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FINITE TYPE SUBMANIFOLDS IN PSEUDO-EUCLIDEAN
SPACES AND APPLICATIONS

By BANG-YEN CHEN

§1. Introduction.

Let E;™ be the m-dimensional pseudo-Euclidean space with (flat) pseudo-
Riemannian metric of signature (s, m—s). And let M be a compact space-like
submanifold of E;™. By using the induced Riemannian structure on M, we can
define two well-defined numbers p and ¢ associated with the submanifold M in
E™. Here p is a positive integer and ¢ is either 4o or an integer =p. The
pair [p, q] is called the order of the submanifold M (cf. [1]). The submanifold
M is said to be of finite type if ¢ is finite. Otherwise, M is said to be of
infinite type. ‘The submanifold M is of finite type if and only if there is a
non-trivial polynomial P such P(A)H=0; where A is the Laplacian A on M and
H the mean curvature vector of M in E,™.

In this paper, we will give some general results for finite type submanifolds
in the pseudo-Euclidean space E,™. By applying these results, we will prove
the following. (1) There exist no compact space-like hypersurfaces with constant
mean curvature and constant scalar curvature in the anti-de Sitter space-time;
(2) Every compact hypersurface with constant mean curvature and constant
scalar curvature in a hyperbolic space is a small hypersphere; and (3) If M is
a compact space-like hypersurface of the de Sitter space-time, then M has non-
zero constant mean curvature and constant scalar curvature when and only when
M is mass-symmetric and of 2-type in the Lorentz-Minkowski world.

For the general knowledge on Finite-Type Submanifolds in Euclidean spaces,
see [1, 2]. And for the general knowledge on Relativity, see for instance [3, 4].

§2. Preliminaries.

Let E,™ be the m-dimensional pseudo-Euclidean space with metric tensor
given by

S m
2.1 go=— 2 dxi+ X dxj,
=1 7=8+1
where (x;, --+, xn) iS @ rectangular coordinate system of E;™. (E,™, g,) is a flat

pseudo-Riemannian manifold of signature (s, m—s).
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Let ¢ be a point in £;™ and »r>0. We put
(2.2) Ss™c, r)={x€ E;™ | {x—c¢, x—c>=7r%,
(2.3) H™c, r)={x€E; ™ | {x—¢, x—c>=—7r?},

where <, ) denotes the indefinite inner product on the pseudo-Euclidean space.
It is known that S,™(c, ) and H;™(c, r) are complete pseudo-Riemannian mani-
folds of signature (s, m—s) and respective constant sectional curvatures »~* and
—r2,  S;™(c, r) is simply-connected for s<m—1; S,,_;™(c, ) is connected and
has infinite cyclic fundamental group; and S,™(c, ) has two simply-connected
components. S;™(¢c, ¥) and H;™(c, r) are called the pseudo-Riemannian sphere and
the pseudo-hyperbolic space, respectively (cf. [6, p. 67].) The point ¢ is called
the center of S;™(c, ) and of H,™(c, r). In the following, S,™(0, 1) and H,™(0, 1)
are simply denoted by S,™ and H,™, respectively. S,™ is called the de Sitter
space-time (=de Sitter world) and H,™ the anti-de Sitter space-time (=anti-de
Sitter world). Both S;™ and H,™ are pseudo-Riemannian manifold of signature
(1, m—1). The hyperbolic space H™ is defined by

(2.4 H™={xe E,™*" | {x, xp=—1 and >0},

where t=x, is the first coordinate in E,™. H™ is a complete, simply-connected
Riemannian manifold of constant sectional curvature —1. E,™ is called the
Lorentz-Minkowsk: space-time (= Lorentz-Minkowsk: world.)

Let M be a pseudo-Riemannian manifold with pseudo-Riemannian metric g.
Denote by ¢, ) the associated non-degenerate inner product and by ¥V the metric
connection on M. A tangent vector X to M is said to be space-like (respectively,
time-like or light-like) if <X, X>>0 or X=0 (respectively, if <X, X><0 or
(X, X>=0 and X=+0).

Let M be a submanifold of M. If the pseudo-Riemannian metric tensor g
of M induces a pseudo-Riemannian metric (respectively, Riemannian metric) on
M, then M is called a psuedo-Riemanman (respectively, space-like) submanifold
of M.

If M is a pseudo-Riemannian (or space-like) submanifold of ]\71, each tangent
space is, T.(M) by definition, a nondegenerate subspace of T.(M). Hence, we
have the direct sum decomposition :

(2.5) To(M)=T (M)DTLM),

where the normal space T3(M) is also nondegenerate.
Let V denote the induced metric connection on M. Then, for any vector
fields X, Y tangent to M, we have the following Gauss formula:

(2.6) Ve V=V V+hX, Y),

where h is the second fundamental form of M in M. .
Denote by R and R the curvature tensors of M and M, respectively. The
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Gauss equation is given by
2.7 (R(X, Y)Z, W>=<R(X, Y)Z, W)
+HX, W), (Y, Z)>—<WX, Z), i(Y, W)).

Denote by D the linear connection induced on the normal bundle T7“(M).
For each vector field £ normal to M, the Weingarten formula is given by

(2.8) ﬁxfz“AeX‘*—DXf,

where A. is the Weingarten map with respect to §. A is a self-adjoint endo-
morphism of the tangent bundle T(M) which can be diagonalized when M is
space-like. It is well-known that 4 and A are related by

For the second fundamental form 4, we define the covariant differentiation
of h by

(2.10) (Vxh)(Y, Z)=Dyh(Y, Z)—h(NyY, Z)—h(Y, VNxZ).
The Codazzi equation is given by
(2.11) (RX, V)2)*=Txh)(Y, Z)—Tyh)(X, Z) .

A normal vector field & is said to be parallel is Dx6=0 for any vector X
tangent to M.

Let M be a pseudo-Riemannian submanifold with signature (¢, n—t) in M.
Let E,, ---, E, be an orthonormal local basis on M such that E,, ---, E, are
time-like and E,,,, ---, E, are space-like. If F is an endomorphism of TM such
that F'=(F,;) with respect to the basis E,, ---, E,, then the trace of F is defined
by

n
tI'F: Z 6iF17, ’
=1

where ¢,= -+ =¢,=—1, g;4,= - =¢,=1 and F,,=({F(E,), E,>. From these, we
find
2.12) tr h= 231 eih(E,, E).

The mean curvature vector H of M in M is defined by H=1/ntrh, where
n=dim M. A pseudo-Riemannian submanifold M of M is said to be minimal if
the mean curvature vector H vanishes identically. A pseudo-Riemannian sub-
manifold M in M is said to be pseudo-umbilical if <H, H>#0 and Ap=pl for
some function g on M, where I is the identity transformation.

We need the following.

LEMMA 1. Let M be a pseudo-Riemannian (in particular, space-like) submani-
fold of the pseudo-Riemannian sphere S;™(c, v) (respectively, the pseudo-hyperbolic
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space Hs-1™(c, r)) in E;™*. Then the mean curvature vectors H and H' of M in

E;™* and in S;™(c, r) (respectively, in H,-,™(c, 7)) satisfy

(2.13) H=H'— -717 (x—c¢) (respectz'vely, H=H"+ 71»2- (x— c)) .

Proof. Let e=1 or —1 according to M being a submanifold of S;™(c, ») or
of H,_;™(c, r). Let x denote the position vector of M in E;™*!. Then we have

(2.14) {x—c, x—cy=¢gr>.

For each vector X tangent to S,™(c, r) or to H,_,™(c, ¥) we have Vyx=X. Thus,
x—c is normal to S;™(c, r) and to H,_,™c, r). Moreover, from Vyx=X, we have

(215) Ar—czﬁx—c:_ly

where A and A denote the Weingarten maps of M and S,™(c, r) (or H;_,™(c, 7))
in Es™*1, Let h’ and & be the second fundamental forms of M in S,™(c, r) (or
in H,_;™(c, r)) and of S;™(c, r) (or H,.,™(c, ¥)) in E,™*!, respectively. Then we
have

(2.16) X, V)=h'(X, Y)+h(X, Y).

Since A(X, Y)=e{Az-X, Y>(x—c)/r? (2.12), (2.15) and (2.16) give (2.13).
(Q.E.D))

§3. Some General Results.

Throughout the remaining part of this paper, we assume that M is a con-
nected, n-dimensional, pseudo-Riemannian submanifold of E,™*!
First, we give the following.

LEMMA 2. A submanifold M of the pseudo-Fuclidean space E,™*' is a pseudo-
umbilical submanifold with parallel mean curvature vector if and only if M is
either a minimal submanifold of a pseudo-Riemannian sphere S,™(c, r) or a minimal
submanifold of a psedo-hyperbolic space H,_,™(c, r) for some c€ E,™** and r>0.

Proof. Assume that M is a pseudo-umbilical submanifold of E,™*! with
parallel mean curvature vector. Then, <H, H>+0 and, by definition, for any X
tangent to M, we have X<H, H)>=2<yH, H>=0. Thus, (H, H)> is a non-zero
constant. We put

3.1) <H, H>=%, e=1 or —I.
Let Ay=pl. Then from (2.9) and (2.12), we find

3.2) e=prd

We put
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(3.3) y=x+er*H,

where x is the position vector of M in E,™*!. Then, for any vector X tangent
to M, we have

(34) ﬁXy:ﬁXx“‘ErzﬁXH
=X—er!ApX=0.

Thus y is a constant vector, say ¢, in E;™*'. Hence, we find {x—c¢, x—c)=
r*(H, Hy=¢er?% This shows that M lies either in the pseudo-Riemannian sphere
Ss™(c, ) or in the pseudo-hyperbolic space H;-,™(c, ). Since (3.3) gives

(3.5) H=——(x—0),
'

Lemma 1 implies that H'=0, i.e., M is a minimal submanifold of S,™(c, ) or
of Hy_™(c, 7).

Conversely, if M is a minimal submanifold of S;™(c, ) or of H;_,™(c, 7),
then Lemma 1 shows that H=—e(x—c)/7%. This implies that

ﬁxH:“%‘ﬁXx:—j[X.
v v

Thus, Ag=¢l/r* and DH=0. Moreover, by applying (2.13) and (3.5) we also
find <H, H)=¢/r*+0. Consequently, M is a pseudo-umbilical submanifold with
parallel mean curvature vector. Q.E.D.)

Remark 1. If E;™* is the Euclidean space E™*!, Lemma 2 is due to Yano
and Chen [7]. For pseudo-Euclidean case the “only if ” part of Lemma 2 was
given in [5].

LEMMA 3. If M is a submanifold of S;™ (or Hy,_\™) in E,™*, then the mean
curvature vectors H' and H i S;™ (or in Hs;_\™) and in E;™** satisfy

(3.6) DH=D'H’, Ag=Apg +el.

Proof. Obvious from (2.8), (2.14) and Lemma 1.

In the following, by a hyperplane section N of S;™ (or of H,_,™) we mean
the intersection of S;™ (or of H;_;™) and a hyperplane L of E,™*.

By applying Lemma 2, we have the following.

PROPOSITION 1. Let M be a submanifold of the pseudo-Riemanman sphere
S;™ (respectively, of the pseudo-hyperbolic space H,_\™.) If M 1s a pseudo-umbilical
submanifold with parallel mean curvature vector, then M 1s a munimal submanifold
of a hyperplane section of S;™ (respectively, of H;-,™).

Proof. Under the hypothesis, the mean curvature vector H” of M in S,™
(or in H,_,™) satisfies

(3.7 <H’, H»#0, A'g=pl and D'H'=0,
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where A’ and D’ denote the Weingarten map and the normal connection of M
in S;™ (or in H,-;™). Let A be the Weingarten map of M in E,"*'. Then, by
(3.7) and Lemma 3, we know that M has parallel mean curvature vector H in
E,™+ too. Since H is parallel, (H, H) is constant.

If (H, H>=0, then H=H’'—ex is a light-like vector. Thus, we have
(H’, H>=—¢. Because A’y=pl, we find p=<(H’, H'>=—¢. Thus, we get

(3.8 Ap=A"yp=—c¢l.

Applying (3.7), (3.8) and Lemma 3, we find

(3.9) VyH=VyH —eVyx=0.

This shows that H is a constant vector in E,™*'. Let H=—¢c. Then we have
(3.10) {x—c¢, x—C)=—¢.

Since <{x, x)==¢, we obtain <x, ¢)=e¢—1/2{c, ¢)>. This shows that M lies in the
hyperplane section N given by

N={xeE™* | (x, x>=¢ and <x, c)=e—1/2c, ¢}

for some constant ¢. Since H=—e¢c is normal to the hyperplane {xe E,"*! | {x, ¢)
=¢—1/24c, ¢}, the mean curvature vector of M in N vanishes. Thus, M is a
minimal submanifold of N.

If <H, H>+0, then M is pseudo-umbilical in E;™*! by Lemma 2. Thus,
Lemma 2 implies that M is a minimal submanifold of a S;™(c, ») or of a H,_,™(c, 7)
for some ce E,™*' and r>0. Thus, we have

3.11) {x—c¢, x—cy=Er?,

where £§=1 or —1 according to M is a minimal submanifold of S;™(c, ) or of
H,_,™(c, r). Since <x, x)=¢, (3.11) gives 2{x, c)=e—&r*+<c, ¢). Thus, M lies
in the hyperplane section given by

N={xeE™* | (x, x)=¢ and <{x—c, x—cy>=2Er?.

Since M is minimal in {x€E,™*' | {(x—c¢, x—c)>=Er?*}, M is minimal in N, too.
(Q.E.D.)

Remark 2. 1f M is a minimal submanifold of a hyperplane section NV of S,™
(or of H,_,™), then either N is totally geodesic in S;™ (or in H,-,™) or N is a
pseudo-umbilical submanifold with parallel mean curvature vector.

Let M be a pseudo-Riemannian submanifold with orthonormal local basis
E,, ---, E,. For any real function f on M, the Laplacian Af of f is defined by

Af:_zgn; &, {Ethf—vElEzf}

We mention the following lemma for later use.
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LEMMA 4. Let M be an n-dimensional submanifold of E;™*'. Then we have

(3.12) Ax=—nH.

Proof. Let a be any fixed vector in E,™*' and p a point in M. Let
E,, -+, E, be an orthonormal local basis about p such that (Vg E)(p)=0; 7, j=
1, ---, n. Then we have

(ALx, a)p=— 2 ed(E)p(E,, a)

=2 ei<‘7EiEz, a>(p)

= 2 5i<h(Ez; El); a>p

=—nlH, a>,.
Since both Ax and H are independent of the choice of the local basis, we have
{Ax, ay=—<nH, a). Because the inner product <, ) is nondegenerate, this

implies equation (3.12). (Q.E.D.)
Combining Lemmas 1 and 4 we have the following.

PROPOSITION 2. There exist no compact space-like minimal submanifolds in
any pseudo-hyperbolic space H,™.

Proof. If M is a compact space-like minimal submanifold of H,™, then
Lemma 1 gives H=x. Thus, Lemma 4 implies Ax=—nx. This shows that —n
is an eigenvalue of M. Since M is a compact Riemannian manifold, eigenvalues
of A on M are non-negative. Q.E.D.)

Remark 3. In contrast to Proposition 2, there exist compact minimal space-
like submanifolds in pseudo-Riemannian spheres.

LEMMA 5. If M is compact space-like submanifold of Es™*', then we have

(3.13) SMH AV =0,

3.19) | <t wav+] av=o.

Proof. Since M is compact, Lemma 4 and Hopf’s Lemma implies (3.13).

By using (3.12) we have Adlx, x)=—2n(14+<H, x>). Thus, we also have
(3.14). (Q.E.D.)

In the following, a compact submanifold M of S,™(c, ) (or of H,.,"(c, 7)) in
E;™+1 ig called mass-symmetric if the center of mass of M in E,™*!' is just the
center ¢ of S;™(c, r) (or of H,_;™(c, 7)). Lemmas 1 and 4 imply the following.

LEMMA 6. If M is a compact, space-like, minimal submanifold of the pseudo-
Riemannian sphere S;™, then M is mass-symmetric in E,™*,
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Proof. Under the hypothesis, we have Ax—=—nH=nx. Thus SMx 4V =0.
(Q.E.D.)
Remark 4. From the proof of Lemma 6, we see that if M is an n-dimen-

sional, compact, space-like, minimal submanifold of S;™, then the first non-zero
eigenvalue A, of A on M satisfies A,=<n.

§4. Finite-type submanifolds in E,™".,

Let M be a compact, space-like submanifold of E;™*!. Then M with the
induced metric is a Riemannian manifold. Thus, the Laplacian A of M is an
elliptic differential operator and it has infinite sequence of eigenvalues:

0:20</21</22< <2k< A ? oo,
Let V,={feC~(M) | Af=2,f} be the eigenspace of A with eigenvalue A,.
Then each V, is finite-dimensional. If we define an inner product on C>(M)
by (f, g):SMfg dV, then the decomposition >3.,V, is orthogonal and dense in

C=(M) (in L*sense). V, is 1-dimensional and it consists of constant functions.
For each feC>(M), let f, be the projection of f onto V,. Then we have
the following decomposition :

4.2) f= g}o fe (in L2-sense).

If f is a non-constant function on M, there is a positive integer p=1 such
that f,#0 and f=f,+X:.,f:- If there are infinite f,’s which are nonzero, we
put g=oo. Otherwise, there is an integer ¢=p such that f,#0 and f=f,+ X%, /..
Thus, in both cases, we have

4.3) f~f=Zf0,

where ¢ is either co or an integer =p.
For the compact, space-like submanifold M in E,™*!, we put

4.4) x=(x1, ", Xm+1) ,

where x, is the A-th rectangular coordinate function of M in E,™*!. For each
x4, We have

q

«.5) (= 3 (e, A=L e, meL
YA

We put

(4.6) p=inf{ps},  g=supigd},

where A ranges among all A such that x,#(x,), It is clear that p is an
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integer =1 and ¢ is either co or an integer =p. The pair of these invariants
[, q] is called the order of M in E,™*' (cf. [1]). The submanifold M in E,™*
is said to be of finite type if ¢ is finite. Otherwise, M is of infinite type. The
submanifold M in E,™** is said to be of k-type if there exist exactly 2 nonzero
x,’s in the following decomposition :

4.7 x:xo—i—tg X, Ax,=2Ax;.
=p
We need the following.

PROPOSITION 3. Let M be a compact, space-like submanifold of Es™*'. Then
M 1s of fimite type if and only if there exists a non-trivial polynomial P such that
P(A)H=0 (or equivalently, P(A)(x—x,)=0).

Proof. Consider the decomposition (4.7). If M is of finite type, ¢ is finite.
Thus, we have from Lemma 4,

4.8) nA'H= té Ax,, i=0,1,2, .
=p

Let c,;=—X4phs, C=21<shihs, 5 Cq-pr1=(—1)T"P* 2, --- 2,. Then we find
4.9) A*HA+c,A**H4- - +¢,H=0, k=g—p+1.

Conversely, if H satisfies (4.9) for some £=0, then #=1 by Lemma 4. Thus,
by (4.7) and (4.9), we find

(4.10) té A+ A s ) x, =0,
Let

2=, =+, K mar) -

Then (4.10) gives

(4.11) B AAFFd T e (k)a=0,  A=L e, mtL
If x,+0, then
(x) 470
for some A. Thus, we find
(4.12) 0= élcuz“rcll;k'lﬁ- o) ((x)a, (x9)4)=0,

where (f, g):SMfg dV. Since

Al(x) s, (x5))=(A(x ) (x5)0)

=((x0)a, Alx)p)=2((x) 4 (X5)4),
we find
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(x0) 4, (x5)0)=0
if t#s. Therefore, (4.12) implies
(4.13) A A - e =0 whenever x,#0.

Since equation (4.13) has at most k& real solutions, at most £ of the x,’s in (4.7)

are nonzero. Thus, M is of finite-type. Similar argument applies to P(A)(x—x,)

=0. (Q.E.D)
From the proof of Proposition 3, we also have the following.

PROPOSITION 4. Let M be a compact, space-like submanifold of E,™*'. If
M s of k-type, then there exists a polynomial P of degree k such that P(A)H=0
(or P(A)(x—x0)=0.) Conversely, 1f P(AYH=0 (or P(A)(x—x,)=0) for a polynomial
P of degree d=1, then M 1s of k-type for some k; d=k=1.

Now, we give the following Lemmas for later use.

LEMMA 7. Let M be a compact, space-like submanifold of E;™*. If M s
not of l-type and 1f H satisfies A H+bAH-+-cH=0 for some constant b and c, then
b=—Ap+2)<0 and ¢=2,2,>0 where [p, q] 15 the order of M in E;™*.

Proof. Under the hypothesis, Proposition 4 shows that M is of 2-type.
Thus, we have x=x,+x,+x, Therefore, we find

(Ap* b2 )k p+ (A8 +bA+cA)xg=0.

Thus, we have 1,2+bd,+c=0, 2,°+bid,+c=0. Since 1, and 4, are positive real
roots of t*+bt+c=0, we have b=—(4,44,) <0 and c=—1,4,>0. Q.E.D)

LEMMA 8. Let M be a compact, space-like submanifold of Es™*'. Then x,1s
the center of mass in E,;™*,

Proof. Since \ x,dV=1/2,\ Ax,dV=0, (4.9) gives to x,=\ xdV/\ dV.
M M M M
Q.E.D)

LEMMA 9. Let M be a space-like submanifold of E;™*'. Then we have

(4.15) AH=AH+ é (Ve AmEi+Apy nEv+h(E,, AgE},
where AP 1s the Laplacian associated with D and E,, ---, E, an orthonormal local
basis of M.

Proof. Let a be any vector in E,"*'and X, Y any vector fields tangent to
M. We have

(4.16) YX<{H, a)={DyDxH, a>—y(AuX), a>
’—<ADXHY, (l>—<h(Y, AHX>, a> .
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Since <, ) is non-degenerate, this gives (4.15) where

APH=— 3} {Dg,Dg,H—Ds, z,H}.
v=1 ¢ (Q.E.D)

§5. 1-type Submanifolds in E,™*,

In this section, we give the following characterization theorem for 1-type
submanifolds.

THEOREM 1. Let M be a compact, space-like submanifold of E;™**. Then M
s of 1-type in E™* if and only if M is a minimal submanifold in a pseudo-
Riemannian sphere S;™(c, r) for some c= E;™*' and r>0.

Proof. 1f M is of l-type in E,™*!, we have Ax=2A,(x—x,). Thus, by
Lemma 4, we find

(5.1) nH=2p(xy—x) .
This shows that nVyH=--1,X. Thus, we have

(5.2) AHZ%:LI and DH=0.

Moreover, by (5.1), we also have
Xx—x0, x—x0p=2¢X, x—2xp=0

for any X tangent to M. Thus, <{x—x, x—x,> is constant.

If <x—=x,, x—x,,=0, then M lies in the light cone C={x€E,™*' | {x—x,,
x—x,p=0} with vertex at x,. Since M lies in C and x, is the center of mass
of M in E,™*', M must lies in both parts of the light cone C. This is impossi-
ble since M is assumed to be a space-like submanifold. Thus, <H, H)>=+0.
Consequently, M is pseudo-umbilical in E,™*' with parallel mean curvature
vector. Thus, by Lemma 2, M is either a minimal submanifold of a pseudo-
Riemannian sphere or a minimal submanifold of a pseudo-hyperbolic space.
Since M is compact, Proposition 2 shows that the second case cannot occurs.

Conversely, if M is a minimal submanifold of a pseudo-Riemannian sphere,
then Lemmas 1 and 4 imply that AH+AH=0 for some constant A. Thus, by
Proposition 4, M is of 1l-type in E,™*1, Q.E.D.)

In the following, a compact hypersurface N of the pseudo-hyperbolic space
H,_,™ is called a small hypersphere of H,_,™ if N is the intersection of H, ,™
with a pseudo-Riemannian sphere S;™(c, ) in E;™*!. A small hypersphere of
H,_,™ is a totally umbilical submanifold in both H,_,™ and E,™*. Moreover, a
small hypersphere of H,.,™ is a totally umbilical hypersurface of a linear hyper-
plane L in E,™** with ¢ as its hyperplane normal.

By applying Theorem 1, we may obtain the following.

COROLLARY 1. Let M be a compact, space-ltke submanifold of a pseudo-
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hyperbolic space H;_\™ in E;™*. Then M 1s of l-type in E™* of and only of
M is a munimal submanifold of a small hypersphere of H,-;™.

In particular, if E,™' is the Lorentz-Minkowski space-time, Corollary 1
reduces to the following.

COROLLARY 2. A compact submanifold M of the hyperbolic space H™CE,™**
is of 1-type in the Lorventz-Minkowski world 1f and only 1f M s a minimal sub-
manifold of a small hyperspherve of H™.

§6. Hypersurfaces in Anti-de Sitter World.

It is known that there exist abundant examples of compact hypersurfaces
with constant mean curvature and constant scalar curvature in a Riemannian
sphere S™. In this section, by applying the theory of finite-type submanifolds,
we prove the following non-existence theorem in the anti-de Sitter world.

THEOREM 2. There exist no compact space-like hypersurfaces with constant
mean curvature and constant scalar curvature in the anti-de Sitter space-time H,**'.

Proof. We regard the anti-de Sitter space-time H,"*! as a hypersurface of
E,"*% defined by

(6.1) H" = {xe E"* | {x, x)=—1}

Let M be a compact space-like hypersurface of H,"*!. Then the position
vector x of M in E,"*? is a time-like unit normal vector. From Lemma 1, we
have

(6.2) H=H"+x,

where H’ is the mean curvature vector of M in H,"*'. Since M is space-like,
H’ is either zero or time-like. We put

(6.3) (H', H>=—a"

Then H’=aé for a unit time-like vector field & normal to M and tangent to
H,**'. Moreover, we have tr A;=—na. By applying (2.9), we find

(6.4) Zl) h(E,, AxE), x>=‘l/_,“ {AuE,, A,EQ:—%‘, (AyE,, E>
=—nl{H, H)=n-+na®

Similarly, applying (2.9) and (5.2) and Lemma 2, we also have

(6.5) 2 A(E, ArEy), Oy =al Agl*—tr A;

=alA:|*+nea.
Consequently, (6.4) and (6.5) give
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(6.6) 2By AgE)=—(Ael*+mH '~ (n+na’)x.

Since A is self-adjoint and M is space-like, we may diagonalize A, Let
E,, ---, E, be an orthonormal local basis of M such that

(6.7) AE=mwE,, =1, ,n.
If we put
V= B oME)ES,

then (6.7) implies
(6.8) Ve, An)E,;=(Ea)p;E 5+ a(Eiﬂ;)EjJrz? a(p,—pr)w,*(EDE, .
Therefore, by the Codazzi equation, we obtain
(6.9) {(Eut)Ej—(Ep) Ect 2 (pt— ) (EDE,

=2 (o p)o(EHE} =0,
where we have used the fact DE=0. If ;+:, (6.9) gives
(6.10) a(Ep)=a(p;—p)w(E;), JF1.
Since w/=—w,*, (6.8) and (6.10) imply
61) S VeAnE=Y(EaunEtaEw)ElteS EpE,.

Since X;p,=tr Ae=—na, (5.11) gives
(6.12) S (Ve AwE=3| Ap o Bi— 5 (BB, .

Consequently, by applying Lemma 2, Lemma 8, (6.6), (6.12), we find
n
2
—(Ael>+n)H' —(n+na®x .

(6.13) AH=AP”"H'+2tr Ap g+ —grad{H’, H")

In particular, if M has constant mean curvature « in H,"*!, then D’H’=0. Thus
(6.13) reduces to

(6.14) AH=—(| A¢|*+n)H —(n+na®x.

On the other hand, since the second fundamental form s of M in E,"** is given
by

(6.15) h(X, V)=—C(AX, YY§+(X, YDx,

equation (2.7) of Gauss gives
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(6.16) r=||A¢l|*—n*a®*—n(n—1),
where ¢ is the scalar curvature of M. Combining (6.14) with Lemma 1, we find
(6.17) AHA+(| AllP+n) H+(na*— || Ael|)x=0.
If the scalar curvature r of M is also constant, then (6.16) shows that
(6.18) b=|As|*+n and c=na’—|A:|*

are constant. Therefore, Lemmas 4 and 7 imply that M is of 1-type. Therefore,
x=x,+xp, for some integer p=1. Combining this with Lemma 4, we obtain

(6.19) nH=2,(x,—x).

On the other hand, (6.17) and Lemma 5 give
(6.20) <na2—u/15u2>3vx AV =0.

If na®=|A¢||% then AH=—(n-|A¢|*)H which is impossible. Therefore, we find
%0=0. Thus, (6.19) gives nH=—12,x. Since x and & are orthonormal, Lemma 1
implies that this case is also impossible. (Q.E.D)
A space-like hypersurface in H,"*! (or in H"*!) is said to be isoparametric
if the Weingarten map A. has constant eigenvalues. Since a space-like iso-
parametric hypersurface in H,"*! (or in H™*!) has constant mean curvature and
constant scalar curvature, Theorem 2 implies immediately the following.

COROLLARY 3. There exist no compact space-like isoparametric hypersurfaces
in the anti-de Sitter space-time.

§7. Hypersurfaces in Hyperbolic Space.

In this section, we apply our previous results to give the following classifi-
cation theorem in hyperbolic space.

THEOREM 3. The only compact hypersurfaces with constant mean curvature
and constant scalar curvature in the hyperbolic space H™* are small hyperspheres
Of Hn+1'

Proof. We regard the hyperbolic space H"*! as a space-like hypersurface
of the Lorentz-Minkowski world E,"*? defined by

(7.1 H"'={xeE,"* | {x, x)=—1 and ¢>0}.

Let M be a compact hypersurface of H™*' with mean curvature vector H’. Let
& be a unit vector field in the direction of H'. We put H'=aé. Then, by an
argument similar to that given in section 6, we may obtain
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(7.2) AH=AP H'+-2 tr Ap s — 5 gradCH', H'>
+( AP —n)H +(na*—n)x .

If M has constant mean curvature, (7.2) reduces to

(7.3) AH=(| Ael|*—n)H’+(na®—n)x .

On the other hand, we have

(7.4) H=H'+x,

(7.5) r=n’a?—|| A¢||*—n(n—1).

Thus, we obtain

(7.6) AH+bHA+cx=0,

where b=n—|A4¢|® and c=||A¢l|*—na®. If M has constant scalar curvature r,
too, then (7.5) shows that b and ¢ are constants. Thus, by applying Lemma 5,
we obtain

& cxogMdecSMx 4V =0.

Since M lies in H"*!, t>0. Therefore the center of mass cannot be the origin
of E,"*%. Thus, ¢=|A¢|*—na*=0. This implies that M is totally umbilical in
H™*, Therefore, M is a small hypersphere of H**! (cf. [1, p. 129].) (Q.E.D.)

Remark 4. It is well-known that a small hypersphere of H*** has constant
mean curvature and constant scalar curvature.

COROLLARY 4. The only compact isoparametric hypersurfaces of the hyper-
bolic space H"** are small hyperspheres.

§ 8. Hypersurfaces in de Sitter World.

In this section, we study 2-type hypersurfaces in the de Sitter world.

THEOREM 4. Let M be a compact space-like hypersurface in the de Sitter
space-time S;"*'CE,"*%. Then M has nonzero constant mean curvature and con-
stant scalar curvature in S;"*' if and only if M is mass-symmetric and of 2-type
in the Lorentz-Minkowsk: world E,"*2.

Proof. We recall that the de Sitter space-time S,"*! is a hypersurface of
E."*% defined by

8.1 Sitti= ke B | (x, xp=1}.
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Let H’ be the mean curvature vector of the compact, space-like hypersurface
M in S;***. Then either H’=0 or H’ is time-like. Let & be the time-like unit
vector in S;"*! normal to M. We put H’=a&. Then we have

(8.2) H=H'—x, tr Ae=—na.
By applying an argument similar to that given in section 6, we may obtain
8.3) AH=AP H'+2tr AM,+% grad(H’, H'>

+(n—[Ae|HH —(n—na®x .

If M is mass-symmetric and of 2-type in E;"*2, then there exist two constants
b and ¢ such that (Proposition 3)

8.4 AH+bHA+cx=0.

Combining (8.2), (8.3) and (8.4) we find
n

2
=(|4¢llF—n—bH'+(b—c+n—na®x.

(8.5) AP H'+-2tr Ap gy + - grad{H’, H')

Since x is normal to S;"*! and other terms in (8.5) are tangent to S,"*!, we
obtain na®=b—c+n. Thus, M has constant mean curvature a in the de Sitter
world. Therefore, (7.5) gives

(8.6) | Agle=n-+b

which is constant. From equation (2.7) of Gauss, we see that the scalar curva-
ture ¢ of M satisfies

8.7 t=|A4¢|P—n*at+nn—1).

Therefore, M has constant scalar curvature.
Conversely, if M has constant mean curvature in S;**' and constant scalar
curvature, then (8.3) implies

8.8) AH+-bH4+cx=0,

where b=|A¢|*—n and c=| A¢|*—na® are constant. Therefore, by applying
Lemma 5 and (8.8), we see that the center of mass of M in E,*** is the origin.
Thus, MCS;"** is mass-symmetric in E,"*%.. Moreover, (8.8) and Proposition 3
show that M is either of 1-type or of 2-type. If M is of 1-type, Lemma 4 gives
nH=—2,x. Thus, Lemma 1 implies that M is minimal in the de Sitter world
S,**1. This is a contradiction. (Q.E.D.)

COROLLARY 5. Let M be a compact, space-like hypersurface in the de Sitter
space-time S,"**. If M has nonzero constant mean curvature and constant scalar
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curvature, then

8.9)
(8.10)

(8.11)

=12 2)
e=(n—1)Ap+A)— 22,50,

[[Aell*=n—(,+4,) .

This corollary follows from Lemma 7 and the proof of Theorem 4. From
Lemma 6 and Theorem 4 we also have the following.

COROLLARY 6. Let M be a compact, space-like, isoparametric hypersurface of
the de Sitter space-time S,"**CE,"*®. Then M is mass-symmetric. Moreover, if
M is not minimal in S,"*!, then M is of 2-type in E,"*%.

Remark 5. We can prove that if M is a compact, space-like, 2-type hyper-
surface of S;"*!, then M is always mass-symmetric in S,”*%.
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