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A CHARACTERIZATION OF THE PRODUCT OF TWO
3-SPHERES BY THE SPECTRUM

BY SHUKICHI TANNO AND KAZUO MASUDA

§ 1. Introduction.

Let (M, g) be a compact Riemannian manifold. By Spec(M, g) we denote
the spectrum of the Laplacian acting on functions on (M, g). Let Sm(c) be the
m-sphere of constant curvature c.

For m^6, Sm(c) is characterized by the spectrum (Berger [1], Tanno [5]);
that is, Spec(M, g)=Spec Sm(c) implies that (M, g) is isometric to Sm(c).

For ra^7, it is an open question if Sm(c) is characterized by the spectrum.
As for partial answers see [6].

In this paper we obtain the following theorem on product Riemannian
manifolds.

THEOREM A. Let (M, g) and (Mf, g') be ^-dimensional compact Riemannian
manifolds. Assume that

Spec[(M, g)X(M', ̂ /)]=Spec[S8WxS»(c/)].

Then, (M, g) and (M/', gf) are of constant curvature K and K'', respectively, and
K+K'^c+c'.

Furthermore, if the sectional curvatures K and Kf are positive, then (M, g) is
isometric to S3(c) (or Ss(c')) and (M\ g') is isometric to Sz{c') {or S3(c), resp.).

Let CPn(H) be the n-dimensional complex projective space of constant
holomorphic sectional curvature H. Corresponding to Theorem A we get

THEOREM B. Let (M, g, J) and (Mf, g'', / ' ) be (complex) 3-dimensional com-
pact Kdhlerian manifolds. Assume that

Spec[(M, g,J)x(M', ^/O]=Spec[CP3(//)xCP3(#')].

Then, (M,g,J) is holomorphically isometric to CP\H) (or CPZ(H')) and (Mf,g'J')
is holomorphically isometric to CPz(Hf) (or CP3(H), resp.).
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§ 2. Preliminaries.

Let (M, g) be a compact Riemannian manifolds [of dimension m and let
Spec(M, g)={0=λo<λί^λ2^ •••} be the spectrum of the Laplacian acting on
functions on (M, g). By R^(Rι

jki), /t>=Cfyi)=(/?ιj«) and S we denote the
Riemannian curvature tensor, the Ricci curvature tensor and the scalar curvature
of (M, g), respectively. For a tensor field T on (M, g), \T\2 denotes the square
of the norm of T with respect to g. Then, a formula of Minakshisundaram-
Pleijel is

Σ e~λ

* = 0

where α0, α,, α2 and α3 are given by the following (Berger [1], Mckean-Singer
[2], Sakai [4])

a0=\ol(M,g),

β^α/φf s,
J M

(2.1) β,= (l/360)[ [2 |Λ| ι-2|p|«+5S*],

β,=(l/6!)f [-(l/9)|VJ?|2-(26/63)|7/>|2-(142/63)|7S|2

+(2/3)S I J? 12-(2/3)S I (018+(5/9)Ss+Λ],

where

, Λ, R)-(8/63)(p; R, R)+(20/63)(p; p; R)-(4/7)(ppp)r

(R,R,R)=Rt>klR
kl

al>R
at't},

(p;R,R)=RtjR
t

βteR>ate,

We denote the Weyl conformal curvature tensor by C and put

G = p-a/m)Sg.

Then we get (cf. Tanno [5])

f22} a - 1 f ΓaiΠΊ 2(6->n) / 2(6-w)
{2 2) β 2 -36θU 2 | C | + - ^ 2 " | G | + U

/ 2(6-w) 5w(w»-3)+6\ 1

U(m-2)+(m-l)(m-2)/SJ
Let (Mr, gθ be another compact Riemannian manifold. The Riemannian

product (M, ^ )x(M r , g') is denoted by M*. We denote the geometric object of
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(M', g') or M* corresponding to T on (M, g) by T' or T*.
Since

we obtain

For a function / on M(M', resp.), we denote its extended function on M* by the
same letter /. The following is evident.

(2.3)

LEMMA 2.1. α2(M*) is given by

(2.4) α 2 ( M * ) = ^

—2) (m—l)(m—2)

τn/(m/-2) i " ( m / - l ) ( m / - 2 ) / J*

Proof. Since

α1(M)α1(M/)=(l/36)f sf S '= (10/360)f SS / ,

we get (2.4) by (2.2). q.e.d.

Now, let (Mt g} J) and (iW, g', J') be compact Kahlerian manifolds. We
denote the Bochner curvature tensor of (M, g, J) by B. Then, putting dimcM
— n, we get (cf. Tanno [5])

Corresponding to Lemma 2.1, we get

LEMMA 2.2. α2(M*) /or M*=(M, g, J)x(ΛP, g', J') is given by

(2.5) a ,(M») = i yj2(lf i |M-lBT)+ 2 ( ^ g } IG12+ ^T^
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§3. Proof of Theorem A.

First we prove the following.

PROPOSITION 3.1. Let (M, g) and (M', gf) be ^-dimensional compact Rieman-
nian manifolds. Let N{c) and N'(c') be 3-dimensional compact Riemannian mani-
folds of constant curvature c and cf. For z=0, 1, and 2, assume

, g)X(M', ^ /)] =

Then, (M, g) and (Mf, g') are of constant curvature K and K'f and K+K'=c+c'.

Proof. We denote the Riemannian products by

M*=(M, g)x(M', g'), M*=N(c)xN'(c').

αo(M*)=αo(M*) implies Vol(M*)=:Vol(M*), and α1(M*) = fl1(M?) implies

( (S+S')=f (So+S;),

where So and S'o denote the scalar curvature of N(c) and N'(c'). By Schwarz
inequality we get

(3.1) ( (s+so'^f (so+s'oy,

where equality holds if and only if
Since C = C ' = 0 for m = m / = 3 , by (2.4) we see that a2(M*) = a2(M0*) is equiv-

alent to

(3.2) ( [6( |G| 2+|GΊ 2)+5(S+S0 2] = ( 5(SO+Sί)2.
JM* JM*O

By (3.1) and (3.2), we obtain

G = G'=0, S+S'=SO+S'O.

Thus, (M, g) and (Mr, ^0 are of constant curvature K and K'. Since S=6if,
we get K+K'=c+c'. q.e.d.

LEMMA 3.2. L ^ M(ϋC) αwd M\Kf) be 3-dimensιonal compact Riemannian
manifolds of constant curvature K and K'. Assume that

Spec IM(K) X M W ) ] = S p e c [S3(l) x S8(c0] •

// K^l^c^c'^K' and K/c'>5 lQ-*, then ϋf==l, K'=cf and M(K)(M'(K')y resp.)
is isometric to S3(l) (S8(c'),

JPΓ<?6>/. ( i ) Spec 53(c) is given by
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3 ( c ) = { 0 , 3c, 8c, ••• , k(k+2)c, •••},

and multiplicities are 1, 4, 9, •••, k+sCk—^+iCΛ_2, •••.
(ii) Spec M(/O is a subset of {k(k+2)K; k=0, 1, 2, •••}.
(iii) If 3K(Ξ§pec M(K), then M(K) is isometric to S 3 (#). In fact, this

follows from the property of eigenf unctions corresponding to the first eigenvalue
3K of S*(K).

(iv) If K=l, then K'—c' by K+K'=l+c'. In this case, since Spec M(l)
contains 3, M(l) is isometric to S3(l) by (iii).

(v) From now on in this proof we assume K<1. Then c'<K'.
(v-1) We show that there exists some integer k such that

(3.3) 3=k(k+2)K.

In fact, since 3K'>3c'^3, we see that the first eigenvalue 3 of S3(l) is con-
tained in SpecM(ΛΓ). Thus, we get (3.3). This means that k^2f and for any
positive integer t<k, t{t+2)K&Spec M(K).

(v-2) Similarly we get some integer / such that

(3.4) 3c'=l(l+2)K,

(v-3) There exists some integer r such that

(3.5) 3+3c'=r(r+2)K.

In fact, for 3+3c'eSpec [S3(l)xS3(c')], there exsist some integers r and s such
that

3+3c'=r(r+2)K+s(s+2)K'.

Since rφl and K+K'=l+c', s must be zero. So, we get (3.5).
(v-4) There exists some integer p such that

(3.6) S=p(p+2)K, 3^p.

In fact, for 8eSpecS3(l), if 8<3/T, we get (3.6). If 8=3/^, then noticing that
the multiplicities are strictly increasing, we get (3.6). If 8>3K' and if p(p+2)K
+ 3 ^ = 8 , then 3K'*=SpecM'(K'). In this case, 3K' must be of the form 3Kr

= 3 + 3 ^ . However, this contradicts K+K'=l+c'. So, in any case we get (3.6).
(v-5) There exists some integer q such that

(3.7) 8c'=q(q+2)K.

In fact, if c '=l, (3.7) is clear. If c'>l, then 8c' is of the form (3.7) or 8c'=
q'{qf+2)K+3K'. We consider the second case.

If q'ΦO, then 8c'>3K'. Since 3K'-3c'<3, we get 3K'=a(a+2)^8 for some
integer α. Furthermore, 3+3K' is of the form b(b+2)+d(d+2)c' for some in-
tegers b and d. If d=0, then b(b+2)—a(a+2)=3, which is impossible. If b=0,
then 3+3K'=8c'. In this case K=l+c'-K'=(ll-5K')/8, which contradicts
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3tf '^8 and A>0. Thus, 3+3K'=bφ+2)+3c' and b^2. However, 3K'-3c'=
b(b-\-2)—3^5, which is a contradiction.

If q'—Q, considering the multiplicities we get (3.7).
(v-6) By (3.3) and (3.6) we get

o o
(3 8 ) κ

By (3.4) and (3.7) we get

( o , K' 3 8
{ } C 1(1+2) q(g+2)'

By (3.3), (3.4) and (3.5) we obtain.

(3.10) k(k+2)+l(l+2)=r(r+2),

We show that there are no integers k, I, p, q, and r satisfying (3.8)~(3.10) for
/^7800. /^7800 corresponds to tf/c'^4.92 ••• 10"8. Pairs (ft, p) ((/, q), resp.)
satisfying (3.8) ((3.9), resp.) are as follows (cf. Remarks 1,2, below):

(7,12), (18,30), (78,128),
(187, 306), (781, 1276), (1860, 3038),
(7740, 12640).

It is verified that for any two pairs chosen from the above, there is no integer
r satisfying (3.10). This means that M{K)xM'{K') and S 3 ( l ) x S V ) are not
isospectral for K<1 and K/c'>5ΛQ-*. q. e. d.

Remark 1. If one wants to use a computer, a simple BASIC-program for
(ft, p) is as follows:

For ft=3n and p—2u\
10 FOR N=l TO 2600
20 A=6*N*N+4*N
30 B^SQR(Λ): U^INΎ(B)
40 y=(£7+l)*ί/
50 If Λ=V THEN PRINT 3*;V, 2*£/
60 NEXT

70 END

For ft=3n+l and p=2u, replace 20 and 50 by
20 A=6*N*N+8*N+2
50 IF Λ=V THEN PRINT 3*N+1, 2*U

Remark 2. If one wants to apply a method for indeterminate equation, put
and y = p + l. Then (3.8) is

To solve this equation, we consider Pell's equation
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/ 2 -Z)w 2 =±4, 0=4-8-3=96,

The smallest solution (if, u) such that (ί+wV5~)/2>l is (10, 1). Then general

solutions (tn, un) are given by [(10+V96)/2']n=(tn+unV%)/2. Therefore

Since

we

and

get

hence

ίn + 1+wn + l Λ/96 tn+unΛ/96
2 2

2\ 2

10+V96
2

1 2

/t\ (2\ /10\ /9δ\ /970\ /9602\
\u/ Vθ/' \ 1 / ' VlO/' V99/'

/9602\
V980/' "

ΊΛhe matrix corresponding to (ί, M) is

/ί/2 3M\

\Su ί/2/
and hence

; ' \129/' \1277/f U2641/'

/x\ / 2 \ /19\ /188\ /1861\ /18422\
V3;/~V3/' V31/' \307/' \3039/' V30083/' ' "

LEMMA 3.3. L^ί M{K) and M'(K') be ^-dimensional compact Riemannian
manifolds of constant curvature Kand K'. For 0<K<l=c^c'<K' and K+K'=
c+c', if K/c'S5ΛQ-*, then M{K)xM'{K') and S8(l)xS8(c') are not isospectraί.

Proof. Suppose that Spec \_M(K) x M'(K'y]=Spec [S3(l) x S\c')].
( i ) First we show that 48^SpecS3(l) is expressed as

(3.11) 4S=x(x+2)K

for some integer x. In fact, assume that

48=x(x+2)K+y(y+2)K'

for some integers x and y; 1^>'^5. In this case, K'^16. Furthermore, we
get
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x(x+2)K=u(u+2)+v(v+2)c',
(3.12)

y(y+2)K'=w(w+2)+z(z+2)c'

for some integers u, v, w, and z. Therefore

[v{v+2)+z(z+2)']c'=48— u(u+2)—w(w+2).

We put a=v(v+2)+z(z+2).
(i-1) First we assume α>0. Then we get α^48 and ac' is an integer.

By (3.12), ay(y+2)Kf is an integer. On the other hand, we get

Since y>(y+2)a^ 1680, c'<K'^16 and #Λ: '^5 10-6, we get 3;(;y+2)αiί:<0.1344
and it is not an integer. This is a contradiction.

(i-2) Next, if α=0, then 48 must be a sum of two numbers using {0, 3, 8,
15,24,35,48}. First we show that 24^Spec M'(K'). If 24=;yO;+2)/i/eSpec
M'(K'), then l ^ ; y ^ 3 and 3+y(y+2)K'=27=b(b+2)+d(d+2)c' for some integers
b and d. If dΦO, one gets a contradiction similarly as in (i-1). So, d=0, and
b(b+2)φ27 is clear.

Thus, we get 48=x(%+2)/i or 48=;y(;y+2)/Γ/. In the second case, consider-
ing the multiplicities we get (3.11).

(ii) As we have seen before, 3 is expressed as 3— k(k+2)K. By (3.11) we
obtain

This equation has only two solutions (k, x)=(0, 0) and (1, 6). Therefore, k = l
and K=l. This is a contradiction. q. e. d.

Proof of Theorem A. The first part of Theorem A follows from Proposi-
tion 3.1. To prove the second part we can assume that c=l^c' and K^LK'.
If l<K^K'<c', we see that 3 is contained in Spec S3(l) but not in Spec [(M, g)
X(M', g')2- This is a contradiction. If K^l, by Lemmas 3.2 and 3.3, proof is
completed.

THEOREM A'. Let (M, g) and (JVΓ, g') be ^-dimensional compact and simply
connected Riemanman manifolds. Assume that (M, g)X(M', gf) and Ss(c)xSs(c/)
are isospectral, then (M, g)X(M', gf) is isometric to S\c)xS\c').

Proof. By Proposition 3.1 we see that (M, g) and (M', g') are constant
curvature K and Kf such that K+K' =c+c'. Since M and M' are simply con-
nected, {My g) ((Mr, g'), resp.) is isometric to S3(K) (S\K')f resp.). Comparing
the volumes of S3(K)xS3(K') and S 8(c)xS 8(O, we see that K=c and K'=c'
(or K=c' and K'=c). q.e.d.
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§4. Proof of Theorem B.

We prove Theorem B in a more general setting.

PROPOSITION B. Let (M, g, J) and (Af, g', /') be {complex) 3-dimensional
compact Kdhlerian manifolds. Let N{H) and N'{H') be {complex) ^-dimensional
compact Kdhlerian manifolds of constant holomorphic sectional curvature H and
H'. Assume that

(i) H+H'ΦQ,
(ii) for ί=0, 1, 2, and 3

fli[(Λ/, g,J)x(M', g',J'y] = atlN(H)xN\H'ϊ\.

Then {M, g, J) {{M\ g'', J')f resp.) is of constant holomorphic sectional curvature
H or H'.

Proof. We denote the Riemannian products by

M*={M, g,J)X{M'y g',J'), M*=N{H)XN'{H').

By the same argument as in §3 we obtain (3.1). By Lemma 2.2 and n — n'=3,
β2(M*)=α2(MJ) is equivalent to

\ [ 2 ( | β | t + | β Ί ' ) + ( 6 / 5 ) ( | G | 8 + | G / | ί ) + 5 ( S + S / ) ί ] = ( Φ5(SO+S^)2.

Therefore we obtain

β = S / = 0 , G = G / = 0 , S+S'=SO+S'O.

Consequently, (M, g, J) and {M\ g', J') are of constant holomorphic sectional
curvature L and L'. Here S=n{n-\-l)L—\2L.

Since R {R\ resp.) is parallel and

\R\2=2n{n+l)L2=24L2=:{l/2)n{n+l)2L2=:\p\2,

{R, R, R)=n{n+l){n+3)L3=72L\

{p R, R)=n{n+1)2L*=48L\

{p p R)={l/4)n{n+iyL*=48L*=:{ppp),

az{M*) — az{M$) implies

Therefore we get L3+Ln=H3JrHn. Since H+H'φQ and L + L'=H+H', we
obtain L=H and L'=H' (or L^Hr and L'=H). q.e.d.
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