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Introduction

In 1964, Umegaki proved a theorem of McMillan type concerning the integral
representation of entropy in the measure theoretic framework, about which we
briefly review in § 1. Noncommutative probability theory is important to analyse
some physical systems [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17]. In this paper, using
various results obtained in operator algebras, we extend this theorem to that for
noncommutative systems.

§1. Integral representation of entropy

Let X be a compact metric space and B(X) be the o-field of all Borel sets
in X. We denote a homeomorphism on X by T and the set of all 7-invariant
regular probability measures p, ¢, --- on X by Pr. Let ¢ be a finite partition of

X and we put s)J?nzk\n/ T-*® and ‘JJ?mzso/li))?k. Then the entropy of each p=Pr
vy Y
is defined by

.1
S(P)=—hm;ZUZ>(U) log p(U)  (n—),
where X', means the summation over U of the atomic sets in #VIM,-,. For any
pePr, we denote the conditional probability functions of U2 with respect to

M, and M. by P(U|M,;) and P,(U|M.) respectively. Now we define the
M..-measurable function 4,(x) on X as follows:

hy(x)=— 3 Py(U|M.) log PoUIM(x)  pa.e. xeX,
(S

for any p=Pr. Then, the next important theorem [14] of McMillan type holds.

THEOREM 1. For any finite partition P, there umiversally exists a Borel
measurable function h(x) on X such that it is bounded, non-negative, T-invariant
and satisfies

(1) h(x)=hy(x) p-a.e. x€X and for every pEPr,
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2) S(P)—_—th(x)dp(x) for every pe Pr.

A typical example of X is a compact message space A%, where A is a set of some
alphabets [15]. Then T is the shift in A%. This case provides with a concrete
description of communication processes.

§2. Noncommutative extension

Let B(4) be the set of all bounded operators on a separable Hilbert space
4 and let N be a von Neumann algebra (i.e. R=(N’)’ where R'={A=B(4K);
AB—BA=0 for any BeN}) acting on %. In noncommutative systems, we
use a *-automorphism a of N instead of 7. VNVe further denote the set of all
finite partitions of I in N by @N) (.e. P={P,; j=1, 2, -, n<o}ePN)
satisfies (i) P,L P, (k#;) and (ii) Zn‘llP:=I)~

=

We denote the set of all normal states on by S(N) and the set of all
a-invariant states in &(RN) by &;(a). We assume that there exists a faithful
state in &;(a). Let M be a von Neumann subalgebra of M including N*, where
NRe={AsN; a(A)=A}, and let M,, M. be the von Neumann subalgebras
generated by Qak(am), Qa”(?ﬁ) respectively. For each ¢=&;(a), we further
denote the conditional expectations [10, 17] of AR with respect to M and M,
(VneN) by E,(A|M) and E,(A|M,) respectively. For any faithful €& (a),
let {¢f; te R} be the modular automorphism group [9, 17] with respect to ¢ at
B=1. We assume that there exists the conditional expectation E,(-|M) for
o€ (). We call this assumption “{A>” for ¢ in the sequel.

LEMMA 2. For any faithful ¢=&;(a) with {A), there exists the conditional
expectation E,(-|M,) for any neN.

Proof. For an a-invariant state ¢, we have
ofca=a-af for any t<R.

When n=1, we obtain ¢%(IR,)=0%-a(M)=a-a%(M)=a(M)=M,. Suppose that
a%(M,)=M, holds for neN. Then

(M) =0%(a(M,)VM,)
=d%a(,)V a4 (M,)
=a(M,) VI
=Mpss for any teR.

Therefore there exists the conditional expectation E (-|M,) for any neN.
Q.E.D.
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We here remind of two topologies in B(4) [17]: (i) A net {A.}CB(4)

converges to A= B(4) in the strong operator topology (write A, — A) if
l(Ae—A)x||—0 for any x4, (ii) a net {A,}CB(%) converges to A< B(%) in
the ultrastrong operator topology (write A, —— A) if 3.ll(Aa—A)x,)2—0 for
any sequence {x,}C 4 such that >, | x,[>?<co.

From the definition of M,, {M,} is an increasing sequence of von Neumann
subalgebras. According to Lemma 2, we have (c.f. [11, 17]).

1° E(p(Al‘.mn)Ls» E (A|M) for any A€N and any faithful p=@;(a) with

(AD.
M is said to be a sufficient [1, 2, 12, 13] for SCS®) if E,(-|M) exists for
each ¢=& and for each AeN there exists an A, such that

A=E (AIM) ¢-a.e, ¢S,

where A=DB ¢-a.e. means ¢(|A—B[)=0. In [3], Nakamura and Umegaki
showed that the function n(A)=—Alog A for any positive AR is operator
concave. We assume that &,(a) includes a faithful state with (A>. Using this
function %, we define

SEM,) =3 (E (P My))

for any finite partition ﬁ:{P,}eﬂ’(Em) and ¢=&;(a), which is uniquely deter-
mined in the sense of ¢-a.e.. Moreover, we define Sf,f' as follows: For any
finite partition P={P;} €@(M) and ¢ &,(a),

SEM) = (5 M) =2,0(n(E o(P;| My))) .
Then the following lemma holds.
LEMMA 3. For any faithful €& (a) with {A>, we obtain
1) sBm,) —— sH(O)
2) SEM,) — SEM.) (n—co)
for any partition Peamm).

Proof. It is known that [8] the convergence A, —— A for a bounded

sequence {A,} implies f(A,) —— f(A) for any continuous function f(#) such that
f(0)=0 and | f(¢)| Zalt|+B with positive constants @, 8. Since 7(¢) satisfies the
above conditions, we obtain on the support of ¢

sE(M,) — sE(M.)

for any partition ﬁe@(am) and any ¢o€©(a). (2) is immediate for (1).
Q.E.D.
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THEOREM 4. We assume that ~@,(a) includes a faithful state with <A>. Then
there exists a positive operator h(P, &) satisfying

Q) h(P, )=sEM.) ¢-ae.
@) SEM)=¢(h(P, a))
for any partition ﬁe&’(‘m) and any oS (a).

Proof. By Theorem 6.49 of [17] (i.e. if &,(a) includes a faithful state,
then N“ is sufficient for &,(a)), N* is sufficient for S;(a). Moreover, the above
lemma 2 and the fact 4° of [1] (i.e. if S (CS(M)) contains a faithful state ¢
and M is sufficient for S, then any subalgebra M, including M is sufficient for
S whenever E,(-|,) exists) imply that M, is sufficient for S,(a) (nN). Let
¢ be a faithful state in S,(a) with (A). Since M, is sufficient for S;(a),
@ Ey(-|Ma)=¢(-) holds for any ¢=S;(a). By the fact 1°, the sequence
{E4(-|M,)} is strongly convergent to Ey(-|Ms) satisfying ¢ Ey(- [Mx)=¢(-) for
any ¢€&(a). Therefore M. is sufficient for S,(a), which implies that there
exists the conditional expectation & from M to M. such that ¢-E=¢ for any
¢€6(a). From Lemma 3, the sequence {n(Ey4(A|M,))} is strongly convergent
to p(E4 (A|M)) for any AeNM. Thus we have

sE@Ma) — sE(M..)
for any partition Pe2@m). Now we put
h(P, a)=3m(E(Py)

for any partition ﬁESP(‘JR), then h(ﬁ, a) is bounded operator. Since &(-)=
E,(-|Ms) p-a.e. for any =&, (@), we obtain

h(ﬁ, a)=sf(imm) p-a.e.
for any P'ESP(‘JJ?) and p€&,(a). Finally the (2) of lemma 3 deduces the equality
o(h(P, a))=SEM.)
for any Pe@@) and ¢ (a). Q.E.D.
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