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FINITE TYPE SUBMANIFOLDS IN PSEUDO-EUCLIDEAN
SPACES AND APPLICATIONS

BY BANG-YEN CHEN

: 1. Introduction.

Let Es

m be the m-dimensional pseudo-Euclidean space with (flat) pseudo-
Riemannian metric of signature (s, m—s). And let M be a compact space-like
submanifold of Es

m. By using the induced Riemannian structure on M, we can
define two well-defined numbers p and q associated with the submanifold M in
Es

m. Here p is a positive integer and q is either +° ° or an integer }zp. The
pair \_p, q~\ is called the order of the submanifold M (cf. [1]). The submanifold
M is said to be of finite type if q is finite. Otherwise, M is said to be of
infinite type. The submanifold M is of finite type if and only if there is a
non-trivial polynomial P such P(A)H=0; where Δ is the Laplacian Δ on M and
H the mean curvature vector of M in Es

m.
In this paper, we will give some general results for finite type submanifolds

in the pseudo-Euclidean space Es

m. By applying these results, we will prove
the following. (1) There exist no compact space-like hypersurfaces with constant
mean curvature and constant scalar curvature in the anti-de Sitter space-time;
(2) Every compact hypersurface with constant mean curvature and constant
scalar curvature in a hyperbolic space is a small hypersphere and (3) If M is
a compact space-like hypersurface of the de Sitter space-time, then M has non-
zero constant mean curvature and constant scalar curvature when and only when
M is mass-symmetric and of 2-tyρe in the Lorentz-Minkowski world.

For the general knowledge on Finite-Type Submanifolds in Euclidean spaces,
see [1, 2], And for the general knowledge on Relativity, see for instance [3, 4].

§ 2. Preliminaries.

Let Es

m be the m-dimensional pseudo-Euclidean space with metric tensor
given by

s m

(2.1) go=-Έdxl+ Σ dx),
1 = 1 .7=5 + 1

where {xlf •••, xm) is a rectangular coordinate system of Es

m. (Es

m, g0) is a flat
pseudo-Riemannian manifold of signature (s, m—s).
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Let c be a point in Es

m and r>0. We put

(2.2) Ss

m(c, r)={χ(ΞEs

m+ι \ (x-c, x-c> = r2},

(2.3) Hs

m(c, r)={χ£ΞEs+1

m+1 \ (x-c, x-c> = -r2},

where <, > denotes the indefinite inner product on the pseudo-Euclidean space.
It is known that Ss

m(c, f) and Hs

m(c, r) are complete pseudo-Riemannian mani-
folds of signature (s, m—s) and respective constant sectional curvatures r~2 and
—r~2. Ss

m(c, r) is simply-connected for s<m—l; 5m_im(c, r) is connected and
has infinite cyclic fundamental group and Sm

m(c, r) has two simply-connected
components. Ss

m(c, r) and Hs

m{c, r) are called the pseudo-Riemannian sphere and
the pseudo-hyperbolic space, respectively (cf. [6, p. 67].) The point c is called
the center of Ss

m(c, r) and of Hs

m(c, r). In the following, Ss

m(0, 1) and Hs

mφ, 1)
are simply denoted by Ss

m and Hs

m, respectively. SΊm is called the de Sitter
space-time (=de Sitter world) and Hx

m the anti-de Sitter space-time (—antι-de
Sitter world). Both S^ and H^ are pseudo-Riemannian manifold of signature
(1, m—1). The hyperbolic space Hm is defined by

(2.4) / / m = { χ G ^ + 1 I {x, *> = - l and t>0},

where t—xλ is the first coordinate in E^. Hm is a complete, simply-connected
Riemannian manifold of constant sectional curvature — 1. E™ is called the
Lorentz-Minkowski space-time {=Lorentz-Minkowski world.)

Let M be a pseudo-Riemannian manifold with pseudo-Riemannian metric g.
Denote by <, > the associated non-degenerate inner product and by 7 the metric
connection on M. A tangent vector X to M is said to be space-like (respectively,
time-like or light-like) if <Z, X>>0 or X=0 (respectively, if {X, X><0 or
<Z, Z>=0 and XΦO).

Let M be a submanifold of M. If the pseudo-Riemannian metric tensor g
of M induces a pseudo-Riemannian metric (respectively, Riemannian metric) on
M, then M is called a psuedo-Riemanman (respectively, space-like) submanifold
of M.

If M is a pseudo-Riemannian (or space-like) submanifold of M, each tangent
space is, TX{M) by definition, a nondegenerate subspace of TX{M). Hence, we
have the direct sum decomposition:

(2.5) T*(M)=T*(M)0T±(M),

where the normal space TX{M) is also nondegenerate.
Let 7 denote the induced metric connection on M. Then, for any vector

fields X, Y tangent to M, we have the following Gauss formula:

(2.6) 7 x F = 7 z r + / z ( Z , Y),

where h is the second fundamental form of M in M.
Denote by R and R the curvature tensors of M and M, respectively. The
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Gauss equation is given by

(2.7) <R(X, Y)Z, W> = <R{X, Y)Z, W>

+ <h{X, W), h{Y, Z))-<h{X, Z), h{Y,

Denote by D the linear connection induced on the normal bundle TL{M).
For each vector field ξ normal to M, the Weingarten formula is given by

(2.8) lxξ=-AζX+Dxξ,

where Aς is the Weingarten map with respect to ξ. Aζ is a self-adjoint endo-
morphism of the tangent bundle T{M) which can be diagonalized when M is
space-like. It is well-known that h and A are related by

(2.9) <h{X,

For the second fundamental form h, we define the covariant differentiation
of h by

(2.10) Vχh){Y, Z)=Dxh{Y, Z)-h{lxY, Z)-h{Y, 1XZ).

The Codazzi equation is given by

(2.H) {R{x,

A normal vector field ζ is said to be parallel is Dxξ=0 for any vector X
tangent to M.

Let M be a pseudo-Riemannian submanifold with signature (ί, n—t) in M.
Let Elf •••, En be an orthonormal local basis on M such that Eίt •••, Et are
time-like and Et+ί, •••, En are space-like. If F is an endomorphism of TM such
that F—(Ftj) with respect to the basis Eu •••, £ n , then the ί r α ^ of F is defined
by

where ε x = ••• = ε t = — 1, ε £ + 1 =: ••• = e n = l and FlJ—iF{El)y Ej>. From these, we
find

(2.12) t r ή = Σ e i A ( £ t , ^ )
1 = 1

The mean curvature vector H of M in M is defined by H—l/ntvh, where
n=dimM. A pseudo-Riemannian submanifold M of M is said to be minimal if
the mean curvature vector H vanishes identically. A pseudo-Riemannian sub-
manifold M in M is said to be pseudo-umbilical if <//", H}Φθ and AH—μl for
some function μ on M, where / is the identity transformation.

We need the following.

LEMMA 1. Let M be a pseudo-Riemannian {in particular, space-like) submani-
fold of the pseudo-Riemannian sphere Ss

m{c, r) {respectively, the pseudo-hyperbolic
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space Hs-ιm{c, r)) in Es

m+1. Then the mean curvature vectors H and Hf of M in
Es

m+1 and in Ss

m(c, r) {respectively, in Ht-im(c, r)) satisfy

(2.13) H=H'-\(x-c) {respectively, H=H'+-\-(x-

Proof. Let ε = l or —1 according to M being a submanifold of Ss

m{c, r) or
of i/s_im(c, r). Let x denote the position vector of M in Es

m+\ Then we have

(2.14) (x-c, x-c>=er2.

For each vector X tangent to Ss

m{c, r) or to H^^ic, r) we have Ίxx—X. Thus,
x—c is normal to Ss

m{c, r) and to i7s-im(c, r). Moreover, from Ϋχx=X, we have

(2.15) Ax-e=Άx-c=-I,

where A and A denote the Weingarten maps of M and Ss

m{c, r) (or Hs-i11^, r))
in Es

m+1. Let W and h be the second fundamental forms of M in Ss

m{c, r) (or
in # s-im(c, r)) and of Ss

m{c, r) (or Hs-X

m{c, r)) in Es

m+1, respectively. Then we
have

(2.16) h(X, Y)=h\X, Y)+h(X, Y).

Since h(Xf Y)=ε<Ax-cX, Y>(x-c)/r\ (2.12), (2.15) and (2.16) give (2.13).
(Q.E.D.)

§3. Some General Results.

Throughout the remaining part of this paper, we assume that M is a con-
nected, n-dimensional, pseudo-Riemannian submanifold of Es

m+1.
First, we give the following.

LEMMA 2. A submanifold M of the pseudo-Euclidean space Es

m+ί is a pseudo-
umbilical submanifold with parallel mean curvature vector if and only if M is
either a minimal submanifold of a pseudo-Riemannian sphere Ss

m(c, r) or a minimal
submanifold of a psedo-hyperbolic space Hg-^ic, r) for some c^Es

m+1 and r>0.

Proof. Assume that M is a pseudo-umbilical submanifold of Es

m+1 with
parallel mean curvature vector. Then, (H, H}Φθ and, by definition, for any X
tangent to M, we have X<H, H>^2<$XH, H>=0. Thus, <#, H> is a non-zero
constant. We put

(3.1) < # , # > = - 4 - , e = l or - 1 .

Let AH=μI. Then from (2.9) and (2.12), we find

(3.2) ε=μr\

We put
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(3.3) y=x+εr2H,

where x is the position vector of M in Es

m+1. Then, for any vector X tangent
to M, we have

(3.4)

Thus y is a constant vector, say c, in Es

m+\ Hence, we find (x—c, x—c) —
r\H, H}~εr2. This shows that M lies either in the pseudo-Riemannian sphere
Ss

m(c, r) or in the pseudo-hyperbolic space Hs-γ

m(c, r). Since (3.3) gives

(3.5) H=^-^-(x-c)f

Lemma 1 implies that H'=0, i.e., M is a minimal submanifold of Ss

m(c, r) or
of H-Πc, r).

Conversely, if M is a minimal submanifold of Ss

m(c, r) or of Hg-^ίc, r),
then Lemma 1 shows that H= — ε(x—c)/r2. This implies that

Thus, AH~εI/r2 and DH=0. Moreover, by applying (2.13) and (3.5) we also
find <i/, H} = ε/r2Φθ. Consequently, M is a pseudo-umbilical submanifold with
parallel mean curvature vector. (Q. E. D.)

Remark 1. If Es

m+1 is the Euclidean space Em+ί, Lemma 2 is due to Yano
and Chen [7]. For pseudo-Euclidean case the "only if" part of Lemma 2 was
given in [5].

LEMMA 3. // M is a submanifold of Ss

m (or //s_im) in Es

m+1, then the mean
curvature vectors Hf and H in Ss

m {or in //s_!m) and m Es

m+1 satisfy

(3.6) DH=DΉ', AH=AH' + eI.

Proof. Obvious from (2.8), (2.14) and Lemma 1.
In the following, by a hyperplane section N of Ss

m (or of //s-im) we mean
the intersection of Ss

m (or of i/s-im) and a hyperplane L of £,TO+1.
By applying Lemma 2, we have the following.

PROPOSITION 1. Let M be a submanifold of the pseudo-Riemanman sphere
Ss

m (respectively, of the pseudo-hyperbolic space //s_!m.) If M is a pseudo-umbilical
submanifold with parallel mean curvature vector, then Mis a minimal submanifold
of a hyperplane section of Ss

m (respectively, of // s _! m ).

Proof. Under the hypothesis, the mean curvature vector H' of M in Ss

m

(or in //s_!m) satisfies

(3.7) <H',H'>ΦO, A'H.=μI and DΉ'=0,
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where A' and D' denote the Weingarten map and the normal connection of M
in S s

m (or in H8-1

m). Let A be the Weingarten map of M in Es

m+1. Then, by
(3.7) and Lemma 3, we know that M has parallel mean curvature vector H in
E8

m+1, too. Since H is parallel, {H, H} is constant.
If {H, H}=0, then H=H'—εx is a light-like vector. Thus, we have

<#', H'> = -£. Because A'H.=μI, we find μ={H', H'} = -ε. Thus, we get

(3.8) AH. = A'H. = -εI.

Applying (3.7), (3.8) and Lemma 3, we find

(3.9) lxH=ΊxH'-εlxx=0.

This shows that H is a constant vector in Es

m+1. Let H— — εc. Then we have

(3.10) {x-c, x-c> = -ε.

Since {x, Xs) — ε, we obtain <x, c> = ε—l/2<c, c>. This shows that M lies in the
hyperplane section N given by

N= {χ(ΞEs

m+1 I <*, x> = ε and <x, >̂ = ε-l/2<^, c}}

for some constant c. Since H—~εc is normal to the hyperplane {x^Es

m+1 | <x, c>
= ε—l/2<c, c>}, the mean curvature vector of M in N vanishes. Thus, M is a
minimal submanifold of N.

If <//, i/>^0, then M is pseudo-umbilical in E s

m + 1 by Lemma 2. Thus,
Lemma 2 implies that M is a minimal submanifold of a Ss

m(c, r) or of a Hs-^ic, r)
for some c e £ s

m + 1 and r>0. Thus, we have

(3.11) {x-c, x-c>=εr2,

where ε = l or —1 according to M is a minimal submanifold of Ss

m(c, r) or of
Hs-^ic, r). Since <*, x>=ε, (3.11) gives 2<x, c>=:ε-εr2+<ί:, c>. Thus, M lies
in the hyperplane section given by

N= {χ£ΞEs

m+1 I <x, x> = ε and {x-c, x-c> = εr2}.

Since M is minimal in {x^Es

m+1 \ {x—c, x—cy — εr2], M is minimal in N, too.
(Q.E.D.)

Remark 2. If M is a minimal submanifold of a hyperplane section Λ̂  of Ss

m

(or of i/ s-im), then either TV is totally geodesic in Ss

m (or in # s_im) or iV is a
pseudo-umbilical submanifold with parallel mean curvature vector.

Let M be a pseudo-Riemannian submanifold with orthonormal local basis
Elf •••, £ n . For any real function / on M, the Laplacian Δ/ of / is defined by

We mention the following lemma for later use.
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LEMMA 4. Let M be an n-dimensional submanifold of Es

m+1. Then we have

(3.12) Ax=-nH.

Proof. Let a be any fixed vector in Es

m+1 and p a point in M. Let
Eu •••, En be an orthonormal local basis about p such that (V^.£,)(/>)=0; i, j=
1, •••, n. Then we have

(ΔO, a»p=-±εi(Eι)p<Et, a}
1 = 1

= - Σ *<$*,£*, α>(/0

= — n(H, a}p.

Since both Δx and // are independent of the choice of the local basis, we have
<Δx, a}— — (nH, α>. Because the inner product <,> is nondegenerate, this
implies equation (3.12). (Q.E.D.)

Combining Lemmas 1 and 4 we have the following.

PROPOSITION 2. There exist no compact space-like minimal submanifolds in
any pseudo-hyperbolic space Hs

m>

Proof. If M is a compact space-like minimal submanifold of Hs

m, then
Lemma 1 gives H—x. Thus, Lemma 4 implies Δx=—nx. This shows that — n
is an eigenvalue of M. Since M is a compact Riemannian manifold, eigenvalues
of Δ on M are non-negative. (Q.E.D.)

Remark 3. In contrast to Proposition 2, there exist compact minimal space-
like submanifolds in pseudo-Riemannian spheres.

LEMMA 5. // M is compact space-like submanifold of Es

m+1, then we have

(3.13) ( HdV=0,

(3.14) ( <#, x}dV+[ dV=Q.
JM JM

Proof. Since M is compact, Lemma 4 and Hopfs Lemma implies (3.13).

By using (3.12) we have A(x, x)=-2n(l+<H, x)). Thus, we also have
(3.14). (Q.E.D.)

In the following, a compact submanifold M of Ss

m(c, r) (or of Hs-λ

m{c, r)) in
Es

m+1 is called mass-symmetric if the center of mass of M in Es

m+1 is just the
center c of Ss

m(c, r) (or of Hs-1

m{cf r)). Lemmas 1 and 4 imply the following.

LEMMA 6. // M is a compact, space-like, minimal submanifold of the pseudo-
Riemannian sphere Ss

m, then M is mass-symmetric in Es

m+1.
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Proof. Under the hypothesis, we have Ax=—nH=nx. Thus \ x dV=0.
J M

(Q.E.D.)

Remark 4. From the proof of Lemma 6, we see that if M is an n-dimen-
sional, compact, space-like, minimal submanifold of Ss

m, then the first non-zero
eigenvalue λλ of Δ on M satisfies λ^n.

§4 Finite-type submaniίolds in Es

m+1.

Let M be a compact, space-like submanifold of Es

m+1. Then M with the
induced metric is a Riemannian manifold. Thus, the Laplacian Δ of M is an
elliptic differential operator and it has infinite sequence of eigenvalues:

Let VΛ={/eC°°(M) | Δf—λkf) be the eigenspace of Δ with eigenvalue λk.
Then each Vk is finite-dimensional. If we define an inner product on C°°{M)

by (/, g)=\ fgdVy then the decomposition ΣϊUV* is orthogonal and dense in
J M

C°°(M) (in ZΛsense). Vo is 1-dimensional and it consists of constant functions.
For each /eC°°(M), let ft be the projection of / onto Vt. Then we have

the following decomposition:

(4.2) / = Σ Λ (in ZΛsense).

If / is a non-constant function on M, there is a positive integer p^l such
that fpΦO and /=/o+Σίέp/ ί . If there are infinite ft's which are nonzero, we
put #=oo. Otherwise, there is an integer q^p such that fqΦθ and /=/o+Σ?=p/ί
Thus, in both cases, we have

(4.3) /-/0= ^ ^

where q is either co or an integer ^p.
For the compact, space-like submanifold M in Es

m+1, we put

(4.4) X = ( X i , •••, Xm + l ) ,

where xA is the A-th rectangular coordinate function of M in Es

m+1. For each
xΛ, we have

A=l, •••, m+1.(4.5)

We put

(46)

1Λ

XΛ—(XΛ)O=[ΣI (XA)I

p=inf{pΛ),

where A ranges among all A such that XAΦ(XA)O' It is clear that p is an
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integer ^ 1 and q is either oo or an integer ^p. The pair of these invariants
lp, q] is called the order of M in Es

m+1 (cf. [1]). The submanifold M in Es

m+1

is said to be of finite type if q is finite. Otherwise, M is of infinite type. The
submanifold M in Es

m+1 is said to be of k-type if there exist exactly k nonzero
xt's in the following decomposition:

Q

(4.7) x = χo+Έ xt, Axt=λtxt.
t = p

We need the following.

PROPOSITION 3. Let M be a compact, space-like submanifold of E,m+1. Then
M is of finite type if and only if there exists a non-trivial polynomial P such that
P(A)H=0 (or equivalents, P(A)(x-xo)=0).

Proof. Consider the decomposition (4.7). If M is of finite type, q is finite.
Thus, we have from Lemma 4,

(4.8) -nAΉ= Σ λtι+1xt, ί = 0 , 1, 2, ••• .

Let Ci= — Σ?=p^ί, C 2 = Σ ί < ^ « ^ * , Cq-p+i—i—l)q~p+1λp ••• λq. Then we find

(4.9) AkH-\-cAk-lH-\- ••• +ckH=0, k=q-p+l.

Conversely, if H satisfies (4.9) for some &^0, then k^l by Lemma 4. Thus,
by (4.7) and (4.9), we find

λt(λt*+c1λt

k-1+ - +ck)xt=0 .(4.10)

Let

Then (4.10)

(4.11)

gives

t = l

If xsφ0, then

for some A.

(4.12)

where (/, g

Thus, we

ί = l

Σ Λ(/

find

Since

k-1+ ••> +ck)((xt)A, (XS)A)

s)A) = (A(xt)A, (xs)A)

A(xs)B)=λs({xt)A, (xt)A),
we find
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if tΦs. Therefore, (4.12) implies

(4.13) V+CiV~M hc*=0 whenever xtφ0.

Since equation (4.13) has at most k real solutions, at most k of the xt'$ in (4.7)
are nonzero. Thus, M is of finite-type. Similar argument applies to P(A)(x—x0)
=0. (Q. E. D)

From the proof of Proposition 3, we also have the following.

PROPOSITION 4. Let M be a compact, space-like submanifold of Es

m+1. If
M is of k-type, then there exists a polynomial P of degree k such that P(Δ)//=0
{or P(A)(x-xo)=O.) Conversely, if P(A)H=0 (or P(A)(x-xo)=ΰ) for a polynomial
P of degree d^l, then M is of k-type for some k; d^k^l.

Now, we give the following Lemmas for later use.

LEMMA 7. Let M be a compact, space-like submamfold of Es

m+1. If M is
not of 1-type and if H satisfies A2H-\-bAHJrcH=O for some constant b and c, then
b= — (λp+λ^)<0 and c—λpλq>0 where [_p, q] is the order of M in Es

m+1.

Proof. Under the hypothesis, Proposition 4 shows that M is of 2-type.
Thus, we have x=xo+xp+xq. Therefore, we find

Thus, we have λp

2+bλp+c=0, λq

2+bλq

J

Γc=O. Since λp and λq are positive real
roots of t2jrbt+c=0, we have b=-(λp+λq)<0 and c=-λpλq>0. (Q.E.D)

LEMMA 8. Let M be α compact, space-like submamfold of Es

m+1. Then x0 is
the center of mass in Es

m+1.

Proof. Since ί xtdV=l/λ\ AxtdV=0, (4.9) gives to xo=[ xdvλ dV.
JM JM JM JM

(Q.E.D)

LEMMA 9. Let M be a space-like submamfold of Es

m+ί. Then we have

(4.15) AH=ADH+ Σ {C7EiAH)Eί+ADEiHEi+h(Eι, AHEX)},

where AD is the Laplacian associated with D and Elf •••, En an orthonormal local
basis of M.

Proof. Let a be any vector in Es

m+1 and X, Y any vector fields tangent to
M. We have

(4.16) YX<H, a>=(DγDxH, a>-(lγ(AHX), β>

-<ADχHY, a>-<h(Y, AHX), a>
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Since <, > is non-degenerate, this gives (4.15) where

ADH=- Σ {DEίDEiH-DlE.EiH}.
Eι (Q.E.D)

§ 5. 1-type Submanifolds in Es

m+1.

In this section, we give the following characterization theorem for 1-type
submanifolds.

THEOREM 1. Let M be a compact, space-like submanifold of Es

m+1. Then M
is of 1-type in Es

m+1 if and only if M is a minimal submanifold in a pseudo-
Riemannian sphere Ss

m(c, r) for some c^Es

m+1 and r > 0 .

Proof. If M is of 1-type in Es

m+1, we have Ax=λp(x—x0). Thus, by
Lemma 4, we find

(5.1) nH=λp(x0-x).

This shows that n$xH=—λpX. Thus, we have

(5.2) i4j5r=—/ and DH=0.

Moreover, by (5.1), we also have

X(x—x0, x—xo}=2(X, x—xo>=0

for any X tangent to M. Thus, (x—x0, x—x0} is constant.
If <*—x0, x—xo>=O, then M lies in the light cone C= {x^Es

m+1 | <x—xQ,
x—Xoy—0} with vertex at x0. Since M lies in C and x0 is the center of mass
of M in Es

m+1, M must lies in both parts of the light cone C. This is impossi-
ble since M is assumed to be a space-like submanifold. Thus, <//, H}Φθ.
Consequently, M is pseudo-umbilical in Es

m+1 with parallel mean curvature
vector. Thus, by Lemma 2, M is either a minimal submanifold of a pseudo-
Riemannian sphere or a minimal submanifold of a pseudo-hyperbolic space.
Since M is compact, Proposition 2 shows that the second case cannot occurs.

Conversely, if M is a minimal submanifold of a pseudo-Riemannian sphere,
then Lemmas 1 and 4 imply that AH-{-λH=0 for some constant λ. Thus, by
Proposition 4, M is of 1-type in E8

m+1. (Q.E.D.)
In the following, a compact hypersurface N of the pseudo-hyperbolic space

Hs-x"1 is called a small hypersphere of Hs-im if iV is the intersection of Hs-ιm

with a pseudo-Riemannian sphere Ss

m(c, r) in Es

m+1. A small hypersphere of
// s_im is a totally umbilical submanifold in both /7s_im and i? 4

m + 1 . Moreover, a
small hypersphere of i/ s-im is a totally umbilical hypersurface of a linear hyper-
plane L in £ s

m + 1 with £ as its hyperplane normal.
By applying Theorem 1, we may obtain the following.

COROLLARY 1. Let M be a compact, space-like submanifold of a pseudo-
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hyperbolic space H,-^ in Es

m+ί. Then M is of 1-type in Es

m+1 if and only if
M is a minimal submanifold of a small hypersphere of Hs-ιm.

In particular, if E™'1 is the Lorentz-Minkowski space-time, Corollary 1
reduces to the following.

COROLLARY 2. A compact submanifold M of the hyperbolic space HmdE1

m+1

is of 1-type in the Lorentz-Minkowski world if and only if M ts a minimal sub-
manifold of a small hypersphere of Hm.

% 6. Hypersurfaces in Anti-de Sitter World.

It is known that there exist abundant examples of compact hypersurfaces
with constant mean curvature and constant scalar curvature in a Riemannian
sphere Sm. In this section, by applying the theory of finite-type submanifolds,
we prove the following non-existence theorem in the anti-de Sitter world.

THEOREM 2. There exist no compact space-like hypersurfaces with constant
mean curvature and constant scalar curvature in the anti-de Sitter space-time Hιn+1.

Proof. We regard the anti-de Sitter space-time H1

n+1 as a hypersurf ace of
E2

n+2 defined by

(6.1) Hx

n+1= {XGΞ£2*+2 I <χ, *> = - l }

Let M be a compact space-like hypersurf ace of H1

n+1. Then the position
vector x of M in E2

n+2 is a time-like unit normal vector. From Lemma 1, we
have

(6.2) #=//'+*,

where H' is the mean curvature vector of M in H1

n+1. Since M is space-like,
H' is either zero or time-like. We put

(6.3) <#', H'y = -a\

Then H'=aξ for a unit time-like vector field ξ normal to M and tangent to
//in + 1. Moreover, we have \x A^——na. By applying (2.9), we find

(6.4) Σ <h(Et, AHEt), χ> = Σ <AHEt, AxEι} = -Σl <AπElf Et]>
l i t

= -n<H, H> = n + na2.

Similarly, applying (2.9) and (5.2) and Lemma 2, we also have

(6.5) Σ <h(Et, AHEX\ ξy^a\\A^-t

Consequently, (6.4) and (6.5) give
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(6.6) ΣA(£,, AHEτ)=-(.\\Af1it+n)H'-(.n+nat)x.

Since Λξ is self-adjoint and M is space-like, we may diagonalize Λξ. Let
Eu •••, £ n be an orthonormal local basis of M such that

(6.7) AξEt=μtEt, ι = l , » . , n .

If we put

k — l

then (6.7) implies

(6.8) {lEιAH)EJ=(Eia)μjE}+a{Etμ])E}+^ a(jt]-μk)ω1

t(Et)Ek.

Therefore, by the Codazzi equation, we obtain

(6.9) a{(Etμj)Ei-(E]μι)Ei+'Σ (μj-μ*)ωj

k{Ei)Ek

-Έ(μτ-μk)ωί

l!(Ej)Ek}=0,

where we have used the fact Dξ=0. If jφi, (6.9) gives

(6.10) aίEφ^aίμi-μM'ίEj), }Φι.

Since ω i ^ - ω / , (6.8) and (6.10) imply

(6.11) Σ C7EiAH)Eι=Σ, ί(ίEta)μiEi+a(Etμι)Eχ-] + a Σ (Ejμt)EJ.

Since Y^iμι — XxA^——na, (5.11) gives

(6.12) Σ (VEiAH)El=

Consequently, by applying Lemma 2, Lemma 8, (6.6), (6.12), we find

(6.13) AH=ADΉ'+2tA +

In particular, if M has constant mean curvature a in i/in+1, then D'H'=0. Thus
(6.13) reduces to

(6.14) Δ//--( | | y l f | |
2 +n)// / -(n+nα 2 )x .

On the other hand, since the second fundamental form Ji of M in E2

7 l + 2 is given
by

(6.15)

equation (2.7) of Gauss gives



SUBMANIFOLDS IN PSEUDO-EUCLIDEAN SPACES 371

(6.16) τ=\\Aξ\\2-n2a2-n(n-l),

where τ is the scalar curvature of M. Combining (6.14) with Lemma 1, we find

(6.17) AH+(\\Aξ\\2-\-n)H+(na2-\\Aξ\\2)x=O.

If the scalar curvature τ of M is also constant, then (6.16) shows that

(6.18) b=\\Aξ\\*+n and c=na2-\\Aξ\\2112

are constant. Therefore, Lemmas 4 and 7 imply that M is of 1-type. Therefore,
x=xo4-xp for some integer p^l. Combining this with Lemma 4, we obtain

(6.19) nH=λp(x0-x).

On the other hand, (6.17) and Lemma 5 give

(6.20) (na2-\\Aξ\\2)^x dV=Q.

If na2—\\Aξ\\2, then AH= — (n+\\Aξ\\2)H which is impossible. Therefore, we find
xo=O. Thus, (6.19) gives nH=—λpx. Since x and ξ are orthonormal, Lemma 1
implies that this case is also impossible. (Q. E.D)

A space-like hypersurface in H1

n+1 (or in Hn+1) is said to be isoparametric
if the Weingarten map Aξ has constant eigenvalues. Since a space-like iso-
parametric hypersurface in H-J1*1 (or in Hn+1) has constant mean curvature and
constant scalar curvature, Theorem 2 implies immediately the following.

COROLLARY 3. There exist no compact space-like isoparametric hypersurfaces
in the anti-de Sitter space-time.

§ 7. Hypersurfaces in Hyperbolic Space.

In this section, we apply our previous results to give the following classifi-
cation theorem in hyperbolic space.

THEOREM 3. The only compact hypersurfaces with constant mean curvature
and constant scalar curvature in the hyperbolic space Hn+1 are small hyper spheres
of Hn+1.

Proof. We regard the hyperbolic space Hn+1 as a space-like hypersurface
of the Lorentz-Minkowski world Eλ

nJr2 defined by

(7.1) ^ + 1 = { χ £ ^ + 2 I <*, *> = - l and t>0}.

Let M be a compact hypersurface of Hn+1 with mean curvature vector H'. Let
ξ be a unit vector field in the direction of W. We put H'=aξ. Then, by an
argument similar to that given in section 6, we may obtain
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— r DΉ' 2

+ (\\Aζ\\2-n)H'+(na2-n)x.

If M has constant mean curvature, (7.2) reduces to

(7.3) AH=(\\Aξ\\2-n)H'+(na2-n)x.

On the other hand, we have

(7.4) H=H'+x,

(7.5) τ=n2a2-\\Aξ\\2-n(?ι-l).

Thus, we obtain

(7.6) AH+bH+cx=0,

where b=n— \\Aξ\\2 and c—\\Aζ\\2—na2. If M has constant scalar curvature τ,
too, then (7.5) shows that b and c are constants. Thus, by applying Lemma 5,
we obtain

(7.7) cxo[ dV=c\ x dV=0.
JM JM

Since M lies in Hn+\ t>0. Therefore the center of mass cannot be the origin
of £ i n + 2 . Thus, c=\\Aξ\\2-na2=0. This implies that M is totally umbilical in
Hn+1. Therefore, M is a small hypersphere of Hn+1 (cf. [1, p. 129].) (Q. E. D.)

Remark 4. It is well-known that a small hypersphere of Hn+1 has constant
mean curvature and constant scalar curvature.

COROLLARY 4. The only compact isoparametric hypersurfaces of the hyper-
bolic space Hn+1 are small hyperspheres.

§8. Hypersurfaces in de Sitter World.

In this section, we study 2-type hypersurfaces in the de Sitter world.

THEOREM 4. Let M be a compact space-like hypersurface in the de Sitter
space-time S i π + 1 c£i 7 l + 2 . Then M has nonzero constant mean curvature and con-
stant scalar curvature in S1

n+1 if and only if M is mass-symmetric and of 2-type
in the Lorentz-Minkowski world E^*2.

Proof. We recall that the de Sitter space-time S^*1 is a hypersurface of
E,n+2 defined by

(8.1) SS+ί=:
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Let Hf be the mean curvature vector of the compact, space-like hypersurface
M in Sin + 1. Then either H'=Q or H' is time-like. Let ξ be the time-like unit
vector in Sin + 1 normal to M. We put H'—aζ. Then we have

(8.2) H=H'-x, tr Aξ=-na.

By applying an argument similar to that given in section 6, we may obtain

(8.3) Δ#=Δ Z ) ' / / / +2trΛ Z r / Γ + ̂ g r a d < # ' , H'>

+(n-\\Aξ\\2)H'-(n-na2)x.

If M is mass-symmetric and of 2-type in E^*2, then there exist two constants
b and c such that (Proposition 3)

(8.4) AH+bH+cx=0.

Combining (8.2), (8.3) and (8.4) we find

(8.5) ADΉ/+

-=(\\Aζ\\2-n-b)H'+(b-c+n-na2)x.

Since x is normal to Sx

n+1 and other terms in (8.5) are tangent to Sin+1, we
obtain na2=b—c+n. Thus, M has constant mean curvature a in the de Sitter
world. Therefore, (7.5) gives

(8.6) \\Aς\\*=n+b

which is constant. From equation (2.7) of Gauss, we see that the scalar curva-
ture τ of M satisfies

(8.7) r

Therefore, M has constant scalar curvature.
Conversely, if M has constant mean curvature in Sx

n+ι and constant scalar
curvature, then (8.3) implies

(8.8) AH+bH+cx=0,

where b—\\Aζ\\2—n and c = | | ^ y 2 — n a 2 are constant. Therefore, by applying
Lemma 5 and (8.8), we see that the center of mass of M in E^*2 is the origin.
Thus, M c S i π + 1 is mass-symmetric in Ex

n+2. Moreover, (8.8) and Proposition 3
show that M is either of 1-type or of 2-type. If M is of 1-tyρe, Lemma 4 gives
nH——λpx. Thus, Lemma 1 implies that M is minimal in the de Sitter world
S1

n+1. This is a contradiction. (Q.E.D.)

COROLLARY 5. Let M be a compact, space-like hypersurface in the de Sitter
space-time 5iπ + 1. // M has nonzero constant mean curvature and constant scalar
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curvature, then

(8.9) *=(!_£)(!_ A),

(8.10) τ=(n-l)(λp+λq)-λpλq>0,

(8.11)

This corollary follows from Lemma 7 and the proof of Theorem 4. From

Lemma 6 and Theorem 4 we also have the following.

COROLLARY 6. Let M be a compact, space-like, isoparametric hypersurface of

the de Sitter space-time S i n + 1 c £ i n + 2 . Then M is mass-symmetric. Moreover, if

M is not minimal in 5in + 1, then M is of 2-type in Eλ

n+2.

Remark 5. We can prove that if M is a compact, space-like, 2-tyρe hyper-

surface of Siπ + 1, then M is always mass-symmetric in Sin + 1.
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