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ON THE GAUSS MAP OF MINIMAL SURFACES

IMMERSED IN Rn

BY MASAHIKO FUJIKI

1. Introduction.

The Gauss map of a minimal surface M in Rn can be considered as a
holomorphic mapping from M to the complex quadric Qn-2 in the complex pro-
jective space CP71*1 with the Fubini-Study metric of constant curvature 2. This
paper is devoted to the question, "If a minimal surface M in Rn has a constant
curvature it in its Gaussian image, what values of K can be possible?".

This question comes from Ricci's classical theorem;

There exists a minimal surface in R* which is isometric with Miff (M, ds2)
satisfies Ricci condition:

(i) Gaussian curvature K of M is negative,

(ii) the new metric ds2—V—Kds2 is flat on M.

The condition (ii) is known to be equivalent to the condition "K=l". (see
Lawson [2])

Concerning the question, the following are well-known
(a) If J?=l, then M must lie fully in RB or R6. And all the minimal sur-

faces isometric to M make a two parameter family. (Lawson [2])
(b) Minimal surfaces in R* which have constant curvature K in their Gaus-

sian images are classified as follows;
i. K=l, and M lies in some affine R\
ii. K=2, and M is a holomorphic curve in C2.

Here C2 means iv?4 with some orthogonal complex structure. (Osserman-Hoffman
[5])

(c) And in R5,
i. R=l or 2, and M lies in i?4 (these are the cases (b).)
ii. j f=l/2, and the Gaussian image of M can be represented locally as;

1/2(1— w\ i+iw*, 2w+2w\ 2iw-2iw\ 2

(MasaΓtsev [4])

To get these results, Calabi's theorem [1] plays the main role. Using the
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method in [2], [4] and [5], following results are obtained;

THEOREM A. For every positive integer ?n, there exists a minimal surface
with ΪC=l/m in 2m+1 dimensional Euclidean space.

THEOREM B. For every integer m^5, there exists a minimal surface with
K=2/(2m—l) in 2m dimensional Euclidean space.

THEOREM C. Let £=3,5, or 7. Then there exists a minimal surface M with
K=2/k in &+3 dimensional Euclidean space.

The author wishes to express his hearty thanks to Professor S. Tanno 'and
the referee for their valuable suggestions.

2. Preliminaries.

Let M be a surface immersed in Rn. It means that there exists a con-
formal immersion

X:S—*R», X=(Xl9X2, -,Xn)

where S is a Riemann surface. Here we define the Gauss map g as follows;

1 dX2

where w—u1+iu2 is a local coordinate of 5.
By definition a surface M is minimal if

ΔXι=0 for i—l9 2,

where Δ = -~-r- + ^~v-

It is known that g(z^) is holomorphic iff M is a minimal surface, (see [5])
In this paper we exclude the case where M is a plane.

Let CPn~ι have the Fubini-Study metric with (constant holomorphic curva-
ture 2;

[ n

Let K(p) denote the Gaussian curvature of g(S)(ZQn-2^CPn~1 at a point />ε5.
It follows immediately that
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3. Results.

Let M be a minimal surface in Rn with K=c (constant). Then Calabi's
results tell us that c must be the form 2/k, k^N, and it must satisfy

(1) k^n-1.

And furthermore, g(S) must be represented locally

<g(w)=Uyk

where U denotes annXn unitary matrix, and

From the fact that g(S)(ZQn-2, g{w) must satisfy

g(ιv)'tg(w)=Q

It is equivalent to

(2) 'ySUUy^O

Now we set

tUU=A=(atJ) / , / = l , - , n.

Here A is a symmetric unitary matrix. So, aι3 — aji.

THEOREM A. For every positive integer m, there exists a minimal surface
with K=l/m in 2m+l dimensional Euclidean space.

Proof. From the fact

\o) \ l ) +
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satisfies the properties of A. Because it is a real orthogonal matrix, it is diag-
onalizable in the sense of real matrices, and its eigenvalues are 1 or — 1. So,
the unitary matrix U is easily calculated. q. e. d.

THEOREM B. For every integer m^5, there exists a minimal surface with
R=2/(2m—l) in 2m dimensional Euclidean space.

Proof. Let

There exists /<, s.t. P(jo)^Qijo), and PUΌ+l)^Q(jo+ϊ). Now set

P=POo), Q=QUo), R-M , )•

These P, Q and i? satisfy the triangle inequality. So, there exist two real
numbers θ, φ s. t.

(3) P+Qeiθ+Re%?=0

Let us define the symmetric unitary matrix A as follows;

1 for l ^ s ^ / o + 1 or

eiθ for jo+2Ss^m—l or jo+2^

>™ for s—m, 7?2+l

as>t=0 for tφ2m+l-s

It is easy to see that the matrix A is decomposed as

A=<UU

where U is a unitary matrix. Then, from (3), the equation (2) is satisfied.
q. e. d.

THEOREM C. Let k=3,5, or 7. Then there exists a minimal surf ace M with
K=2/k in k-\-2> dimensional Euclidean space.

Proof. In this case the matrix A is given as follows;

for (i, ;)=((Λ + l)/2, (ft+3)/2), ((*+3)/2,

for (ί, ;)=((fe+l)/2, k+2), ((ft+3)/2, fe+3), (fe+2, (fe+D/2),

(*+3,
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for ( i , / ) = ( * + 2 ,

otherwise, al3—Q.

MASAHIKO FUJIKI

, (fe+3, ft+2),

q. e. d.

Now, we know Calabi's inequality (1) is best possible when kφl, 3, 5, 7.
And when k—1, 3, the minimum n is 4, β respectively. But when k=5, 7, the
minimum n are unknown. In other words, it is unknown whether minimal
surfaces with K=2/5 (2/7) exist in R6, RΊ (in R8, R9 respectively), or not.

Remark 1. In theorem A., if n=3, then K=l and matrix A must be the

form;

) 0 - 1 \

And,

u=

0

\ - l

/1/2

ί/2

\o
(mod

1

0

0

0

1

0 •

o/

-1/2

//2

0

orthogonal transformations in i?3).

From this, we can obtain classical Weierstrass-Enneper's expression formula for
classical minimal surfaces.

Remark 2. Also in theorem A., if n=5, then K—l/2 and

α/V2

«7V2"
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^ 0
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1/VT

i/VJ
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0

0
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0

-1/V2
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(mod orthogonal transformations in R5)

Combining the fact that no minimal surfaces with K=2/3 exist in R5, MasaΓ-
tsev's theorem is obtained, (see [4])
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