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Abstract

The present paper deals with the study of explosion and growth order of
solutions of a general class of Itό-type stochastic integrodifferential equations
which contain as a special case the study of Itδ type stochastic differential
equations. Sufficient conditions for infinite explosion time and asymptotic
behavior of solutions are investigated.
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1. Introduction

In this paper we consider a general class of Itό type stochastic integrodif-
ferential equations of the form

(1.1) dx(t)=F(t, x(t), [Mt, s, x(s))ds, (7«(f, s, x(s))dξ(s))dί

+H(t, x(t), [ hx{t, s, x(s))ds, [ h2(t, s, x(s))dξ(s))dξ(t)

where ξ(f) is a Brownian motion process on a probability space (Ω, ζ, P) and
fi(t, s, x), hi(t, s, x), 2 = 1, 2 are Borel measurable functions defined on R+2XR
into R and F, H are Borel measurable functions defined on R+XR3 into R where
/?+=[0, oo) and J?=(—oo, oo). In a recent paper [10] the present authors have
studied the problems of existence and uniqueness of solutions of a more general
class of Itδ type stochastic Volterra integral equations having continuous sample
paths with probability one, which contains as a special case the study of equa-
tion (1.1). The equation (1.1) is a further generalization of the stochastic in-
tegrodifferential equations recently studied by Berger and Mizel [2] and Pachpatte
[13] and it contains as a special case the well known Itδ type stochastic diffe-
rential equation studied by many authors in the literature (see [1, 3-9, 14]).
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In many fields of science and engineering there are large number of pro-
blems which are intrinsically nonlinear and complex in nature involving deter-
ministic and stochastic excitations. For instance we refer to a second order
stochastic differential equation

(1.2) y+<*(t)β(t)f(y)=g(t, y, y)ξ

where ξ(t) is a Brownian motion process which is the outcome of the effect of
"white noise" random forces on the system

(1.3) y+a(t)β{t)f(y)=0.

Equation (1.3) is extensively referred in the literature and represents a charac-
teristic of many systems of control engineering. The system (1.2) can be repre-
sented as a pair of the following equations

dy(t)=u(t)dt
(1.4)

du(t)=-a(t)β(t)f(y(t))dt+g(t, y{t), u(t))dξ(t).

The system (1.4) with initial conditions y(0)=u(0)—c is equivalent to the sto-
chastic integrodifferential equation

(1.5)

+g(t, c+^u{s)ds, u(t))dξ(t).

The systems of this type commonly come across in almost all phases of physics,
control theory and other areas of applied mathematics.

Recently, Narita [11, 12] has studied the explosion phenomenon and asymp-
totic behavior of solutions of special form of equation (1.1) when /i=/z*=0,
2 = 1, 2, where F and H are vector functions. In view of the general form of
equation (1.5) occurring in physical applications, the study of asymptotic behavior
and explosion theory for the general class of stochastic integrodifferential equa-
tions of the type (1.1) is more interesting and challenging. In fact our results
in the present paper are motivated by the recent work of Narita [11] and the
general form of Itδ type stochastic equations recently studied by Berger and
Mizel [2] and Murge and Pachpatte [10].

The purpose of the present study is to investigate sufficient conditions for
infinite explosion time and asymptotic behavior of the solutions of stochastic
integrodifferential equation (1.1). The method used in our analysis is an exten-
sion of the method recently used by Narita [11] for Itδ type stochastic differential
equations. In Section 2, we shall deal with the preliminary lemmas needed in
our subsequent discussion and prove a theorem on infinite explosion time. In
Section 3, we first obtain a moment estimate for random solution process of
equation (1.1) and using this estimate we establish a theorem on the order of
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growth of solutions of equation (1.1). Finally in Section 4 we give two examples
to illustrate the hypotheses used in our main results. Throughout we shall write
stochastic processes and functions by suppressing the argument ω, ω^Ω, without
further mention.

2. Infinite explosion time.

In this section we shall establish our main theorem concerning infinite ex-
plosion time. For convenience we first list the following assumption.

(A) The functions /<(*, s, x), hi(t, s, x), i=ί, 2, F(t, x, y, u) and H(t, x, y, u)
are continuous and for any T>0, R>0, t<LT, \xj\<>R, \yj\^R, \uj\^R, /=1,2
there exists a constant CTR>0 such that

|/,(f, s, xύ-Mt, s, xt)\*+\ht(t, s, x1)-hi{t, s, x 2 ) | 2

\F(t, xu yu uJ-Fit, xs, y2, w2)|2

+ \H(t, xlt yu u^-Hit, x2, y2,

^CTR(\xi-x2V+\y1-y2V+\u1-u 2 i 2 )

For any natural number n, let gn(x) denote the function defined on R such

t gn(x)=l, fo

2n<\x\. Define

that gn(x)=l, for \x\^n, gn(x)=2——, for n<\x\^2n and gn(x)=0 for

j\n\t, s, x)=gn(x)fz(t, s, x),

h[n\t, s, x)=gn(x)hι(t, s, x), i=l, 2,

F(n)(t, x, y, u)=gn(x)F(t, x, y, u)
and

H(n\t, x, y, u)=gn(x)H{t, x, y, u).

It is easy to observe that the following conditions hold:

(2.1) \f\n\t, s, Xl)-fϊn\t, s, x2)\2+\h[n)(t, s, Xl)-Kn\t, s,

^ΛfJdXi-x.l ), » = 1, 2,

(2.2) \Fw(t, xlt yu Ul)-Fw(t, xt, yt, M 2 ) | 2

+ \Hw(t, xu ylt Ul)-Hίn\t, xt, y2, M 2)| 2

(2.3) \fί"\t, s, x)\2+\h[n)(t, s, x)\^Mia+\x\2), ι = l, 2,
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(2.4) \F(n)(t, x , y , u ) \ 2 + \ H ( n ) ( t , x , y , u ) \ 2 ^ M 2

n ( l + \ x \ * + \ y \ * + | u \ 2 ) ,

for t^n, Xj, y3, ιij<^R, /—I, 2 and x, y, u^R where Mn>0 is a constant depend-
ing only on n. If follows from Theorem 3 in Murge and Pachpatte [10] that
there exists pathwise unique solution x(n)(t) defined upto t^n of the stochastic
integrodifferential equation

(2.5) dx{n){t)^F{n)(t, x(n)(t), [ f[n)(t, s, x(n)(s))ds, Γ f[n\t, s, x ( n )

+H(n)(t, x{n\t), [ hψ\t, s, x'n)(s))ds, [ hψ\t, s, x<n)(s))dξ(s))dξ(t).

We shall denote the solution of (2.5) with the initial condition x(n)(t0) =
to^O) by x(n)(t, to, Xo). Let us define τn(t0, x0) and en(U, x0) by

τn(U, x o)=inf{ί, \x{n\t, t0, Xo)\^

(and τn(t0, x0) = oo if there is no such time) and en(t0, Xo)—niin{?2, τn(tQ> xo)\
respectively. Thus {en(t0, Xo), n^l} is a monotonic increasing sequence of stopp-
ing times for which

sup \x{n\t, U, x,)-x'm\t, t09 xo)l=O
t £ t z e a x )

holds with probability one, if m>n. For n ^ l , t<en(t0, x0), we define a random
process x(t, t0, x0) by x(t, t0, xo)—x(n)(t, t0, x0) which is called the solution of
equation (1.1) with initial condition x(to)=xo. Let us define a random time
e(t0, Xo) by e(t0, xo)—\\men{to, x0) which is called the explosion time of x(t, t0, x0).

n-»oo

We need the following lemmas in our subsequent discussion. Lemma 1 is
the modified version of the corollary on Theorem 1 given in Murge and Pachpatte
[10] and Lemma 2 is a slight variant of Lemma 1.

LEMMA 1. Let the conditions (2.1)-(2.4) hold and J B [ | Λ : O I 2 ] < 0 0 . Then, for
, n],

n, 72, α ] - l

holds, where C{Mn, n, ί0) is a constant depending on n and t0.

LEMMA 2. Suppose the conditions (2.1)-(2.4) hold and £ [ U o i 2 ] < ° ° . Then,
for

(2.6) E( sup ix^Kvm^dWn, n,

holds, where Cλ{Mn, n, t0) is a constant depending on n and t0.
Proof. From (2.5) we get,

(2.7) * ( n >(f) = * o + l F'n)[s, x'n\s), f[n\s, τ, x(n)(τ))dτ,



EXPLOSION AND ASYMPTOTIC BEHAVIOR 5

S fin)(s, τ, x("\τ))dξ(τ))ds

H(n)(s, x(n\s), \S h[n)(s, τ, xin\τ))dτ,

iΛ)(s, τ, x™(τ))dξ(τ))dξ(s).

By using {a+b+c)2^3(a2+b2+c2), Schwarz inequality, Theorem 3.6 in [4, p. 70],
conditions (2.1)-(2.4) and stochastic integral isometry, for any t^n, we have,

E(sup \xin\v)\2)

(1+E\x(n\s)\2)ds.
o

Now, the application of Lemma 1 yields

(2.8) £(sup |* ( n )(v)l2)

, pnC(Mn,n,t0)

n> n, to)

^{Mn, n,tQ)(3E\x01
2+l),

and the proof is complete.
We are now in a position to establish the following theorem which yields

sufficient conditions for infinite explosion time.

THEOREM 1. Let fS, s, x), hS, s, x), ί = l , 2, F(t, x, y, u) and H(t, x, y, u)

satisfy the assumption (A) and let

(2.9) \Mt, s, *)|β+IΛi(f, 5, ^ | 2 ^ ^ ( 5 ) ^ ( | . r | 2 ) , /=1, 2, s ^ ;

(2.10) |F( ί , x, y, u)\*+\H(t, x, y, u)\*

for all t^R+ and x, y, u^R where aτ: R+-^R+, i—1, 2, 3 are continuous and
βt: R+->R+, i—1, 2, 3 are monotonic increasing concave functions such that

= 0 0 .
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Then P(e(t0, Jto) = °°)=l for all t^R+ and xo^R.

Proof. Let us consider the solution x{n\ty ί0, x0) of the equation (2.5) with
initial condition x(n)(t0)=x0, xo<^R, for n>max{ \xo\, t0). Suppose the time
τn(U, XQ) denotes the first exist time for the solution x(n)(t, t0, x0) on the set
{x, \x\<n}. Define en(t0, xo)=niin{n, τn(t0, xo)\. For convenience we write
xin\t, to, Xo), τn(t0, x0) and en(U, x0) as xin)(t), τn and en respectively, by sup-
pressing t0 and x0. Define

Z ( n ) ( ί ) = £ ( sup \xin\v)\*)
tύvύt

for ί e [ ί 0 , n]. By Lemma 2, Z{n\t) is bounded.
By the definitions of fin), h[n), ι = l, 2, F ( n ) and H(n) and conditions (2.9),

(2.10) we observe, for all ί e i ? + and XG/?, that

(2.12) |/ί»>(f, s, x ) | 2 + | / ι ί w ) ( ί , s, x ) | 2 ^ | / , ( ί , s, jc)|«+|Λi(ί, s, x ) | 2

SβiίsWUI1), ί=l,2;

(2.13) |F (»>(ί, x, ^ , tt)

From (2.7), by using (α+6+c) 2 ^3(α 2 +6 2 +c 2 ) , Schwarz inequality, Theorem 3.6
in [4, p. 70], (2.12), (2.13) and stochastic integral isometry, we get,

£(sup \xin\v)\2)

Since βt, i=l, 2, 3 are monotone increasing, we observe that

^βii sup \x<n\θ)\*)
tosθsv

holds for v<n. Thus, we have,

+3(ί+4)α(«Γf ' (s-tΛS Eβt( sup \x^
LJίo J ίo to^τss
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Γ [ Eβ2(sup \x(n\τ)\2)dτds

n)(s)\*)ds]

J
to ίo- s =^

for all ίe[ί 0, n], s^ί, where

α(f)=max{maxαi(ι;), m a x φ ) , maxα3(»}.

Noting the fact that βu i—l, 2, 3 are concave, by using Jenson's inequality, we
get,

for all ίe[f0, ^ ( ί ^ n ) where C(0=max|—o^~^ (t—t0), l [ . It is obvious that

3 3

1=1 t = l

Define

m(ί)=31 xo 18+3(ί/+4)α(ί/)C(ί/) Γ Γ Σ
JίoLi=i

We have,

m(ίo)=3Uol2, Z{

and

Thus

1+Σ|9M))

On integrating from t0 to t,

Substituting v—m(s) and using the inequality Zin)(t)^m(t), we get

(2.14)

for all ί e [ ί 0 , ί 'JCί^n), where C(ί, fo)=3(f+4)α(ί)C(f)(f--fo). Suppose there exist
some t0 and x0 such that P(e(t0, xo)<T)=δf δ>0 for some T<cχ3. Let T 7 denote
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an arbitrary time such that T;>T and be fixed. In the following we consider
x(n)(t, t0, xo) for n, so large that n>max{ |x o l , T'}. For any time t such that
T<t<Tf, we observe that

{e(t0, xo)<T}

and

\x(n\v)\\ sup \x{n\v)\*>n-Y]
tύυύt

\x{n\v)\>n)

for all / e [ T , T ' ] . Thus from (2.14) we get,

(2.15) ί 1 " 0 ; * >
ol

It can be observed that as n tends to infinity the right side of (2.15) becomes
finite while leftside tends to infinity under (2.11). Therefore, it leads to a con-
tradiction. Hence for any t^O, xo^R and T we have P(e(tQ> xo)^T)=l. This
completes the proof of the theorem.

3. Asymptotic behavior.

First we shall establish a lemma on a moment estimate for x(t, t0, x0).

LEMMA 3. Let H(t, xy y, u) be such that

(3.1) H(t, x, y, u)=(c(t)a(x)+y+u)

where c(t) is a nonzero continuous function defined for t^R+ and a(x) is a real
valued continuous function defined on R such that

(3.2) \a(x)\^K, K>0 is a constant for all

(3.3)

and

(3.4)
ί->oo

Suppose fi(t, s, x), hi(t, s, x), ί = l, 2, F(t, x, y, u) and H(t, x, y, u)=(c(t)a(x)+
y+u) satisfy the assumption (A). Further suppose that ft(t, s, x), hi(t, s, x), i—
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1, 2 satisfy the condition (2.9) and F(t, x, y, u) satisfies

(3.5) \F(t, x, y} u)\2^(a3(t)β3(\x\η+\y\*+\u\η

for all t^R+ and x, y, u^R where alf i—l, 2, 3 are nonnegative and continuous

functions such that Λi(t)=\ ai(s)ds<co and

(3.6) 1™^M

where Di(t)=(t—to-\-3yAi(t), and βι(v), i=l, 2, 3 are monotone increasing concave
functions of u which are twice continuously differentiable in v>0, such that

(3.7)

Then, there exist some constants Nt and N^ such that

(3.8) sup E(\x(s, t0,
tQύSύt

holds for all t^R+ and

Proof. For convenience we write x{t) and en for x(t)=x(t, t0, x0) and en—
en(to, XQ) respectively by suppressing t0 and x0. We shall denote the smallest of
w and v by wΛv. Since x(t) satisfies (1.1), by using (a+b+c)2^3(a2+b2+c2),
Schwarz inequality, stochastic integral isometry, conditions (2.9), (3.1), (3.2) and
(3.5), we observe for any t^tθ9 that

(3.9) E\x(tΛen)\*

^ ^ ^ 1 ( \x(sΛen)\ 2)ds

f-ίo)(f-fo) Γ a2(s)Eβ2(\x(sΛen)\2)ds

+(t-to)\'ta3(s)Eβ3( I x(sΛ«.) I *)

Since βt, i=l, 2, 3 are concave, by Jenson's inequality we observe,

(3.10) EβidxisAe^^^βiisup E\x(sAen)\η, (ί.gs^ί).

Define

(3.11) 2»(0=sup E\x(sΛen)\2.

Now, from (3.9)-(3.11) it follows that
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(3.12) «n(ί)^3[|*,

+βz(zn(t))\t α.(s)<fs+j3,(z»(f))ί' α3(s)ds}l

=3 [ Uo 12+3tf2£2(0+ Σ

We define in.i(f)==Zn(0/3+£2(f)+3, where <5>'O is arbitrary number. It follows
from (3.4) that there exists some tx>0 such that 3B2(t)>l for all t>tx. From
(3.6) and (3.7), for any t>tu we observe,

) B % t ) ) — > 0

as f-»oo, where / = 1 , 2, 3. Therefore, we find some f2>*i such that

l-3Z?<(ί)i8{(3St(ί))>0

for all t>t2 and ι = l, 2, 3. Further we assume that ί be arbitrary and ί>max
{̂ o, U}. We note that 3pn,δ(t)>zn(t) and 3ρn>δ(t)>3B2(t). Thus from the hypo-
thesis that βlf ί = l , 2, 3 are monotone increasing, the inequality (3.12) yields

*»(0^3[I xo 12+3ϋΓ252ω+ Σ Dt(

Hence, we have,

(3.13) # » i ί ( O ^ 3 + k o l 8 + ( 3 / ί β + l ) 5 8 ( O + Σ i

By the assumptions of concavity and differentiability on βi(y), i—1, 2, 3, for any
^2>^i>0, we have βi(υύ^βi(vι)+(vt--v1)β'i(v1). Define r(t)=3B\t). Then, we
have,

- l ) ^

where rθ(t)=l+θ(r(t)—ΐ), ( 0 < ί < l ) . By using this inequality in (3.13), we get,

+ Σ
1=1

Thus on letting δ tend to zero, we observe,

ίzn(t)/3+B\t)2 [ l-3 Σ

Σ

and
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3

t = l

/ i ( 0 =

(3.14)

where

and

* = 1 , 2, 3. Note that j8<(t;) are concave and twice continuously diίferentiable in
v>0. Then for v>ε, we have, βί(v)^βi(ε)+(v-ε)β'i(ε). Thus from (3.2), con-
ditions (2.9), (2.10) and (3.1) and using (a+b+c)2^3(a2+b2+c2), Schwarz ine-
quality, stochastic integral isometry, we have,

where

c(t)a(x)+[ hit, s, x(s))ds+\t hit, s, x(s))dξ(s)

F(t, x(t), J'Λtf, s, χ(s))ds, J V Λ S, x(s))dξ(s))

, x(t), ^Ut, s, x(s))ds, J| A2(ί, s, x

IΓ/2α, s, x(s))dξ(s)
I J ίo

+

J ί 0

ri(s)=4(ί-ίo)i8(s)α1(s),

and
ι = l, 2, 3.i8(s)=max{i8<(β), i8{(β)}

Therefore, by Theorem 1, we get

(3.15) P(e(fo, x 0 )=oo)=l .

Let M tend to infinity in (3.14). Then from (3.15) and Fatou's lemma, we get,

(3.16) Γ~ sup E\x(s)\*+BKt)]/B*m r ^
1 0 t°-s-t J / l-3Σ0*(Oj8ί

for all t>max{t0, t2}. From (3.4), (3.6) and (3.7) we observe that
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as ί->co and

as ί->oo, 2 = 1, 2, 3. Thus,

(3.17)

as ί->oo. Hence, letting t tend to infinity in (3.16) and using (3.17), we have,

~ sup
3 to^sύ

It follows that

limsup-J—Γsup E\x(s)\*]^9K\

This implies that

sup

for some constants iVi>0 and N2>0. This completes the proof of the lemma.
We shall now prove our main result on the existence of the order of growth

of solutions of equation (1.1).

THEOREM 2. Let the conditions of Lemma 3 hold. Suppose that

( i ) flW=l,

and

(ii) for any large N,

bi(N)= ΣQβi(B2(N2k+1))/B(N2k)f

z = l , 2, 3, exist and

(3.18) \imbi(N)=0.
N->oo

Then, we have

x(t, tOf x0)

B{t)

converges to the standard Gaussian Measure in law.

Proof. For simplicity we write x(t, tQ, x0) as x(t) by suppressing tQ and x0.
By (3.15), x(t) satisfies
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(3.19) *(*)=*„+ [ c(s)dζ(s)+0(ί)

where

0(0=4' ^(s, x(s), Γ/i(5, r, *(r))dr, Γ/2(s, r,

+ Γ (*Λ2(s, r,

for all t^t0. The assertion of the theorem easily follows if we prove that

(3.20) -f^Γ >0 in probability.

Now set en=en(t0, x0) and observe the process \x(vAen)\2 as well as the proof
of Lemma 3. From (3.14), for large t, we note that

(3.21)

1-3 Σ Dt(t)βi(r(t))
1 = 1

It is easily seen on taking superior limit as t tends to infinity in (3.21) and noting
(3.17) that supzn(t)^Nί+N'2B\t) where N[ and N'2 are some constants greater
than zero. There is no loss of generality if we consider N[=NΊ and N'2=N2

where A^ and iV2 are constants involved in Lemma 3. We observe that

(3.22) sup [sup £|x(t/Λί?J|2]^A^+Λf25
2(0

n tQ^vtίt

for all ΐt:t0. From the conditions (2.9), (3.5) and the fact that βi(v), z = l, 2, 3
are concave and monotone increasing, by the application of Jenson's inequality
and (3.22), we have,

F(s, x(s), Us, τ, x(τ))dτ, Us, τ, x(τ))dξ(τ))ds

h^s, r, x(τ))dτdξ(s) + \ Λ2(s, r, x(τ))dξ(τ)dξ(s))
ί 0 J ί 0 J ί 0 J ί o '

βj, / CS CS
nF[s, x(s), Λ(s, T, x(τ))rfτ, /2(s, r, x

e^Cs \2

Λ^s, T, x(r))drrff(s))
J £o /

ht(s, τ, x(τ))dξ(τ)dξ(s))
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^^-β^ sup E\x(sΛen)n[ ai(s)ds
toύs£t J ί 0

ίβ)j8,( sup E\x(s/\en)\t)[' at(s)ds
toasat J ί 0

sup £|x(sΛ^)|2)Γ a,(s)ds
tQΪίSϊίt Jtn

Z = l

where

CJf)=(f-tt+mt-U)At(t),

Ct(f)=(f-t0)At(f).

Now letting n tend to infinity, noting (3.15) and by the application of Fatou's
lemma, we get,

Since βi(v), i—l, 2,3 are monotone increasing and twice continuously differentiable
in v>0, we find some constants Q t>max{iVi+^2+l, βi(N!+N2+l)/βt(ΐ)} such
that

if v^l. Further, from (3.4) and (3.6) we find some f > 0 such that B2(t)>l and
C (2t)

^ C , 2 = 1, 2, 3 for all ί > ί ' where C>0 is a constant. Therefore, we have,

3

for all t^t"=ma.x{t0, t'}. For arbitrary ε>0 and T2>T1>t", by using martingale
inequality and (3.23), we get,

0(0sup

C (2ί)
Thus, for an arbitrary iV, N M " and using the fact that p . / ^ C, / = 1 , 2, 3

n{t)

we observe,
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0(0
B(t)

sup B(t)

15

£ ι=l

for all ί > r . Define,

p
0(0
B(t)

and note that it is monotonic decreasing as N increases. Thus, lim

and (3.18) implies that

exists

It is easy to observe that (3.20) holds. This proves the theorem.

4. Examples.

In this section we give two examples which illustrate the assumptions used
in our Theorems 1-2 and Lemma 3. Our examples are the modifications of the
examples given by Narita in [11].

Example 1. Suppose that the functions fιt hlf (2 = 1, 2), F, H involved in
equation (1.1) satisfy the hypothesis (A) and the following conditions

and

sup{|Λα, s, x)\2+\hi(ff s,

\Mt, s, t, s, x ) \ 2 ^

for t^s^O and | x | ^ l where d and C2 are nonnegative, continuous functions
defined on [0, oo), and

and

sup{|F(ί, x, y, u)\2+\H(t, x, y, u)\2}^C3(t), for ί^O,

\F(t, x, y, u)\2+\H(t, x, y, M ) | 2 ^ C 4 u\2),

for t^O and | x | ^ l where C3 and C4 are nonnegative, continuous functions
defined on [0, oo). By taking aί(t)=C1(t)-\-C2(t), *'=1, 2, as(t)=Cs(t)+CA(t)^h
βi(v)=l+vδ for 0^<5^1, βi(v)=2 for δ<0, ί = l , 2, 3 it is easy to verify that the
conditions (2.9)-(2.11) of Theorem 1 are satisfied.
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As observed in McKean [9, p. 66], the one dimensional stochastic differential
equation

dX(t)=b(X(t))dt+dW(t)

with b(x)—\x\r near large \x\, the explosion time is almost surely infinite or
finite according as γ^l or not.

Example 2. Let c(t)=(t-to)
Ί/2, a(x) = l and/^f, s, x), hit, s, x), Fit, x, y, u)

and H(t, x, y, u)=((t—toy
/2+y + u) satisfy the assumption (A) and suppose for

* = 1, 2,

sup {!/,(*, s, x)\*+\hi(t, s, x)\2\^K, for all t^s^O,

and

\fi(t, s, *)Γ+lAi(*, s,

for all ί^sΞ>0 and | x | ^ l with some constant K>0 and γ<l, and

sup {I Fit, x, y, u) 12+1 //(/, x, j , M) |2} ^/Γ, for all t^O,
\X\£1

and
\F(t, x, y, u)\*+H(t, x, y, u)\^K{l+\x\ΪJr\y\2jr\u\*),

for all £2:0 and 1*12:1 with constant K>0 and γ<l. In Example 1 we have
observed that the explosion time of the solution x(t, ί0, x0) of (1.1) with fτ, ht,
i=ί, 2, F and H as above is infinite with probability one. Taking a,(t)=K, K'St
1, ι = l, 2, 3,

(4.1)
βi(v)=2,

i—1, 2, 3, it is easy to verify that the functions fx{t, s, x), h^t, s, x), (z'=l, 2),
F(t, x, y, u) satisfy the conditions (2.9) and (3.5) and assumptions (3.4), (3.6)-
(3.7) of the Lemma 3. Thus Lemma 3 implies

sup E(\x(v, t0, Xo)\2)SN1

J

r — N2(t—toy

for all fe[0, oo) and xo^R where Λ^ and ΛΓ

2 are certain positive constants.
Also we observe that

lim—J-r-(Γ E\s-to\*ds)m=l.
ί̂ oo n[t) \jtQ /

We choose N large enough such that Ar>maxJ2/, — ^ — I . Then it is easy

to observe that
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and

^ y for k^O.

Further we notice that if ^( ι ; )=l+z/ / 2 (O^r<l) then βi(v)^2vr/2 for ι/^l. Now

from the definition of bi(N) in Theorem 2 and definition of βi(v) given in (4.1),

for / = 1 , 2, 3 we observe that

WW- Σ « Ξ *

_ 2 3 ( ^ + 1 ) ^ V j

and if i 8 i ( v ) = 2 , then

Thus the conditions (3.18) hold. Now an application of Theorem 2 yields

x(t, U, Xo)

i/2VΎ(t-t0y
• 0 in probability.
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