1) Where [al b]:cr [b’ C]:a} [C} a]:b
To sum up we have the following cases.

(i.1) a and b are not linearly independent. Then ¢ is spanned by J, and
(a, I).

(i.2) a and b are linearly independent. Then ¢ is spanned by J,, I, I,, I..

(ii.1) a and b are not linearly independent. Then g is spanned by [y, J,, Js,
(a, I).

(1i.2) a and b are linearly independent and (4.18) is satisfied. Then g is
spanned by Ji+(a, 1), [+, 1), Js+(c, I).

(ii. 3) a and b are linearly independent and (4.18) is not satisfied. Then g
is spanned by [y, Ja, Js, 11, Ie, Is.

Thus we have the following theorem.
THEOREM 4.4. Let G be the subgroup of SO(4) generated by two one-param-

eter subgroups ki, k, of mixed type. Then there exist the following four cases.

(a) G is generated by a J-type one-parvameter subgroup and an I-type one-
parameter subgroup.
(B) G is generated by a J-type one-parameter subgroup and O;, or by an
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I-type one-parameter subgroup and O,.

(r) G is generated by J,+(a, I), J.+(O, I), Js+(c, I) where a and b satisfy
(4.18) and c=[a, b].

0) G=S04).

If (y) or (9) is the case, then no G-invariant elements of W,(3, 4) exist except
the trivial element 0. If (a) is the case, G-invariant elements are obtained by
Theorem 4.2. If (B) is the case, the set of G-invariant elements is a one-
dimensional linear subspace of W, or of W; and can be obtained with the use

of Theorem 4.1.

5. Some invariant elements of W,(m, s).

Let K be an element of Wy(m, 4). Then K(3, 0)=0 [2], [4]. The bi-sym-
metric tensor given by

G.L) (O, 0)a, )= Texia, @b, byXa, by, 0)a, b),

where ¢=[s/2] and ¢y, ¢, -**, Cs-5 Satisfy
(5.2) 2p(m+2s—2p—1)cp,+(s—2p—2)(s—2p—3)¢p-1=0,

is an element of Wy(m, s). We have the following theorem.

THEOREM b5.1. Let k be a subgroup of SO(m+1) and K be k-invariant. Then
C is also k-invariant.

Proof is easy as {ga, gb>=<a, b> for g&SO(m+1).

Remark. 1t is also easy to prove that C belongs to W,(m, s). C is bi-sym-
metric and satisfies C(2, 0)=0. That C is harmonic is assured by (5.2).

DEFINITION 5.1. Let C be an element of W,(m, s). The bi-symmetric tensor
C! of bi-degree (s—1, s—1) given by

Cl(s_]-y O):Zic(a’ ey, A, 8y br STty b; et)
is called the first contraction of C.
LEMMA 5.2. C! 1s an element of Wy(m, s—1).

Proof. As C is harmonic, C' is also harmonic. On the other hand, from
C(a, a, b, ---, b; b, -+, b)=0, we get

Eic(a: a, b: B b; (2 b’ ) b) et)zoy
hence C¥a, a, b, -+, b; b, ---, b)=0.
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THEOREM 5.3. Let k be a subgroup of SO(m+1) and C be a k-invariant
element of Wy(m, s). Then C' is also k-invariant.

Proof is easy as {ge;, -**, g¢m+:}, Where g&SO(m+1), is also an orthonormal
basis.

6. Geodesics.

We consider geodesics in isometric minimal immersions f :S31)—S*(r),
r*=1/8, namely the case m=3, s=4. A geodesic 7y in S*() can be written

(6.1) u(t)=a cost+bsint

where a and b are orthonormal vectors in R* and ¢t is a parameter such that
u'=du/dt is a unit vector. ['=i-f(r) is a geodesic in the image 7-f(S*1)) and
the unit tangent vector of I is i{¢, where 1{=dF4(u, u, u, u)/dt=4F*(u, u, u, u’).
Let us define F45 (p=0, 1, 2, 3, 4) by F4=F4u, -, u’) where p of u in
FA(u, u, u, u) are replaced with »’. Then, as we have u”’=—u, we get

(62) d(Fﬁ)/dt=—PF2-1+(4—P)F2+1 )
hence
(F§)"=—4F§+12F3,
(F§)® =—40F{4-24F4,
(FHO =40F ¢ —192F £+24F 4,
(F&)® =544F £ —480F $ =—64(F &)’ +20(F &)™,
Let us define C, , and U, ,, which are obtained from C(u, u, u, u; u, u, u, u)
and U(u, u, u, u; u, u, u, u) when some of u are replaced with »’, by

’

Cp,q(u) u,)zc(u; L, U U, e, u/):

Up (u, w)=Uu, -, u'; u, -, u)

where in the right hand side of each formula u’ appears p times before the
semicolon and ¢ times after the semicolon. As it is written in page 347 of [3],
C satisfies

C4,o:"4cs,1:6cz,z

and C, (=0 if p+¢+#4, and this leads to dC,, ,/dt=0. On the other hand, as U
is given by (3.1), U, , is a constant depending only on p and ¢, and especially
U,,,=0 if p+¢ is an odd number.

The relation between C, , U,, and F4, F# is, as it is obtained from (1.3)
and (3.2),

(6.3) SUFAPA=C, (u, u")+c'Up o(u, u').
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This proves that X 4F4F¢ does not depend on ¢, but depends only on p, ¢ and
Cla, a,a,a; b,b,b,b).
The Frenet formula of I' is written in the form
if=(F3),
@) =kit,
(18) =—kyif+ ki,
(1) =—hyd+ kgt
(@8 =—hyt.
First, we have
(6.4) (B =3 4(F$)")
=16 X (F§)*—96 X F{F{+144 3 4(F4)’,

and this proves that (k;)’=0. Next we get

(FOHP =) =k,(i8) =—(k))% {4 ki koid,
hence
(Ryko)* (k) =2 A (FHP),

which proves (k,)’=0. In this way we also get (k3;)’=0, hence the following
theorem.

THEOREM 6.1. Every geodesic I' in the image i°f(S*1)) has constant cur-
vatures ky, ks, ks which depend on the choice of the geodesic.

We can compute straightforwardly the curvatures k,, %, k3 from the Frenet
formula, (6.2) and (6.3) in detail and get as a result the following theorem.

THEOREM 6.2. The curvatures ky, ks, ks of any geodesic I'=i-f(y) are con-
stants which depend only on C(a, a, a, a; b, b, b, b) if y is given by (6.1) and C
is the element of W,(3, 4) associated with f.

2

Let g be an element of SO(4) and take another geodesic 7=gy, where we
have #(t)=gacost+gbsint. Then, as a result of Theorem 6.2, we find that
the curvatures &, k,, ks satisfy k,=F,, k,=Fk, E,=k, if g'C=C.

Thus we have the following theorem.

THEOREM 6.3. Let f be an isometric minamal immersion S*(1)—S*(r), r*=1/8,
such that the element C associated with f is g-invariant where g is an element of
SO(4). Then, for any geodesic y of S*1), the geodesics i-f(y) and i-f(gy) have
the same set of curvaturves ki, k,, k.

As the trivial element 0 of W,(3, 4) is SO(4)-invariant, this theorem also



GROUPS OF MOTIONS AND MINIMAL IMMERSIONS 205

proves that a standard minimal immersion is a helical immersion [5], [6].

Let J be given by (4.14). When P is a point of S%1) we say that the locus
{e’'P, te R} is a J-orbit. As any J-orbit is a geodesic and carried into a J-orbit
by any element of O;, we get the following theorem.

THEOREM 6.4. Let | be given by (4.14), f be an isometric nunimal immersion
S3(1)—S%(r), r*=1/8, subject to C¥ where A is given by (4.16) and let k,, ks, ks
be the curvatures of the geodesic I'=i~f(y) of i-f(S*1)) where 1 is the J-orbit
passing a point a of S*1). Then each of these curvatures is independent of the
choice of the point a.

The theorem is valid when we take I instead of J.
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