# A CHARACTERIZATION OF THE PRODUCT OF TWO 3-SPHERES BY THE SPECTRUM 

By Shukichi Tanno and Kazuo Masuda

## § 1. Introduction.

Let $(M, g)$ be a compact Riemannian manifold. By $\operatorname{Spec}(M, g)$ we denote the spectrum of the Laplacian acting on functions on ( $M, g$ ). Let $S^{m}(c)$ be the $m$-sphere of constant curvature $c$.

For $m \leqq 6, S^{m}(c)$ is characterized by the spectrum (Berger [1], Tanno [5]); that is, $\operatorname{Spec}(M, g)=\operatorname{Spec} S^{m}(c)$ implies that $(M, g)$ is isometric to $S^{m}(c)$.

For $m \geqq 7$, it is an open question if $S^{m}(c)$ is characterized by the spectrum. As for partial answers see [6].

In this paper we obtain the following theorem on product Riemannian manifolds.

Theorem A. Let $(M, g)$ and $\left(M^{\prime}, g^{\prime}\right)$ be 3-dimensional compact Riemannian manifolds. Assume that

$$
\operatorname{Spec}\left[(M, g) \times\left(M^{\prime}, g^{\prime}\right)\right]=\operatorname{Spec}\left[S^{3}(c) \times S^{3}\left(c^{\prime}\right)\right] .
$$

Then, $(M, g)$ and $\left(M^{\prime}, g^{\prime}\right)$ are of constant curvature $K$ and $K^{\prime}$, respectively, and $K+K^{\prime}=c+c^{\prime}$.

Furthermore, if the sectional curvatures $K$ and $K^{\prime}$ are positive, then $(M, g)$ is isometric to $S^{3}(c)$ (or $S^{3}\left(c^{\prime}\right)$ ) and $\left(M^{\prime}, g^{\prime}\right)$ is isometric to $S^{3}\left(c^{\prime}\right)$ (or $S^{3}(c)$, resp.).

Let $C P^{n}(H)$ be the $n$-dimensional complex projective space of constant holomorphic sectional curvature $H$. Corresponding to Theorem A we get

Theorem B. Let $(M, g, J)$ and ( $M^{\prime}, g^{\prime}, J^{\prime}$ ) be (complex) 3-dimensional compact Kählerian manifolds. Assume that

$$
\operatorname{Spec}\left[(M, g, J) \times\left(M^{\prime}, g^{\prime}, J^{\prime}\right)\right]=\operatorname{Spec}\left[C P^{3}(H) \times C P^{3}\left(H^{\prime}\right)\right] .
$$

Then, $(M, g, J)$ is holomorphically isometric to $C P^{3}(H)\left(\right.$ or $\left.C P^{3}\left(H^{\prime}\right)\right)$ and $\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ is holomorphically isometric to $C P^{3}\left(H^{\prime}\right)$ (or $C P^{3}(H)$, resp.).

## § 2. Preliminaries.

Let $(M, g)$ be a compact Riemannian manifolds iof dimension $m$ and let $\operatorname{Spec}(M, g)=\left\{0=\lambda_{0}<\lambda_{1} \leqq \lambda_{2} \leqq \cdots\right\}$ be the spectrum of the Laplacian acting on functions on $(M, g)$. By $R=\left(R^{2}{ }_{j k l}\right), \rho=\left(R_{j l}\right)=\left(R^{2}{ }_{j i l}\right)$ and $S$ we denote the Riemannian curvature tensor, the Ricci curvature tensor and the scalar curvature of ( $M, g$ ), respectively. For a tensor field $T$ on $(M, g),|T|^{2}$ denotes the square of the norm of $T$ with respect to $g$. Then, a formula of MinakshisundaramPleijel is

$$
\sum_{k=0}^{\infty} e^{-\lambda_{k} t} \widetilde{t \downarrow 0}\left(\frac{1}{4 \pi t}\right)^{m / 2}\left[a_{0}+a_{1} t+a_{2} t^{2}+\cdots\right],
$$

where $a_{0}, a_{1}, a_{2}$ and $a_{3}$ are given by the following (Berger [1], Mckean-Singer [2], Sakai [4])

$$
\begin{align*}
a_{0}= & \operatorname{Vol}(M, g), \\
a_{1}= & (1 / 6) \int_{M} S, \\
a_{2}= & (1 / 360) \int_{M}\left[2|R|^{2}-2|\rho|^{2}+5 S^{2}\right],  \tag{2.1}\\
a_{3}= & (1 / 6!) \int_{M}\left[-(1 / 9)|\nabla R|^{2}-(26 / 63)|\nabla \rho|^{2}-(142 / 63)|\nabla S|^{2}\right. \\
& \left.+(2 / 3) S|R|^{2}-(2 / 3) S|\rho|^{2}+(5 / 9) S^{3}+A\right],
\end{align*}
$$

where

$$
\begin{aligned}
& A=(8 / 21)(R, R, R)-(8 / 63)(\rho ; R, R)+(20 / 63)(\rho ; \rho ; R)-(4 / 7)(\rho \rho \rho), \\
& (R, R, R)=R^{\imath \jmath}{ }_{k l} R^{k l}{ }_{a b} R^{a b}{ }_{2 \jmath}, \\
& (\rho ; R, R)=R_{\imath j} R^{\imath}{ }_{a b c} R^{j a b c}, \\
& (\rho ; \rho ; R)=R^{\imath \jmath} R^{k l} R_{i k j l}, \\
& (\rho \rho \rho)=R^{\imath}{ }_{j} R^{\jmath}{ }_{k} R^{k}{ }_{2} .
\end{aligned}
$$

We denote the Weyl conformal curvature tensor by $C$ and put

$$
G=\rho-(1 / m) S g .
$$

Then we get (cf. Tanno [5])

$$
\begin{equation*}
a_{2}=\frac{1}{360} \int_{M}\left[2|C|^{2}+\frac{2(6-m)}{m-2}|G|^{2}+\left(\frac{2(6-m)}{m(m-2)}+\frac{5 m(m-3)+6}{(m-1)(m-2)}\right) S^{2}\right] . \tag{2.2}
\end{equation*}
$$

Let $\left(M^{\prime}, g^{\prime}\right)$ be another compact Riemannian manifold. The Riemannian product $(M, g) \times\left(M^{\prime}, g^{\prime}\right)$ is denoted by $M^{*}$. We denote the geometric object of
$\left(M^{\prime}, g^{\prime}\right)$ or $M^{*}$ corresponding to $T$ on $(M, g)$ by $T^{\prime}$ or $T^{*}$.
Since

$$
\sum e^{-\lambda_{r}^{*} t}=\left(\sum e^{-\lambda_{k} t}\right)\left(\Sigma e^{-\lambda_{l}^{\prime} t}\right),
$$

we obtain

$$
\begin{aligned}
& a_{0}\left(M^{*}\right)=a_{0}(M) a_{0}\left(M^{\prime}\right) \\
& a_{1}\left(M^{*}\right)=a_{1}(M) a_{0}\left(M^{\prime}\right)+a_{0}(M) a_{1}\left(M^{\prime}\right) \\
& a_{2}\left(M^{*}\right)=a_{2}(M) a_{0}\left(M^{\prime}\right)+a_{1}(M) a_{1}\left(M^{\prime}\right)+a_{0}(M) a_{2}\left(M^{\prime}\right)
\end{aligned}
$$

For a function $f$ on $M\left(M^{\prime}\right.$, resp.), we denote its extended function on $M^{*}$ by the same letter $f$. The following is evident.

$$
\begin{equation*}
a_{1}\left(M^{*}\right)=(1 / 6) \int_{M^{*}}\left[S+S^{\prime}\right]: \tag{2.3}
\end{equation*}
$$

Lemma 2.1. $a_{2}\left(M^{*}\right)$ is given by

$$
\begin{align*}
a_{2}\left(M^{*}\right)= & \frac{1}{360} \int_{M}\left[2\left(|C|^{2}+\left|C^{\prime}\right|^{2}\right)+\frac{2(6-m)}{m-2}|G|^{2}+\frac{2\left(6-m^{\prime}\right)}{m^{\prime}-2}\left|G^{\prime}\right|^{2}\right.  \tag{2.4}\\
& +\left(\frac{2(6-m)}{m(m-2)}+\frac{5 m(m-3)+6}{(m-1)(m-2)}\right) S^{2}+10 S S^{\prime} \\
& \left.+\left(\frac{2\left(6-m^{\prime}\right)}{m^{\prime}\left(m^{\prime}-2\right)}+\frac{5 m^{\prime}\left(m^{\prime}-3\right)+6}{\left(m^{\prime}-1\right)\left(m^{\prime}-2\right)}\right) S^{\prime 2}\right] .
\end{align*}
$$

Proof. Since

$$
a_{1}(M) a_{1}\left(M^{\prime}\right)=(1 / 36) \int_{M} S \int_{M^{\prime}} S^{\prime}=(10 / 360) \int_{M^{*}} S S^{\prime},
$$

we get (2.4) by (2.2).
q. e.d.

Now, let $(M, g, J)$ and ( $M^{\prime}, g^{\prime}, J^{\prime}$ ) be compact Kählerian manifolds. We denote the Bochner curvature tensor of $(M, g, J)$ by $B$. Then, putting $\operatorname{dim}_{C} M$ $=n$, we get (cf. Tanno [5])

$$
a_{2}(M)=\frac{1}{360} \int_{M}\left[2|B|^{2}+\frac{2(6-n)}{n+2}|G|^{2}+\frac{5 n^{2}+4 n+3}{n(n+1)} S^{2}\right] .
$$

Corresponding to Lemma 2.1, we get
Lemma 2.2. $\quad a_{2}\left(M^{*}\right)$ for $M^{*}=(M, g, J) \times\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ is given by

$$
\begin{align*}
a_{2}\left(M^{*}\right)= & \frac{1}{360} \int_{M}\left[2\left(|B|^{2}+\left|B^{\prime}\right|^{2}\right)+\frac{2(6-n)}{n+2}|G|^{2}+\frac{2\left(6-n^{\prime}\right)}{n^{\prime}+2}\left|G^{\prime}\right|^{2}\right.  \tag{2.5}\\
& \left.+\frac{5 n^{2}+4 n+3}{n(n+1)} S^{2}+10 S S^{\prime}+\frac{5 n^{\prime 2}+4 n^{\prime}+3}{n^{\prime}\left(n^{\prime}+1\right)} S^{\prime 2}\right]
\end{align*}
$$

## § 3. Proof of Theorem A.

First we prove the following.
Proposition 3.1. Let $(M, g)$ and $\left(M^{\prime}, g^{\prime}\right)$ be 3-dimensional compact Riemannian manifolds. Let $N(c)$ and $N^{\prime}\left(c^{\prime}\right)$ be 3-dimensional compact Riemannian manifolds of constant curvature $c$ and $c^{\prime}$. For $i=0,1$, and 2, assume

$$
a_{i}\left[(M, g) \times\left(M^{\prime}, g^{\prime}\right)\right]=a_{i}\left[N(c) \times N^{\prime}\left(c^{\prime}\right)\right] .
$$

Then, $(M, g)$ and $\left(M^{\prime}, g^{\prime}\right)$ are of constant curvature $K$ and $K^{\prime}$, and $K+K^{\prime}=c+c^{\prime}$.
Proof. We denote the Riemannian products by

$$
M^{*}=(M, g) \times\left(M^{\prime}, g^{\prime}\right), \quad M_{o}^{*}=N(c) \times N^{\prime}\left(c^{\prime}\right)
$$

$a_{0}\left(M^{*}\right)=a_{0}\left(M_{0}^{*}\right)$ implies $\operatorname{Vol}\left(M^{*}\right)=\operatorname{Vol}\left(M_{0}^{*}\right)$, and $a_{1}\left(M^{*}\right)=a_{1}\left(M_{0}^{*}\right)$ implies

$$
\int_{M^{*}}\left(S+S^{\prime}\right)=\int_{M_{0}^{*}}\left(S_{o}+S_{o}^{\prime}\right),
$$

where $S_{o}$ and $S_{o}^{\prime}$ denote the scalar curvature of $N(c)$ and $N^{\prime}\left(c^{\prime}\right)$. By Schwarz inequality we get

$$
\begin{equation*}
\int_{M^{*}}\left(S+S^{\prime}\right)^{2} \geqq \int_{M_{o}^{*}}\left(S_{0}+S_{o}^{\prime}\right)^{2} \tag{3.1}
\end{equation*}
$$

where equality holds if and only if $S+S^{\prime}=S_{0}+S_{0}^{\prime}$.
Since $C=C^{\prime}=0$ for $m=m^{\prime}=3$, by (2.4) we see that $a_{2}\left(M^{*}\right)=a_{2}\left(M_{0}^{*}\right)$ is equivalent to

$$
\begin{equation*}
\int_{M^{*}}\left[6\left(|G|^{2}+\left|G^{\prime}\right|^{2}\right)+5\left(S+S^{\prime}\right)^{2}\right]=\int_{M_{o}^{*}} 5\left(S_{o}+S_{o}^{\prime}\right)^{2} . \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2), we obtain

$$
G=G^{\prime}=0, \quad S+S^{\prime}=S_{o}+S_{o}^{\prime} .
$$

Thus, $(M, g)$ and $\left(M^{\prime}, g^{\prime}\right)$ are of constant curvature $K$ and $K^{\prime}$. Since $S=6 K$, we get $K+K^{\prime}=c+c^{\prime}$.
q. e.d.

Lemma 3.2. Let $M(K)$ and $M^{\prime}\left(K^{\prime}\right)$ be 3-dimensional compact Riemannzan manifolds of constant curvature $K$ and $K^{\prime}$. Assume that

$$
\operatorname{Spec}\left[M(K) \times M^{\prime}\left(K^{\prime}\right)\right]=\operatorname{Spec}\left[S^{3}(1) \times S^{3}\left(c^{\prime}\right)\right]
$$

If $K \leqq 1=c \leqq c^{\prime} \leqq K^{\prime}$ and $K / c^{\prime}>5 \cdot 10^{-8}$, then $K=1, K^{\prime}=c^{\prime}$ and $M(K)\left(M^{\prime}\left(K^{\prime}\right)\right.$, resp.) is isometric to $S^{3}(1)\left(S^{3}\left(c^{\prime}\right)\right.$, resp.).

Proof. (i) $\operatorname{Spec} S^{3}(c)$ is given by

$$
\operatorname{Spec} S^{3}(c)=\{0,3 c, 8 c, \cdots, k(k+2) c, \cdots\},
$$

and multiplicities are $1,4,9, \cdots,{ }_{k+3} C_{k}-{ }_{k+1} C_{k-2}, \cdots$.
(ii) Spec $M(K)$ is a subset of $\{k(k+2) K ; k=0,1,2, \cdots\}$.
(iii) If $3 K \in \operatorname{Spec} M(K)$, then $M(K)$ is isometric to $S^{3}(K)$. In fact, this follows from the property of eigenfunctions corresponding to the first eigenvalue $3 K$ of $S^{3}(K)$.
(iv) If $K=1$, then $K^{\prime}=c^{\prime}$ by $K+K^{\prime}=1+c^{\prime}$. In this case, since $\operatorname{Spec} M(1)$ contains $3, M(1)$ is isometric to $S^{3}(1)$ by (iii).
(v) From now on in this proof we assume $K<1$. Then $c^{\prime}<K^{\prime}$.
( $\mathrm{v}-1$ ) We show that there exists some integer $k$ such that

$$
\begin{equation*}
3=k(k+2) K \tag{3.3}
\end{equation*}
$$

In fact, since $3 K^{\prime}>3 c^{\prime} \geqq 3$, we see that the first eigenvalue 3 of $S^{3}(1)$ is contained in Spec $M(K)$. Thus, we get (3.3). This means that $k \geqq 2$, and for any positive integer $t<k, t(t+2) K \oplus \operatorname{Spec} M(K)$.
(v-2) Similarly we get some integer $l$ such that

$$
\begin{equation*}
3 c^{\prime}=l(l+2) K, \quad k \leqq l . \tag{3.4}
\end{equation*}
$$

(v-3) There exists some integer $r$ such that

$$
\begin{equation*}
3+3 c^{\prime}=r(r+2) K \tag{3.5}
\end{equation*}
$$

In fact, for $3+3 c^{\prime} \in \operatorname{Spec}\left[S^{3}(1) \times S^{3}\left(c^{\prime}\right)\right]$, there exsist some integers $r$ and $s$ such that

$$
3+3 c^{\prime}=r(r+2) K+s(s+2) K^{\prime}
$$

Since $r \neq 1$ and $K+K^{\prime}=1+c^{\prime}$, $s$ must be zero. So, we get (3.5).
(v-4) There exists some integer $p$ such that

$$
\begin{equation*}
8=p(p+2) K, \quad 3 \leqq p . \tag{3.6}
\end{equation*}
$$

In fact, for $8 \in \operatorname{Spec} S^{3}(1)$, if $8<3 K^{\prime}$, we get (3.6). If $8=3 K^{\prime}$, then noticing that the multiplicities are strictly increasing, we get (3.6). If $8>3 K^{\prime}$ and if $p(p+2) K$ $+3 K^{\prime}=8$, then $3 K^{\prime} \in \operatorname{Spec} M^{\prime}\left(K^{\prime}\right)$. In this case, $3 K^{\prime}$ must be of the form $3 K^{\prime}$ $=3+3 c^{\prime}$. However, this contradicts $K+K^{\prime}=1+c^{\prime}$. So, in any case we get (3.6).
(v-5) There exists some integer $q$ such that

$$
\begin{equation*}
8 c^{\prime}=q(q+2) K \tag{3.7}
\end{equation*}
$$

In fact, if $c^{\prime}=1$, (3.7) is clear. If $c^{\prime}>1$, then $8 c^{\prime}$ is of the form (3.7) or $8 c^{\prime}=$ $q^{\prime}\left(q^{\prime}+2\right) K+3 K^{\prime}$. We consider the second case.

If $q^{\prime} \neq 0$, then $8 c^{\prime}>3 K^{\prime}$. Since $3 K^{\prime}-3 c^{\prime}<3$, we get $3 K^{\prime}=a(a+2) \geqq 8$ for some integer $a$. Furthermore, $3+3 K^{\prime}$ is of the form $b(b+2)+d(d+2) c^{\prime}$ for some integers $b$ and $d$. If $d=0$, then $b(b+2)-a(a+2)=3$, which is impossible. If $b=0$, then $3+3 K^{\prime}=8 c^{\prime}$. In this case $K=1+c^{\prime}-K^{\prime}=\left(11-5 K^{\prime}\right) / 8$, which contradicts
$3 K^{\prime} \geqq 8$ and $K>0$. Thus, $3+3 K^{\prime}=b(b+2)+3 c^{\prime}$ and $b \geqq 2$. However, $3 K^{\prime}-3 c^{\prime}=$ $b(b+2)-3 \geqq 5$, which is a contradiction.

If $q^{\prime}=0$, considering the multiplicities we get (3.7).
(v-6) By (3.3) and (3.6) we get

$$
\begin{equation*}
K=\frac{3}{k(k+2)}=\frac{8}{p(p+2)} . \tag{3.8}
\end{equation*}
$$

By (3.4) and (3.7) we get

$$
\begin{equation*}
\frac{K^{\prime}}{c^{\prime}}=\frac{3}{l(l+2)}=\frac{8}{q(q+2)} \tag{3.9}
\end{equation*}
$$

By (3.3), (3.4) and (3.5) we obtain.

$$
\begin{equation*}
k(k+2)+l(l+2)=r(r+2), \quad k \leqq l . \tag{3.10}
\end{equation*}
$$

We show that there are no integers $k, l, p, q$, and $r$ satisfying (3.8) $\sim(3.10)$ for $l \leqq 7800$. $l \leqq 7800$ corresponds to $K / c^{\prime} \geqq 4.92 \cdots \cdot 10^{-8}$. Pairs ( $k, p$ ) ( $l, q$ ), resp.) satisfying (3.8) ((3.9), resp.) are as follows (cf. Remarks 1, 2, below):

| $(7,12)$, | $(18,30)$, | $(78,128)$, |
| :--- | :--- | :--- |
| $(187,306)$, | $(781,1276)$, | $(1860,3038)$, |
| $(7740,12640)$. |  |  |

It is verified that for any two pairs chosen from the above, there is no integer $r$ satisfying (3.10). This means that $M(K) \times M^{\prime}\left(K^{\prime}\right)$ and $S^{3}(1) \times S^{3}\left(c^{\prime}\right)$ are not isospectral for $K<1$ and $K / c^{\prime}>5 \cdot 10^{-8}$. q.e.d.

Remark 1. If one wants to use a computer, a simple BASIC-program for ( $k, p$ ) is as follows:
For $k=3 n$ and $p=2 u$;
10 FOR $N=1$ TO 2600
$20 A=6 * N * N+4 * N$
$30 B=\operatorname{SQR}(A): U=\operatorname{INT}(B)$
$40 V=(U+1) * U$
50 If $A=V$ THEN PRINT $3 * N, 2 * U$
60 NEXT
70 END
For $k=3 n+1$ and $p=2 u$, replace 20 and 50 by
$20 A=6 * N * N+8 * N+2$
50 IF $A=V$ THEN PRINT $3 * N+1,2 * U$
Remark 2. If one wants to apply a method for indeterminate equation, put $x=k+1$ and $y=p+1$. Then (3.8) is

$$
8 x^{2}-3 y^{2}=5
$$

To solve this equation, we consider Pell's equation

$$
t^{2}-D u^{2}= \pm 4, \quad D=4 \cdot 8 \cdot 3=96,
$$

The smallest solution $(t, u)$ such that $(t+u \sqrt{ } \bar{D}) / 2>1$ is $(10,1)$. Then general solutions $\left(t_{n}, u_{n}\right)$ are given by $[(10+\sqrt{96}) / 2]^{n}=\left(t_{n}+u_{n} \sqrt{ } \overline{96}\right) / 2$. Therefore

$$
\begin{aligned}
& t_{n}=(5+2 \sqrt{6})^{n}+(5-2 \sqrt{6})^{n}, \\
& u_{n}=\left[(5+2 \sqrt{6})^{n}-(5-2 \sqrt{6})^{n}\right] / \sqrt{96} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{t_{n+1}+u_{n+1} \sqrt{96}}{2} & =\frac{t_{n}+u_{n} \sqrt{96}}{2} \cdot \frac{10+\sqrt{96}}{2} \\
& =\frac{1}{2}\left(\frac{10 t_{n}+96 u_{n}}{2}+\frac{t_{n}+10 u_{n}}{2} \sqrt{ } 96\right)
\end{aligned}
$$

we get

$$
\binom{t_{n+1}}{u_{n+1}}=\left(\begin{array}{cc}
5 & 48 \\
1 / 2 & 5
\end{array}\right)\binom{t_{n}}{u_{n}}, \quad\binom{t_{0}}{u_{0}}=\binom{2}{0}
$$

and hence

$$
\binom{t}{u}=\binom{2}{0},\binom{10}{1},\binom{98}{10},\binom{970}{99},\binom{9602}{980}, \ldots
$$

The matrix corresponding to $(t, u)$ is

$$
\left(\begin{array}{ll}
t / 2 & 3 u \\
8 u & t / 2
\end{array}\right)
$$

and hence

$$
\begin{aligned}
& \binom{x}{y}=\binom{1}{1},\binom{8}{13},\binom{79}{129},\binom{782}{1277},\binom{7741}{12641}, \cdots \\
& \binom{x}{y}=\binom{2}{3},\binom{19}{31},\binom{188}{307},\binom{1861}{3039},\binom{18422}{30083}, \cdots
\end{aligned}
$$

Lemma 3.3. Let $M(K)$ and $M^{\prime}\left(K^{\prime}\right)$ be 3-dimensional compact Riemannian manifolds of constant curvature $K$ and $K^{\prime}$. For $0<K<1=c \leqq c^{\prime}<K^{\prime}$ and $K+K^{\prime}=$ $c+c^{\prime}$, if $K / c^{\prime} \leqq 5 \cdot 10^{-6}$, then $M(K) \times M^{\prime}\left(K^{\prime}\right)$ and $S^{3}(1) \times S^{3}\left(c^{\prime}\right)$ are not isospectral.

Proof. Suppose that $\operatorname{Spec}\left[M(K) \times M^{\prime}\left(K^{\prime}\right)\right]=\operatorname{Spec}\left[S^{3}(1) \times S^{3}\left(c^{\prime}\right)\right]$.
(i) First we show that $48 \in \operatorname{Spec} S^{3}(1)$ is expressed as

$$
\begin{equation*}
48=x(x+2) K \tag{3.11}
\end{equation*}
$$

for some integer $x$. In fact, assume that

$$
48=x(x+2) K+y(y+2) K^{\prime}
$$

for some integers $x$ and $y ; 1 \leqq y \leqq 5$. In this case, $K^{\prime} \leqq 16$. Furthermore, we get

$$
\begin{align*}
& x(x+2) K=u(u+2)+v(v+2) c^{\prime}, \\
& y(y+2) K^{\prime}=w(w+2)+z(z+2) c^{\prime} \tag{3.12}
\end{align*}
$$

for some integers $u, v, w$, and $z$. Therefore

$$
[v(v+2)+z(z+2)] c^{\prime}=48-u(u+2)-w(w+2) .
$$

We put $a=v(v+2)+z(z+2)$.
(i-1) First we assume $a>0$. Then we get $a \leqq 48$ and $a c^{\prime}$ is an integer. By (3.12), $a y(y+2) K^{\prime}$ is an integer. On the other hand, we get

$$
a y(y+2) K^{\prime}=a y(y+2)+y(y+2) a c^{\prime}-y(y+2) a K .
$$

Since $y(y+2) a \leqq 1680, c^{\prime}<K^{\prime} \leqq 16$ and $K / c^{\prime} \leqq 5 \cdot 10^{-6}$, we get $y(y+2) a K<0.1344$ and it is not an integer. This is a contradiction.
(i-2) Next, if $a=0$, then 48 must be a sum of two numbers using $\{0,3,8$, $15,24,35,48\}$. First we show that $24 \in \operatorname{Spec} M^{\prime}\left(K^{\prime}\right)$. If $24=y(y+2) K^{\prime} \in \operatorname{Spec}$ $M^{\prime}\left(K^{\prime}\right)$, then $1 \leqq y \leqq 3$ and $3+y(y+2) K^{\prime}=27=b(b+2)+d(d+2) c^{\prime}$ for some integers $b$ and $d$. If $d \neq 0$, one gets a contradiction similarly as in (i-1). So, $d=0$, and $b(b+2) \neq 27$ is clear.

Thus, we get $48=x(x+2) K$ or $48=y(y+2) K^{\prime}$. In the second case, considering the multiplicities we get (3.11).
(ii) As we have seen before, 3 is expressed as $3=k(k+2) K$. By (3.11) we obtain

$$
(x+1)^{2}=(4(k+1))^{2}-15 .
$$

This equation has only two solutions $(k, x)=(0,0)$ and $(1,6)$. Therefore, $k=1$ and $K=1$. This is a contradiction.
q. e. d.

Proof of Theorem A. The first part of Theorem A follows from Proposition 3.1. To prove the second part we can assume that $c=1 \leqq c^{\prime}$ and $K \leqq K^{\prime}$. If $1<K \leqq K^{\prime}<c^{\prime}$, we see that 3 is contained in $\operatorname{Spec} S^{3}(1)$ but not in $\operatorname{Spec}[(M, g)$ $\left.\times\left(M^{\prime}, g^{\prime}\right)\right]$. This is a contradiction. If $K \leqq 1$, by Lemmas 3.2 and 3.3 , proof is completed.

Theorem A'. Let $(M, g)$ and $\left(M^{\prime}, g^{\prime}\right)$ be 3-dimensional compact and simply connected Riemannian manifolds. Assume that $(M, g) \times\left(M^{\prime}, g^{\prime}\right)$ and $S^{3}(c) \times S^{3}\left(c^{\prime}\right)$ are isospectral, then $(M, g) \times\left(M^{\prime}, g^{\prime}\right)$ is isometric to $S^{3}(c) \times S^{3}\left(c^{\prime}\right)$.

Proof. By Proposition 3.1 we see that ( $M, g$ ) and ( $M^{\prime}, g^{\prime}$ ) are constant curvature $K$ and $K^{\prime}$ such that $K+K^{\prime}=c+c^{\prime}$. Since $M$ and $M^{\prime}$ are simply connected, ( $M, g$ ) (( $\left.M^{\prime}, g^{\prime}\right)$, resp.) is isometric to $S^{3}(K)\left(S^{3}\left(K^{\prime}\right)\right.$, resp.). Comparing the volumes of $S^{3}(K) \times S^{3}\left(K^{\prime}\right)$ and $S^{3}(c) \times S^{3}\left(c^{\prime}\right)$, we see that $K=c$ and $K^{\prime}=c^{\prime}$ (or $K=c^{\prime}$ and $K^{\prime}=c$ ).
q.e.d.

## §4. Proof of Theorem B.

We prove Theorem B in a more general setting.
Proposition B. Let $(M, g, J)$ and $\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ be (complex) 3-dimensional compact Kählerian manifolds. Let $N(H)$ and $N^{\prime}\left(H^{\prime}\right)$ be (complex) 3-dimensional compact Kählerian manifolds of constant holomorphic sectional curvature $H$ and $H^{\prime}$. Assume that
(i) $H+H^{\prime} \neq 0$,
(ii) for $i=0,1,2$, and 3

$$
a_{i}\left[(M, g, J) \times\left(M^{\prime}, g^{\prime}, J^{\prime}\right)\right]=a_{i}\left[N(H) \times N^{\prime}\left(H^{\prime}\right)\right] .
$$

Then $(M, g, J)\left(\left(M^{\prime}, g^{\prime}, J^{\prime}\right)\right.$, resp.) is of constant holomorphic sectional curvature $H$ or $H^{\prime}$.

Proof. We denote the Riemannian products by

$$
M^{*}=(M, g, J) \times\left(M^{\prime}, g^{\prime}, J^{\prime}\right), \quad M_{o}^{*}=N(H) \times N^{\prime}\left(H^{\prime}\right) .
$$

By the same argument as in $\S 3$ we obtain (3.1). By Lemma 2.2 and $n=n^{\prime}=3$, $a_{2}\left(M^{*}\right)=a_{2}\left(M_{0}^{*}\right)$ is equivalent to

$$
\int_{M^{*}}\left[2\left(|B|^{2}+\left|B^{\prime}\right|^{2}\right)+(6 / 5)\left(|G|^{2}+\left|G^{\prime}\right|^{2}\right)+5\left(S+S^{\prime}\right)^{2}\right]=\int_{M_{o}^{5}} 5\left(S_{o}+S_{o}^{\prime}\right)^{2} .
$$

Therefore we obtain

$$
B=B^{\prime}=0, \quad G=G^{\prime}=0, \quad S+S^{\prime}=S_{o}+S_{0}^{\prime} .
$$

Consequently, $(M, g, J)$ and $\left(M^{\prime}, g^{\prime}, J^{\prime}\right)$ are of constant holomorphic sectional curvature $L$ and $L^{\prime}$. Here $S=n(n+1) L=12 L$.

Since $R$ ( $R^{\prime}$, resp.) is parallel and

$$
\begin{aligned}
& |R|^{2}=2 n(n+1) L^{2}=24 L^{2}=(1 / 2) n(n+1)^{2} L^{2}=|\rho|^{2}, \\
& (R, R, R)=n(n+1)(n+3) L^{3}=72 L^{3}, \\
& (\rho ; R, R)=n(n+1)^{2} L^{3}=48 L^{3}, \\
& (\rho ; \rho ; R)=(1 / 4) n(n+1)^{3} L^{3}=48 L^{3}=(\rho \rho \rho),
\end{aligned}
$$

$a_{3}\left(M^{*}\right)=a_{3}\left(M_{o}^{*}\right)$ implies

$$
\int_{M^{*}}\left[(5 / 9)\left(S+S^{\prime}\right)^{3}+(64 / 7)\left(L^{3}+L^{\prime 3}\right)\right]=\int_{M_{o}^{*}}\left[(5 / 9)\left(S_{0}+S_{o}^{\prime}\right)^{3}+(64 / 7)\left(H^{3}+H^{\prime 3}\right)\right]
$$

Therefore we get $L^{3}+L^{\prime 3}=H^{3}+H^{\prime 3}$. Since $H+H^{\prime} \neq 0$ and $L+L^{\prime}=H+H^{\prime}$, we obtain $L=H$ and $L^{\prime}=H^{\prime}$ (or $L=H^{\prime}$ and $L^{\prime}=H$ ).
q.e.d.

## References

[1] M. Berger, Le spectre des variétés riemanniennes, Rev. Roum. Math. Pure Appl., 13 (1969), 915-931.
[2] H.F. Mckean and I. M. Singer, Curvature and the eigenvalues of the Laplacian, Journ. Diff. Geom., 1 (1967), 43-69.
[3] V.K. Patodi, Curvature and the fundamental solution of the heat operator, Journ. Indian Math. Soc., 34 (1970), 269-285.
[4] T. SAKAI, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tohoku Math. Journ., 23 (1971), 589-603.
[5] S. Tanno, Eigenvalues of the Laplacian of Riemannian manifolds, Tohoku Math. Journ., 25 (1973), 391-403.
[6] S. Tanno, A characterization of the canonical spheres by the spectrum, Math. Zeit., 175 (1980), 267-274.
[7] S. Tanno, A characterization of a complex projective space by the spectrum, Kodai Math. Journ., 5 (1982), 230-237.

