COEFFICIENT ESTIMATES FOR THE CLASS Σ

Dedicated to Professor Y. Kusunoki on his sixtieth birthday

By Mitsuru Ozawa

1. Introduction.

Let Σ denote the class of functions $f(z)$ univalent in $|z|>1$, regular apart from a simple pole at the point at infinity and having the expansion

$$
f(z)=z+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

around there. Let us introduce quantities A_{n}, B_{n} by

$$
\begin{aligned}
& A_{n}=\inf \left\{t: \mathcal{R}\left(t b_{1}+b_{n}\right) \leqq t, \forall f \in \Sigma\right\}, \\
& B_{n}=\inf \left\{t: \mathcal{R}\left(t b_{1}-b_{n}\right) \leqq t, \forall f \in \Sigma\right\},
\end{aligned}
$$

respectively. It is evident that $A_{2 n}=B_{2 n}$. Kirwan made a conjecture that $B_{n} \leqq n$ seems to be true [3]. $B_{2} \leqq 2$ and $B_{3} \leqq 3$ were due to Garabedian and Schiffer [1] and Kirwan and Schober [2] proved $B_{2}=2$ and $B_{3}=3$.

In this paper we shall prove the following
ThEOREM. $\quad A_{3} \leqq 2, \quad A_{5} \leqq(27+8 \sqrt{3}) / 12, \quad A_{7} \leqq 5.5, \quad A_{9}<8, \quad A_{11}<10$.
$A_{n} \leqq n-1$ for any odd $n \geqq 3$ seems to be true. Anyway it seems to be very difficult to decide A_{n} exactly as well as B_{n}. Our method of proof depends upon the Grunsky inequality. So to explain its related notions and relations is in order here.

Let $f(z) \in \Sigma$ and let $F_{m}(z)$ be the m th Faber polynomial of $f(z)$, which is defined by

$$
F_{m}(f(z))=z^{m}+\sum_{n=1}^{\infty} a_{m n} z^{-n} .
$$

Then Grunsky's inequality has the following form

$$
\left|\sum_{m, n=1}^{N} n a_{m n} x_{m} x_{n}\right| \leqq \sum_{n=1}^{N} n\left|x_{n}\right|^{2}
$$

Received May 22, 1985
for any N and for any complex vector $\left(x_{1}, \cdots, x_{N}\right)$. We have $n a_{m n}=m a_{n m}$ and

$$
\begin{aligned}
& a_{1 n}=b_{n}, \\
& a_{22}= 2 b_{3}+b_{1}{ }^{2}, \\
& a_{24}= 2 b_{5}+2 b_{1} b_{3}+b_{2}{ }^{2}, \\
& a_{25}= 2 b_{6}+2 b_{1} b_{4}+2 b_{2} b_{3}, \\
& a_{26}= 2 b_{7}+2 b_{1} b_{5}+2 b_{2} b_{4}+b_{3}{ }^{2}, \\
& a_{33}= 3 b_{5}+3 b_{1} b_{3}+3 b_{2}{ }^{2}+b_{1}{ }^{3}, \\
& a_{35}= 3 b_{7}+3 b_{1} b_{5}+6 b_{2} b_{4}+3 b_{3}{ }^{2}+3 b_{1}{ }^{2} b_{3}+3 b_{1} b_{2}{ }^{2}, \\
& a_{44}= 4 b_{7}+4 b_{1} b_{5}+8 b_{2} b_{4}+6 b_{3}{ }^{2}+4 b_{1}{ }^{2} b_{3}+8 b_{1} b_{2}{ }^{2}+b_{1}{ }^{4}, \\
& a_{46}= 4 b_{9}+4 b_{1} b_{7}+8 b_{2} b_{6}+12 b_{3} b_{5}+4 b_{1}{ }^{2} b_{5}+6 b_{4}{ }^{2}+16 b_{1} b_{2} b_{4}+8 b_{1} b_{3}{ }^{2} \\
&+12 b_{2}{ }^{2} b^{3}+4 b_{1}{ }^{3} b_{3}+6 b_{1}{ }^{2} b_{2}{ }^{2}, \\
& a_{55}= 5 b_{9}+5 b_{1} b_{7}+10 b_{2} b_{6}+15 b_{3} b_{5}+5 b_{1}{ }^{2} b_{5}+10 b_{4}{ }^{2}+20 b_{1} b_{2} b_{4}+15 b_{1} b_{3}{ }^{2} \\
&+20 b_{2}{ }^{2} b_{3}+5 b_{1}{ }^{3} b_{3}+15 b_{1}{ }^{2} b_{2}{ }^{2}+b_{1}{ }^{5}, \\
& a_{66}= 6 b_{11}+6 b_{1} b_{9}+12 b_{2} b_{8}+18 b_{3} b_{7}+24 b_{4} b_{6}+6 b_{1}{ }^{2} b_{7}+24 b_{1} b_{2} b_{6}+15 b_{5}{ }^{2} \\
&+36 b_{1} b_{3} b_{5}+24 b_{2}{ }^{2} b_{5}+6 b_{1}{ }^{3} b_{5}+24 b_{1} b_{4}{ }^{2}+72 b_{2} b_{3} b_{4}+3 b_{1}{ }^{2} b_{2} b_{4}+14 b_{3}{ }^{3} \\
&+27 b_{1}{ }^{2} b_{3}{ }^{2}+72 b_{1} b_{2}{ }^{2} b_{3}+6 b_{1}{ }^{4} b_{3}+9 b_{2}{ }^{4}+24 b_{1}{ }^{3} b_{2}{ }^{2}+b_{1}{ }^{6} .
\end{aligned}
$$

In what follows we shall make us of the following notations:

$$
\begin{aligned}
& b_{1}=p+i x^{\prime}, \\
& b_{2}=y+i y^{\prime}, \\
& b_{3}=\eta+i \eta^{\prime}, \\
& b_{4}=\xi+i \xi^{\prime}, \\
& b_{5}=\varphi+i \varphi^{\prime}, \\
& b_{6}=\phi+i \phi^{\prime}, \\
& b_{7}=\sigma+i \sigma^{\prime}, \\
& b_{8}=\tau+i \tau^{\prime}, \\
& b_{9}=\rho+\imath \rho^{\prime} .
\end{aligned}
$$

2. Proof of Theorem.

(i) $A_{3} \leqq 2$. By Grunsky's inequality

$$
\left|b_{3}+\frac{1}{2} b_{1}^{2}\right| \leqq \frac{1}{2} .
$$

Hence

$$
\begin{aligned}
R b_{3} & \leqq \frac{1}{2}-\frac{1}{2} \mathcal{R}\left(b_{1}^{2}\right)=\frac{1}{2}\left(1-p^{2}\right)+\frac{1}{2} x^{\prime 2} \\
& \leqq 1-p^{2} \leqq 2(1-p)
\end{aligned}
$$

by the area theorem. Thus $\mathcal{R}\left\{2 b_{1}+b_{3}\right\} \leqq 2$.
(ii) $A_{5} \leqq(27+8 \sqrt{3}) / 12$. We may assume that $\Omega b_{1}=p \geqq 0$ by rotation. By Grunsky's inequality

$$
\left|b_{5}+b_{1} b_{3}+b_{2}{ }^{2}+\frac{1}{3} b_{1}{ }^{3}+\frac{2}{3} \alpha b_{3}+\frac{\alpha^{2}}{9} b_{1}\right| \leqq \frac{1}{3}+\frac{|\alpha|^{2}}{9} .
$$

Hence by taking the real part

$$
\mathscr{R} b_{5} \leqq \frac{1}{3}\left(1-p^{3}\right)+\frac{\alpha^{2}}{9}(1-p)-\frac{2}{3} \alpha \eta-p \eta+x^{\prime} \eta^{\prime}+p x^{\prime 2}+y^{\prime 2}-y^{2} .
$$

Now we put $\alpha=-3 p / 2$. Then

$$
\mathscr{R} b_{5} \leqq \frac{1}{3}\left(1-p^{3}\right)+\frac{p^{2}}{4}(1-p)+p x^{\prime 2}+x^{\prime} \eta^{\prime}+y^{\prime 2} .
$$

By the area theorem

$$
\frac{3+2 \sqrt{3}}{3} y^{\prime 2} \leqq \frac{3+2 \sqrt{3}}{6}\left(1-p^{2}-x^{\prime 2}-3 \eta^{\prime 2}\right) .
$$

Hence

$$
\begin{aligned}
\mathscr{R} b_{5} \leqq & \frac{1}{3}\left(1-p^{3}\right)+\frac{p^{2}}{4}(1-p)+\frac{3+2 \sqrt{3}}{6}\left(1-p^{2}\right) \\
& -\left(\frac{3+2 \sqrt{3}}{6}-p\right) x^{\prime 2}+x^{\prime} \eta^{\prime}-\frac{3+2 \sqrt{3}}{2} \eta^{\prime 2}-\frac{-1+2 \sqrt{3}}{3} y^{\prime 2} \\
\leqq & \frac{27+8 \sqrt{3}}{12}(1-p) .
\end{aligned}
$$

Thus $\mathcal{R}\left\{k b_{1}+b_{5}\right\} \leqq k$ with $k=(27+8 \sqrt{ } 3) / 12$. Of course equality occurs only for $p=1$, that is, for $g(z)=z+1 / z$.
(iii) $A_{7} \leqq 5.5$.

Lemma 1. If $p \leqq\left(n t^{2}-1\right) /\left(n t^{2}+1\right)$, then $\mathbb{R}\left\{t b_{1}+b_{n}\right\} \leqq t$.
Proof. By the area theorem $n\left(\mathcal{R} b_{n}\right)^{2} \leqq 1-p^{2}$. Hence

$$
\mathcal{R}\left\{t b_{1}+b_{n}\right\} \leqq t p+\sqrt{\left(1-p^{2}\right) / n} \leqq t
$$

Lemma 2. $-\eta \leqq 3(1-p)$.
Proof. Garabedian and Schiffer's inequality $\left|3 b_{1}-b_{3}\right| \leqq 3$ implies the result immediately.

We may consider the case $0.99 \leqq p \leqq 1$, since for $0 \leqq p \leqq 0.99$ we have $\mathcal{R}\left\{5.5 b_{1}+b_{7}\right\}<5.5$ by Lemma 1. By Grunsky's inequality

$$
\begin{aligned}
& \left\lvert\, b_{7}+b_{1} b_{5}+2 b_{2} b_{4}+\frac{3}{2} b_{3}{ }^{2}+b_{1}{ }^{2} b_{3}+2 b_{1} b_{2}{ }^{2}+\frac{1}{4} b_{1}{ }^{4}\right. \\
& \left.\quad+\left(b_{5}+b_{1} b_{3}+\frac{1}{2} b_{2}{ }^{2}\right) \alpha+\left(\frac{1}{4} b_{3}+\frac{1}{8} b_{1}{ }^{2}\right) \alpha^{2} \right\rvert\, \leqq \frac{1}{4}+\frac{1}{8} \alpha^{2} .
\end{aligned}
$$

Taking the real part and putting $\alpha=-p$, we have

$$
\begin{aligned}
\mathscr{R} b_{7} & \leqq \frac{1}{4}\left(1-p^{4}\right)+\frac{1}{8} p^{2}\left(1-p^{2}\right)-\frac{1}{4}\left(p^{2}-4 x^{\prime 2}\right) \eta \\
& -\frac{3}{2} p y^{2}-2 y \xi-\frac{3}{2} \eta^{2}+\frac{13}{8} p^{2} x^{\prime 2}+p x^{\prime} \eta^{\prime}+\frac{3}{2} \eta^{\prime 2}+\frac{3}{2} p y^{\prime 2} \\
& +2 y^{\prime} \xi^{\prime}+4 y x^{\prime} y^{\prime}+x^{\prime} \varphi^{\prime} .
\end{aligned}
$$

Since $p \geqq 0.99, x^{\prime 2} \leqq 1-p^{2} \leqq 0.0199$. Hence $p^{2}-4 x^{\prime 2}>0$. By Lemma 2

$$
-\frac{1}{4}\left(p^{2}-4 x^{\prime 2}\right) \eta \leqq \frac{3}{4}\left(p^{2}-4 x^{\prime 2}\right)(1-p) \leqq \frac{3}{4} p^{2}(1-p) .
$$

By the area theorem

$$
\frac{14}{8} p^{2} x^{\prime 2} \leqq \frac{14}{8} p^{2}\left(1-p^{2}-2 y^{\prime 2}-3 \eta^{\prime 2}-4 \xi^{\prime 2}-5 \varphi^{\prime 2}-2 y^{2}-4 \xi^{2}\right) .
$$

Hence

$$
\begin{aligned}
\mathscr{R} b_{7} \leqq & \frac{1}{4}\left(1-p^{4}\right)+\frac{1}{8}\left(1-p^{2}\right) p^{2}+\frac{3}{4} p^{2}(1-p)+\frac{14}{8} p^{2}\left(1-p^{2}\right) \\
& -\left[\left(\frac{3}{2} p+\frac{14}{4} p^{2}\right) y^{2}+2 y \xi+7 p^{2} \xi^{2}+\frac{3}{2} \eta^{2}\right] \\
& -\left[\frac{p^{2}}{8} x^{\prime 2}-4 y x^{\prime} y^{\prime}+\left(\frac{7}{2} p^{2}-\frac{3}{2} p\right) y^{\prime 2}-2 y^{\prime} \xi^{\prime}+7 p^{2} \xi^{\prime 2}\right. \\
& \left.-p x^{\prime} \eta^{\prime}+\left(\frac{21}{4} p^{2}-\frac{3}{2}\right) \eta^{\prime 2}-x^{\prime} \varphi^{\prime}+\frac{35}{4} p^{2} \varphi^{\prime 2}\right] .
\end{aligned}
$$

The quadratic terms in two [] are positive definite for $0.99 \leqq p \leqq 1$. Hence

$$
\mathfrak{R} b_{7} \leqq 5.5(1-p)
$$

which gives the desired result.
(iv) $A_{9}<8$. By Grunsky's inequality

$$
\left|5 a_{55}+10 a_{35} \alpha+10 a_{15} \gamma+3 a_{33} \alpha^{2}+a_{11} \gamma^{2}\right| \leqq 5+3 \alpha^{2}+\gamma^{2} .
$$

Taking the real part and putting $\alpha=-5 p / 6$ and $\gamma=-5 p^{2} / 8$, we have

$$
\begin{aligned}
\mathcal{R} b_{9} \leqq & \frac{1}{5}\left(1-p^{5}\right)+\frac{p^{2}}{12}\left(1-p^{3}\right)+\frac{p^{4}}{64}(1-p)-\frac{1}{4}\left(p^{3}-8 p x^{\prime 2}\right) \eta \\
& -\left(\frac{9}{4} p^{2}-3 x^{\prime 2}\right) y^{2}-4 y^{2} \eta-2 p \eta^{2}-2 p y \xi-2 \xi^{2}-3 \eta \varphi-2 y \phi \\
& +\frac{9}{4} p^{3} x^{\prime 2}+\left(\frac{5}{4} p^{2}-x^{\prime 2}\right) x^{\prime} \eta^{\prime}+2 p \eta^{\prime 2}+p x^{\prime} \varphi^{\prime}+3 \eta^{\prime} \varphi^{\prime}+x^{\prime} \sigma^{\prime} \\
& +\left(\frac{9}{4} p^{2}-3 x^{\prime 2}\right) y^{\prime 2}+2 p y^{\prime} \xi^{\prime}+2 \xi^{\prime 2}+2 y^{\prime} \phi^{\prime} \\
& +x^{\prime 2} \varphi+4 x^{\prime} y^{\prime} \xi+4 y x^{\prime} \xi^{\prime}+6 \eta x^{\prime} \eta^{\prime}+8 y y^{\prime} \eta^{\prime}+10 p y x^{\prime} y^{\prime} .
\end{aligned}
$$

By Lemma 2

$$
-\frac{1}{4}\left(p^{3}-8 p x^{\prime 2}\right) \eta \leqq \frac{1}{4}\left(p^{3}-8 p x^{\prime 2}\right) 3(1-p) \leqq \frac{3}{4} p^{3}(1-p) .
$$

By the area theorem

$$
\begin{aligned}
2.9 x^{\prime 2} \leqq & 2.9\left(1-p^{2}-2 y^{2}-3 \eta^{2}-4 \xi^{2}-5 \varphi^{2}-6 \phi^{2}\right. \\
& \left.-2 y^{\prime 2}-3 \eta^{\prime 2}-4 \xi^{\prime 2}-5 \varphi^{\prime 2}-6 \phi^{\prime 2}-7 \sigma^{\prime 2}\right)
\end{aligned}
$$

By the trivial inequalities

$$
\begin{aligned}
& x^{\prime 2} \varphi \leqq 0.5\left(\varphi^{2}+x^{\prime 4}\right) \\
& 4 x^{\prime} y^{\prime} \leqq 2\left(0.1 \xi^{2}+10 x^{\prime 2} y^{\prime 2}\right) \\
& 4 y x^{\prime} \xi^{\prime} \leqq 2\left(0.1 y^{2}+10 x^{\prime 2} \xi^{\prime 2}\right), \\
& 6 \eta x^{\prime} \eta^{\prime} \leqq 3\left(0.1 \eta^{2}+10 x^{\prime 2} \eta^{\prime 2}\right) \\
& 10 p y x^{\prime} y^{\prime} \leqq 5\left(0.1 y^{2}+10 x^{\prime 2} y^{\prime 2}\right)
\end{aligned}
$$

and

$$
8 y y^{\prime} \eta^{\prime} \leqq 4\left(0.1 y^{2}+10 y^{\prime 2} \eta^{\prime 2}\right) \leqq 0.4 y^{2}+\frac{40}{3}\left(1-p^{2}-x^{\prime 2}\right) y^{\prime 2}
$$

What we want to prove is $\mathscr{R}\left\{(7.8+1 / 64) b_{1}+b_{9}\right\} \leqq 7.8+1 / 64$. Hence by Lemma 1 it is sufficient to prove the result for $p \geqq 0.99$. Summing up the above facts, we have

$$
\begin{aligned}
\mathscr{R} b_{9} \leqq & \frac{1}{5}\left(1-p^{5}\right)+\frac{p^{2}}{12}\left(1-p^{3}\right)+\frac{p^{4}}{64}(1-p)+\frac{3}{4} p^{3}(1-p) \\
& +2.9\left(1-p^{2}\right)-X-Y,
\end{aligned}
$$

where

$$
\begin{aligned}
X= & \left(4.7+2.25 p^{2}-3 x^{\prime 2}\right) y^{2}+4 y^{2} \eta+(8.4+2 p) \eta^{2}+2 p y \xi+13.4 \xi^{2} \\
& +3 \eta \varphi+14 \varphi^{2}+2 y \phi+17.4 \phi^{2}, \\
Y= & \left(2.9-2.25 p^{3}-0.5 x^{\prime 2}\right) x^{\prime 2}-\left(1.25 p^{2}-x^{\prime 2}\right) x^{\prime} \eta^{\prime}+\left(6.7-30 x^{\prime 2}\right) \eta^{\prime 2} \\
& -p x^{\prime} \varphi^{\prime}-3 \eta^{\prime} \varphi^{\prime}+14.5 \varphi^{\prime 2}-x^{\prime} \sigma^{\prime}+20.3 \sigma^{\prime 2} \\
& +\left(3.55-\frac{40}{3}\left(1-p^{2}\right)-\frac{161}{3} x^{\prime 2}\right) y^{\prime 2}-2 p y^{\prime} \xi^{\prime}+\left(9.6-20 x^{\prime 2}\right) \xi^{\prime 2} \\
& -2 y^{\prime} \phi^{\prime}+17.4 \phi^{\prime 2} .
\end{aligned}
$$

By making use of $x^{\prime 2} \leqq 1-p^{2} \leqq 0.0199$ we can easily prove the positive definiteness of X and Y. Then

$$
\mathfrak{R} b_{9} \leqq(1-p)\left(7.8+\frac{1}{64}\right) .
$$

Thus we have the desired result. Equality occurs only for $p=1$, that is, for $z+1 / z$.
(v) $A_{11}<10$. By Grunsky's inequality

$$
\left|6 a_{66}+12 a_{46} \alpha+12 a_{26} \beta+4 a_{44} \alpha^{2}+2 a_{22} \beta^{2}\right| \leqq 6+4 \alpha^{2}+2 \beta^{2} .
$$

Taking the real part and setting $\alpha=-3 p / 4$ and $\beta=3 p^{2} / 8$, we have

$$
\begin{aligned}
\mathscr{R} b_{11} \leqq & \frac{1}{6}\left(1-p^{6}\right)+\frac{p^{2}}{16}\left(1-p^{4}\right)+\frac{p^{4}}{128}\left(1-p^{2}\right)-\left(\frac{1}{4}+\frac{1}{64}\right) p^{4} \eta+\frac{13}{4} p^{2} x^{\prime 2} \eta+x^{\prime 4} \eta \\
& -\left[\left(3 p^{3}-10.5 p x^{\prime 2}\right) y^{2}+2.25 p^{2} y \xi+2.5 p \xi^{2}+4 \xi \phi-6 x^{\prime 2} y \xi+2 p y \phi+2 y \tau\right. \\
& \left.+\left(2.75 p^{2}-4.5 x^{\prime 2}\right) \eta^{2}+3 p \eta \varphi+2.5 \varphi^{2}+3 \eta \sigma\right] \\
& +\frac{369}{128} p^{4} x^{\prime 2}+\left(3 p^{3}+13.5 x^{\prime 2}\right) y^{\prime 2}+\left(2.25 p^{2}-6 x^{\prime 2}\right) y^{\prime} \xi^{\prime}+2.5 p \xi^{\prime 2} \\
& +\left(1.5 p^{3}-3 p x^{\prime 2}\right) x^{\prime} \eta^{\prime}+\left(2.75 p^{2}-4.5 x^{\prime 2}\right) \eta^{\prime 2}+\left(p^{2}-x^{\prime 2}\right) x^{\prime} \varphi^{\prime}+3 p \eta^{\prime} \varphi^{\prime} \\
& +2.5 \varphi^{\prime 2}+2 p y^{\prime} \phi^{\prime}+p x^{\prime} \sigma^{\prime}+4 \xi^{\prime} \phi^{\prime}+3 \eta^{\prime} \sigma^{\prime}+2 y^{\prime} \tau^{\prime}+x^{\prime} \rho^{\prime}+\sigma x^{\prime 2}+4 \phi x^{\prime} y^{\prime} \\
& +4 y x^{\prime} \phi^{\prime}+6 \varphi x^{\prime} \eta^{\prime}+8 \xi x^{\prime} \xi^{\prime}+4 \varphi y^{\prime 2}+8 y y^{\prime} \varphi^{\prime}+12 y \eta^{\prime} \xi^{\prime}+12 \xi y^{\prime} \eta^{\prime} \\
& +8 p \xi x^{\prime} y^{\prime}+8 p y x^{\prime} \xi^{\prime}+18 p y y^{\prime} \eta^{\prime}+19 p^{2} y x^{\prime} y^{\prime}+12 y^{2} x^{\prime} \eta^{\prime}-12 y^{\prime 2} x^{\prime} \eta^{\prime} \\
& +24 \eta y x^{\prime} y^{\prime}+9 y^{2} y^{\prime 2}+1.5 y^{\prime 4}-8 y x^{\prime 3} y^{\prime}-4 \varphi y^{2}-1.5 y^{4} \\
& +\eta\left(6 x^{\prime} \varphi^{\prime}+12 y^{\prime} \xi^{\prime}+7 \eta^{\prime 2}+14 p x^{\prime} \eta^{\prime}+9 p y^{\prime 2}-12 y \xi-\frac{7}{3} \eta^{2}-9 p y^{2}\right) .
\end{aligned}
$$

We may consider the case $0.998 \leqq p \leqq 1$, since our desired result is $A_{11}<10$.
Firstly we consider the case $\eta \leqq 0$. Then

$$
\begin{aligned}
& 3.25 p^{2} x^{\prime 2} \eta-\frac{7}{3} \eta^{3}-9 p \eta y^{2}-12 y \xi \eta+6 x^{\prime} \varphi^{\prime} \eta+12 y^{\prime} \xi^{\prime} \eta \\
& \quad+7 \eta^{\prime 2} \eta+14 p x^{\prime} \eta^{\prime} \eta+9 p y^{\prime 2} \eta \\
& \leqq-\eta 5.5 p\left[1-p^{2}-x^{\prime 2}-2 y^{\prime 2}-3 \eta^{\prime 2}-4 \xi^{\prime 2}-5 \varphi^{\prime 2}-2 y^{2}-4 \xi^{2}\right] \\
& \quad+3.25 p^{2} x^{\prime 2} \eta+\left(16.5 p-\frac{7}{3}\right) \eta^{3}-9 p y^{2} \eta-12 y \xi \eta \\
& \quad+6 \eta x^{\prime} \varphi^{\prime}+12 \eta y^{\prime} \xi^{\prime}+7 \eta \eta^{\prime 2}+14 p \eta x^{\prime} \eta^{\prime}+9 p \eta y^{\prime 2} \\
& =-5.5 p\left(1-p^{2}\right) \eta+\eta\left[(11 p-9 p) y^{2}-12 y \xi+22 p \xi^{2}+\left(16.5 p-\frac{7}{3}\right) \eta^{2}\right] \\
& \quad+\eta\left[\left(3.25 p^{2}+5.5 p\right) x^{\prime 2}+6 x^{\prime} \varphi^{\prime}+27.5 p \varphi^{\prime 2}+14 p x^{\prime} \eta^{\prime}\right. \\
& \left.\quad \quad+(16.5 p+7) \eta^{\prime 2}+20 p y^{\prime 2}+12 y^{\prime} \xi^{\prime}+22 p \xi^{\prime 2}\right] \\
& \leqq-5.5 p\left(1-p^{2}\right) \eta,
\end{aligned}
$$

since two terms in [] are positive definite for $0.998 \leqq p \leqq 1$. By Lemma 2

$$
-\left\{\frac{17}{64} p^{4}+5.5 p\left(1-p^{2}\right)\right\} \eta \leqq 3\left\{\frac{17}{64} p^{4}+5.5 p\left(1-p^{2}\right)\right\}(1-p)
$$

Further

$$
\begin{aligned}
& 9 y^{2} y^{\prime 2}+1.5 y^{\prime 4}-12 y^{\prime 2} x^{\prime} \eta^{\prime} \\
& \leqq 4.5\left(1-p^{2}-x^{\prime 2}-2 y^{\prime 2}-3 \eta^{\prime 2}\right) y^{\prime 2}+1.5 y^{\prime 4}-12 y^{\prime 2} x^{\prime} \eta^{\prime} \\
& \leqq 4.5\left(1-p^{2}\right) y^{\prime 2} .
\end{aligned}
$$

By the area theorem

$$
\begin{aligned}
3.8 x^{\prime 2} \leqq & 3.8\left(1-p^{2}\right)-3.8\left(2 y^{2}+3 \eta^{2}+4 \xi^{2}+5 \varphi^{2}+6 \phi^{2}+7 \sigma^{2}+8 \tau^{2}\right) \\
& -3.8\left(2 y^{\prime 2}+3 \eta^{\prime 2}+4 \xi^{\prime 2}+5 \varphi^{\prime 2}+6 \phi^{\prime 2}+7 \sigma^{\prime 2}+8 \tau^{\prime 2}+9 \rho^{\prime 2}\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\mathscr{R} b_{11} \leqq & \frac{1}{6}\left(1-p^{2}\right)+\frac{p^{2}}{16}\left(1-p^{4}\right)+\frac{p^{4}}{128}\left(1-p^{2}\right)+\frac{51}{64} p^{4}(1-p) \\
+ & 16.5 p\left(1-p^{2}\right)(1-p)+3.8\left(1-p^{2}\right) \\
- & {\left[\left(3 p^{3}+7.6-10.5 p x^{\prime 2}\right) y^{2}+\left(2.25 p^{2}-6 x^{\prime 2}\right) y \xi+(15.2+2.5 p) \xi^{s}\right.} \\
& +\left(2.25 p^{2}+11.4-4.5 x^{\prime 2}\right) \eta^{2}+3 p \eta \varphi+19 \varphi^{2}+2 p y \phi+22.8 \phi^{2} \\
& \left.+4 \xi \phi+3 \eta \sigma+26.6 \sigma^{2}+2 y \tau+30.4 \tau^{2}\right] \\
- & {\left[\left(3.8-\frac{369}{128} p^{4}\right) x^{\prime 2}+\left\{7.6-3 p^{3}-4.5\left(1-p^{2}\right)-13.5 p x^{\prime 2}\right\} y^{\prime 2}\right.} \\
& \quad-\left(2.25 p^{2}-6 x^{\prime 2}\right) y^{\prime} \xi^{\prime}+(15.2-2.5 p) \xi^{\prime 2}-\left(1.5 p^{3}-3 p x^{\prime 2}\right) x^{\prime} \eta^{\prime} \\
& +\left(11.4-2.75 p^{2}+4.5 x^{\prime 2}\right) \eta^{\prime 2}-\left(p^{2}-x^{\prime 2}\right) x^{\prime} \varphi^{\prime}-3 p \eta^{\prime} \varphi^{\prime}+19 \varphi^{\prime 2}
\end{aligned}
$$

$$
\begin{aligned}
& -29 y^{\prime} \phi^{\prime}-4 \xi^{\prime} \phi^{\prime}+22.8 \phi^{\prime 2}-p x^{\prime} \sigma^{\prime}-3 \eta^{\prime} \sigma^{\prime}+26.6 \sigma^{\prime 2}-2 y^{\prime} \tau^{\prime} \\
& \left.+30.4 \tau^{\prime 2}-x^{\prime} \rho^{\prime}+34.2 \rho^{\prime 2}\right] \\
+ & \sigma x^{\prime 2}+4 \phi x^{\prime} y^{\prime}+4 y x^{\prime} \phi^{\prime}+6 \varphi x^{\prime} \eta^{\prime}+8 \xi x^{\prime} \xi^{\prime}+4 \varphi y^{\prime 2}+8 y y^{\prime} \phi^{\prime} \\
+ & 12 y \eta^{\prime} \xi^{\prime}+12 \xi y^{\prime} \eta^{\prime}+8 p \xi x^{\prime} y^{\prime}+8 p y x^{\prime} \xi^{\prime}+18 p y y^{\prime} \eta^{\prime}+19 p^{2} y x^{\prime} y^{\prime} \\
+ & 12 y^{2} x^{\prime} \eta^{\prime}+24 \eta y x^{\prime} y^{\prime}-8 y x^{\prime 3} y^{\prime}-4 \varphi y^{2} .
\end{aligned}
$$

Now we make use of trivial inequalities with positive α_{ρ} :

$$
\begin{aligned}
& \sigma x^{\prime 2} \leqq 0.5\left(\alpha_{1} x^{\prime 2} \sigma^{2}+\frac{1}{\alpha_{1}} x^{\prime 2}\right), \\
& 4 \phi x^{\prime} y^{\prime} \leqq 2\left(\alpha_{2} x^{\prime 2} \phi^{2}+\frac{1}{\alpha_{2}} y^{\prime 2}\right), \\
& 4 y x^{\prime} \phi^{\prime} \leqq 2\left(\alpha_{3} x^{\prime 2} y^{2}+\frac{1}{\alpha_{3}} \phi^{\prime 2}\right), \\
& 6 \varphi x^{\prime} \eta^{\prime} \leqq 3\left(\alpha_{4} x^{\prime 2} \varphi^{2}+\frac{1}{\alpha_{4}} \eta^{\prime 2}\right), \\
& 8 \xi x^{\prime} \xi^{\prime} \leqq 4\left(\alpha_{5} x^{\prime 2} \xi^{2}+\frac{1}{\alpha_{5}} \xi^{\prime 2}\right), \\
& 4 \varphi y^{\prime 2} \leqq 2\left(\alpha_{6} y^{\prime 2} \varphi^{2}+\alpha_{6}^{-1} y^{\prime 2}\right), \\
& 8 y y^{\prime} \varphi^{\prime} \leqq 4\left(\alpha_{7} y^{\prime 2} y^{2}+\alpha_{7}^{-1} \varphi^{\prime 2}\right), \\
& 12 y \eta^{\prime} \xi^{\prime} \leqq 6\left(\alpha_{8} \eta^{\prime 2} y^{2}+\alpha_{8}^{-1} \xi^{\prime 2}\right), \\
& 12 \xi y^{\prime} \eta^{\prime} \leqq 6\left(\alpha_{9} y^{\prime 2} \xi^{2}+\alpha_{9}^{-1} \eta^{\prime 2}\right), \\
& 8 p \xi x^{\prime} y^{\prime} \leqq 4 p\left(\alpha_{10} x^{\prime 2} \xi^{2}+\alpha_{10}^{-1} y^{\prime 2}\right), \\
& 8 p y x^{\prime} \xi^{\prime} \leqq 4 p\left(\alpha_{11} x^{\prime 2} y^{\prime 2}+\alpha_{11}^{-1} \xi^{\prime 2}\right), \\
& 18 p y y^{\prime} \eta^{\prime} \leqq 9 p\left(\alpha_{12} y^{\prime 2} y^{2}+\alpha_{12}^{-1} \eta^{\prime 2}\right), \\
& 19 p^{2} y x^{\prime} y^{\prime} \leqq 9.5 p^{2}\left(\alpha_{13} x^{\prime 2} y^{2}+\alpha_{13}^{-1} y^{\prime 2}\right), \\
& 12 y^{2} x^{\prime} \eta^{\prime} \leqq 6\left(\alpha_{14} y^{4}+\alpha_{14}^{-1} x^{\prime 2} \eta^{\prime 2}\right), \\
& 24 \eta y x^{\prime} y^{\prime} \leqq 12\left(\alpha_{15} y^{2} \eta^{2}+\alpha_{15}^{-1} x^{\prime 2} y^{\prime 2}\right), \\
& -8 y x^{\prime 3} y^{\prime} \leqq 4\left(\alpha_{16} x^{\prime 2} y^{2}+\alpha_{16}^{-1} x^{\prime 4} y^{\prime 2}\right), \\
& -4 \varphi y^{2} \leqq 2\left(\alpha_{17} y^{4}+\alpha_{17}^{-1} \varphi^{2}\right) .
\end{aligned}
$$

The coefficient of y^{2} is

$$
\begin{aligned}
& 3 p^{3}+7.6-10.5 p x^{\prime 2}-2 \alpha_{3} x^{\prime 2}-4 \alpha_{7} y^{\prime 2}-6 \alpha_{8} \eta^{\prime 2}-4 p \alpha_{11} x^{\prime 2} \\
& \quad-9 p \alpha_{12} y^{\prime 2}-9.5 p^{2} \alpha_{13} x^{\prime 2}-6 \alpha_{14} y^{2}-12 \alpha_{15} \eta^{2}-4 \alpha_{16} x^{\prime 2}-2 \alpha_{17} y^{2},
\end{aligned}
$$

which is greater than

$$
\begin{aligned}
& 3 p^{3}+7.6-9.5 \alpha_{13}\left(1-p^{2}\right)-\left(10.5 p+2 \alpha_{3}+4 p \alpha_{11}+4 \alpha_{16}\right) x^{\prime 2} \\
& \quad+\left(19 \alpha_{13}-4 \alpha_{7}-9 p \alpha_{12}\right) y^{\prime 2}+\left(28.5 \alpha_{13}-6 \alpha_{8}\right) \eta^{\prime 2}+\left(19 \alpha_{13}-6 \alpha_{14}-2 \alpha_{17}\right) y^{2} \\
& \quad+\left(28.5 \alpha_{13}-12 \alpha_{15}\right) \eta^{2} .
\end{aligned}
$$

Now we put $\alpha_{3}=100, \alpha_{7}=150, \alpha_{11}=100, \alpha_{12}=140, \alpha_{13}=100, \alpha_{14}=230, \alpha_{15}=230$, $\alpha_{16}=100$ and $\alpha_{17}=250$. Then the above expression is greater than

$$
3 p^{3}+7.6-950\left(1-p^{2}\right)-(410.5 p+600) x^{\prime 2} \geqq 2.74
$$

by $0.998 \leqq p \leqq 1$ and $x^{\prime 2} \leqq 1-p^{2}<0.004$. The coefficient of ξ^{2} is

$$
\begin{aligned}
& 15.2+2.5 p-4 \alpha_{5} x^{\prime 2}-6 \alpha_{9} y^{\prime 2}-4 \alpha_{10} x^{\prime 2} \\
& \geqq 15.2+2.5 p-3 \alpha_{9}\left(1-p^{2}\right)+\left(3 \alpha_{9}-4 \alpha_{5}-4 \alpha_{10}\right) x^{\prime 2} \\
& \geqq 15.2+2.5 p-900\left(1-p^{2}\right),
\end{aligned}
$$

if we put $\alpha_{5}=100, \alpha_{9}=300$ and $\alpha_{10}=100$. The last term is greater than 14.095 by $0.998 \leqq p \leqq 1$. Similarly the coefficient of φ^{2} is

$$
\begin{aligned}
& 19-2 \alpha_{6} y^{\prime 2}-2 \alpha_{17}^{-1}-3 \alpha_{4} x^{\prime 2} \\
& \geqq 19-2 / 250-1200\left(1-p^{2}\right) \geqq 14.196,
\end{aligned}
$$

if we put $\alpha_{4}=400, \alpha_{6}=1200$ and $\alpha_{17}=250$. The coefficient of η^{2} is

$$
2.25 p^{2}+11.4-4.5 x^{\prime 2} \geqq 13.623 .
$$

Now we put $\alpha_{1}=1000=\alpha_{2}$ and $\alpha_{8}=475$. Computations of coefficients of $x^{\prime 2}, y^{\prime 2}$ and $\eta^{\prime 2}$ are now quite easy. Then we have

$$
\begin{aligned}
& \mathscr{R} b_{11} \leqq(1-p) P(p)-X-Y, \\
&(1-p) P(p)= \frac{1}{6}\left(1-p^{6}\right)+\frac{1}{16} p^{2}\left(1-p^{4}\right)+\frac{1}{128} p^{4}\left(1-p^{2}\right) \\
& \quad+\frac{51}{64} p^{4}(1-p)+16.5 p\left(1-p^{2}\right)(1-p)+3.8\left(1-p^{2}\right), \\
& X= 2.74 y^{2}+\left(2.25 p^{2}-6 x^{\prime 2}\right) y \xi+14.095 \xi^{2}+2 p y \phi+4 \xi \phi+22.78 \phi^{2} \\
& \quad+2 y \tau+30.4 \tau^{2}+13.623 \eta^{2}+3 p \eta \varphi+14.196 \varphi^{2}+3 \eta \sigma+26.6 \sigma^{2}, \\
& Y= 0.9166875 x^{\prime 2}-\left(1.5 p^{3}-3 p x^{\prime 2}\right) x^{\prime} \eta^{\prime}+8.5582 \eta^{\prime 2}-\left(p^{2}-x^{\prime 2}\right) x^{\prime} \varphi^{\prime} \\
& \quad-3 \eta^{\prime} \varphi^{\prime}+18.97 \varphi^{\prime 2}-p x^{\prime} \sigma^{\prime}-3 \eta^{\prime} \sigma^{\prime}+26.6 \sigma^{\prime 2}-x^{\prime} \rho^{\prime}+34.2 \rho^{\prime 2}
\end{aligned}
$$

$$
\begin{aligned}
& +4.41645 y^{\prime 2}-\left(2.25 p^{2}-6 x^{\prime 2}\right) y^{\prime} \xi^{\prime}+12.6 \xi^{\prime 2}-2 p y^{\prime} \phi^{\prime}-4 \xi^{\prime} \phi^{\prime} \\
& +22.78 \phi^{\prime 2}-2 y^{\prime} \tau^{\prime}+30.4 \tau^{\prime 2} .
\end{aligned}
$$

It is not so difficult to prove that X and Y are positive definite for $0.998 \leqq p \leqq 1$ and $x^{\prime 2} \leqq 0.004$. Thus $\mathscr{R} b_{11} \leqq(1-p) P(p)$. Now we set $p=1-x$. Then

$$
10-P(p) \geqq 0.3375-22.5 x+40 x^{2}-10 x^{3}-3 x^{4}>0
$$

for $0 \leqq x \leqq 0.002$. Hence $\mathcal{R}\left(b_{11}+10 b_{1}\right)<10$.
Next we shall consider the case $\eta \geqq 0$. Then by the area theorem

$$
\begin{aligned}
& \eta\left[\frac{13}{4} p^{2} x^{\prime 2}+6 x^{\prime} \varphi^{\prime}+12 y^{\prime} \xi^{\prime}+7 \eta^{\prime 2}+14 p x^{\prime} \eta^{\prime}+9 p y^{\prime 2}-12 y \xi-\frac{7}{3} \eta^{2}-9 p y^{2}\right] \\
& \leqq \eta\left[-\frac{27}{4} p^{2} x^{\prime 2}+6 x^{\prime} \varphi^{\prime}+12 y^{\prime} \xi^{\prime}+7 \eta^{\prime 2}+14 p x^{\prime} \eta^{\prime}+9 p y^{\prime 2}-12 y \xi-\frac{7}{3} \eta^{2}-9 p y^{2}\right] \\
& \quad+10 p^{2} \eta\left[1-p^{2}-2 y^{\prime 2}-3 \eta^{\prime 2}-5 \xi^{\prime 2}-2 y^{2}-3 \eta^{2}-4 \xi^{2}\right] \\
& =10 p^{2}\left(1-p^{2}\right) \eta-\eta\left[\left(20 p^{2}+9 p\right) y^{2}+12 y \xi+40 p^{2} \xi^{2}+\left(30 p^{2}+7 / 3\right) \eta^{2}\right] \\
& \quad-\eta\left[\frac{27}{4} p^{2} x^{\prime 2}-14 p x^{\prime} \eta^{\prime}+\left(30 p^{2}-7\right) \eta^{\prime 2}-6 x^{\prime} \varphi^{\prime}+50 p^{2} \varphi^{\prime 2}+\left(20 p^{2}-9 p\right) y^{\prime 2}\right. \\
& \left.\quad-12 y^{\prime} \xi^{\prime}+40 p^{2} \xi^{\prime 2}\right] \\
& \leqq 10 p^{2}\left(1-p^{2}\right) \eta .
\end{aligned}
$$

Hence by

$$
-\eta\left[(1 / 4+1 / 64) p^{4}-10 p^{2}\left(1-p^{2}\right)-x^{\prime 4}\right] \leqq 0
$$

for $p^{2} \geqq 0.996$ we can omit these terms. Therefore finally

$$
\mathcal{R} b_{11} \leqq(1-p) Q(p)-X-Y,
$$

where X and Y are the same as in the case $\eta \leqq 0$ and

$$
(1-p) Q(p)=\frac{1}{6}\left(1-p^{6}\right)+\frac{1}{16} p^{2}\left(1-p^{4}\right)+\frac{p^{4}}{128}\left(1-p^{2}\right)+3.8\left(1-p^{2}\right),
$$

which is smaller than $(1-p) P(p)$. Hence we have the desired result.

References

[1] Garabedian, P.R. and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. 61 (1955), 116-136.
[2] Kirwan, W.E. and G. Schober, New inequalities from old ones, Math. Z. 180 (1982), 19-40.
[3] Schober, G. and J. K. Williams, On coefficient estimates and conjecture for the class Σ, Math. Z. 186 (1984), 309-320.
[4] Leung. Y.J. and G. Schober, High order coefficient estimates in the class .. To appear in Proc. Amer. Math. Soc. 1985.
[5] Leung, Y.J. and G. Schober, Low order coefficient estimates in the class Σ. To appear in Ann. Acad. Sci. Fenn. 1986.

After the completion of this work the author has received two preprints [4] and [5]. In [4] they proved the existence of A_{n} and B_{n} with a crude estimate. In [5], $1<A_{3} \leqq 2$ was proved and a conjecture for the value of A_{3} was stated.

Department of Mathematics
Science University of Tokyo
Noda, Chiba, Japan

