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A CERTAIN SPACE-TIME METRIC AND SMOOTH

GENERAL CONNECTIONS

BY TOMINOSUKE OTSUKI

Introduction.

For a manifold M with a general connection Γ we say a connected subset
^ is a black hole, if it has a neighborhood U such that if any one going on
along a geodesic enters U, then he will be finally swallowed in A. The present
author gave a way in [8] by which we can construct a general connection Γ
for any Riemannian manifold (M, g) and any point p of M such that Γ has p
as a black hole and has the same system of geodesies as the one of (M, g)
outside of a neighborhood.

In the theory of general relativity, the Eddington-Finkelstein metric g is
given by

(1) dτ2=-(l-^)dt2+2dtdr+r\dθ'2+ύri2θ dφ2),

where (r, θ, φ) are the polar coordinates of the space R* with the coordinates

{xi, x2, xs) as

, Xι—rsin θ cos φ, x2—rsinθsϊnφ, x3—rcosθ.

As is well known, the curve r = 0 in the space-time is a black hole as is men-
tioned above, even though the metric (1) loses the meaning along this curve, (1)
is locally equivalent to the Schwarzschild metric

(2) dτ2^- r~~2m ^
r

dτ^ d f + ^ dr+r(d
r r—2m

through the change of time t in (2) to t—r—log|r—2m|2m. (2) loses its meaning
where r = 0 and r—2m but (1) is everywhere regular except r=0.

Now, we denote the affine connection made by the Christoffel symbols from
the space-time metric (1) by Γg. Taking a tensor field P of type (1, 1), consider
the general connection Γ=PΓg. Then, any geodesic of Γg is also a geodesic
with respect to Γ. Conversely any geodesic of Γ is also a geodesic with respect
to Γgt where P is an isomorphism on the tangent space of Rx{Rs— {0}). We
consider a problem: Taking P suitably, is it possible Γ—PΓg to extend smoothly
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over RxRs=R* with the canonical coordinates (x0, xu x2, *3)? Let Γ—{P)} Γ}k),
where P) and Γ}k are the components of Γ with respect to the coordinates

t=ulf r=u2, Θ — uz, φ^Ui.

We have the Christoffel symbols j . j made by (1) as follows:

\mju2u2 0
0 0
0 0
0 0

ί
mB/u2u2

—m/u2u2

0 0
0 0

-u2 0
0 — u2sm2u3

and

0
0

0
0

l/ut

0

0
0
0

l/u2

-?n/u2u2

0
0
0

0
0

2m—u2

0 (2m—u2)sm2u s

0
l/u2

0
0

0
0
0

—sin

where B—l—2m/r. Since we have by definition Γ}k—ΣPU \ and from the

condition that Γ is extended smoothly to R\ P) must be of the forms as

(3) Ptj=Fjuiu2+2mFίui, P\-=-F\u2u2y P\=F\u2y P\=

where, F] are continuous near r=0. Hence we have

( 4 )

where * is —(Fι+F2)(,u2ysin2Us—Flu2smu3cosu3. This expression tells us that
if we compute the components of Γ in the canonical coordinates (x0, xu x2f x3) of
RxR3, it is possible to make it continuous but impossible to make it smooth.
Since we have the expression of g in the coordinates (x0, xlt x2, xs) as

m(Fl+F:
-mFl

0
0

5)

1

-mFι

2

0

Fl
w\ sin u 3

0
Fl

— {F\+Fl){u2f
Flu2cosus

0
Flsinus

F}u2cosu3

=i r
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and the coefficients of the quadratic form rdτ2 are continuous but some of them
are not differentiate at the points where r=0. This fact may be the reason
which implies the above situation on the general connection.

§ 1. A certain space-time metric.

In this section, we shall give a space-time metric on Rx(Rs— {0}) with the
curve r = 0 as a black hole and make smooth general connections on R4 having
the same system of geodesies with the one of this pseudo-Riemannian metric in
Rχ(R*-{0}).

First we consider a space-time metric g given by

, 2 +_2_
r(1.1)

in the same coordinates (t, r, θ, φ) in Introduction and setting da2—YigljduiduJ,

where t=uu r—u2, Θ—uz and φ—u±.
i

\jk>

Then we have the Christoffel symbols

I I made by (1.1) as follows.

({«»=

—

0
0
0

0

o
0
0
0

n ju2u2

0
0
0

Am2B/h

0
0
0
0

0
0

— u2u2

0 -u2ι

,2 —4m2/u2u2

4:m2/u2u2

0
0

0
0

l/u2

0

0
0
0

l/κ 2

0
l/u2

0

0

0
0
0

cotu

-l/u2

0 -1
0

0
0
0

— cos z/3sin

0
l/u2

cotu 3

G 0

0
0
0

ι2sm2us

>

0 0
0 0

3(u2γ o
0 —B(u2Ysm2u2

u3

>

where B = l~Am2/r2. Hence the equation of a geodesic with respect to this
space-time metric are
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(1.2)

d2t , 4m2/ dt dθ
2 . o

dp2 ' r2 \dp) \dp) \dp

d2r 4m2 B (_dt\2_ 8m2 _d^_dr___ 1 / dr '

r dp dp dp

?ί2 r dp dp ' " ^ ^ d/> ~ V ί

where /; is the canonical parameter of the geodesic as

(1.3)
Jσ 2 2
dp2 ~~~\ ~~ r2 A rfΛ / r ~dύ~~dύ^ r \\ dp •

- 1

0

1

according to the sign of Σgιj(dui/dp)(duj/dp).

Next, consider a geodesic which pass through a given point qo=(t0,r0, θo>φo)
and (dq/dp)o=(ξOf η0, λ0, μ0). Then we may put

(7o=z~τr' and /o^U
2

without loss of generality, because the metric (1.1) is spherical symmetric with
respect to (xu x2, x9). Noticing that the third of (1.2) is satisfied with θ=π/2,
we put θ=π/2 in (1.2) and (1.3), we obtain the following equations:

(1.20

and

(1.30

dp2 * v-djt -Λifc) -0'
4m2B / dt y 8m2 dt dr 1 / dr y j dφ \ 2 _ π

~T~~\~dp~) "Ίr^ΊϊpΊίp r~\Ύp) ~ Vdp) 'dp2

d2φ 2 dr dφ __

7 ^ r d/> d/> ~

2 dt dr
r dp dp

From the third of (1.20 we see that r2{dψ/dp) is constant along the geodesic and
so we put this constant as
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Π 4) r 2
 UΨ —riff — j

Using this fact, the first and second of (1.20 become

d2t _ 4m 2 / dt y / 2

r 2 \ d * / r 2 " 'd/>2 r 2 V d £ .

J 2 r 4 m 2 ^ / dt y 8m2 d^ 6?r 1 / dr y JB

d ί > 2 + r \dp) r 2 d * d ί r V dp) r J '

from which we obtain

dp2 r2 dp dp r \ dp /

by cancelling / and hence

\dp) ~dtf

dt Λ
dp\dp dp I r dp\ dp dp /

Therefore we see that (l/r)(dr/dp—Br(dt/dρ)) is also constant along the geodesic
and we put this constant as

(1.5)
r \ dp dp •

Finally using (1.4) and (1.5) for (1.30 we have

and so

(1.6) -^ 2 +7^(-J-) 2 = - β (τr-
From (1.6) we see the following fact. When c= — l or 0, if r^2m (B^

which implies

d logr

Let ία be the moment such that the geodesic passes through the hypersurface
r=2m at the point (tly 2m, π/2, ψλ) then we have from (1.5)

dr
A=

1
2m dp

Therefore the geodesic enters the hypersurface r~2m with η1 <0, then the de-
creasing ratio of logr is greater than |^4|.

THEOREM 1. The space-time metric (1.1) has the curve r—0 in RxR3 as a
black hole for the system of visible geodesies, i. e. c— — \ or 0 in (1.3).
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§ 2. Smooth general connections with the same system of geodesies of (1.1).

In the canonical coordinates (x0, xlt x2, xs) of RxR* with xo=t, (1.1) can be
represented as

/ 4m2 \ 2 8 3 1 / s

(2.1) dσ2=-(l v-)df-\—ΓΣ Xidtdxi+Σ, dxidxt Γ ( Σ Xidx
\ r2 I r2 z=i ι=i r \ι=i

3

and setting the right hand side of (2.1) as Σ gaβdxadxβf we have

from which (gaβ)=(gaβ)~ί are given as

(2.3) £ 0 0 = 0 , g°*=gi0=xt,

Making use of (2.2) and (2.3), the Christoffel symbols j ? \ of (1.1) in the
iβγ)

canonical coordinates (xa) are given by the formulas as follows

(2.4)
βγϊ/ r 2 \ 0 -(r2δij-xιxj)r

« h | \ _ xh /Am2(r2—4:m2) —4:m
2xJ \

/ 3 r i / ~ 7 Γ \ -4m2Λ:ι - x ι x i - ( r 2 - 4 ? n 2 - l ) ( r 2 o i ; — xιxj)) '
Now, take a tensor field P of type (1,1) with local components Pβ and let

Γ be the general connection PΓg, where Γg is the affine connection with the

components \ R k Since for Γ—(Pσ

β, Γ$r) we have

and so in order to be determined Γ so that it is smooth near r = 0 and has the
same system of geodesies as the one of (2.1) in Rx(R3— {0}), it is necessary
and sufficient to put

where Fβ are smooth near r = 0 , and

(2.7) \Fa

β\Φθ where rΦO.

Then, Γ is regular where rΦO. Thus we obtain

i2 0
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, y n β /4m2(r2—4m2) — 4m2Xj \

-rzj hχhy __4m2Xι -χιχj-(r2-4m2-l)(r2δij~xιxjy

There are many freedoms of the choice of P for the purpose mentioned
above for (2.1). We request that

(2.9) 3f.o=O,"

where " , " denotes the covariant differentiation with respect to Γ. If we put
for F the condition

(2.10) ^

then we have for the covariant components of Γ:

the equalities
Λa . Γ'tf

'ijSO — * βO,

and hence

P 9

From (2.6) and (2.8), we have

where y α :=ΣFgxh. Hence, setting Wα=Σί\?*Λ, and using (2.7), the condi-

tion dίf.o^O is equivalent to

(2.11)

{r2{Fί+(r2-Am2)Vj} = {(r2-4

and the condition 3£o=O is equivalent to

(—V°r —r2F°(2.12)

{-Vhx}= { ( r 2 - 4 m 2 ) F 5 - ^ ί xh.

From the first of (2.11) and (2.12) we obtain

(FJ=0,

(2.13)
\

where λ is an auxiliary function. Then using (2.13) for the second of (2.11) we
can put

(2.14) F\=μx%,
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where μ is an auxiliary function, and hence we obtain

(2.15) 2r2μ=(r2-4rn2)(F°0-λr2).

Thus, we see that

LEMMA 2.1. Supposing that P does not depend on t, then 5^0=0 is equivalent
to (2.13), (2.14) and (2.15).

Now, considering (2.13), we take a special one such that

(2.16) F°Q=r2F and Fj=λδ),

then from (2.15) we obtain

χ - ? ^ _
2 A 2 '

r2—4m2

and so if we put

(2.17) μ=(r2-4m2)G,

then we obtain from the above equality

(2.18) λ=F-2G.

Thus, we obtain a special P=(Pf) implying δβ>0=0 given by

where F and G are smooth, FΦO and F—2GΦ0.

THEOREM 2. The general connection Γ—PΓg with P given by (2.19) is smooth
on RxRz, has the same system of geodesies as the one of the space-time metric
(2.1) where rΦO, and satisfies the conditions:

δf> 0=0 and gaβ,o=O,

where gaβ=^r2gaβ.

Proof. Except the last condition gaβ,o—ΰ, the rest ones are evident from
the above argument. In fact, we have

X% r Oij—XxX

and

β β ^
p , σ OX0 p , σ

into which substituting (2.19) and
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X. -(F-2G)xtx)
tx)

we can easily obtain gaβ.o^O. Q.E.D.

Finally, we give the components Γβΐ of Γ—PΓg in Theorem 2, which are

(2.20) ( Γ ; r ) = F ? ( 4 ; 2

/4m2(r2-4m2)

where

F°Q=r2F, Fιo=(r2-im2)Gx ;

§3. The curvature form for a special general connection in Theoreml2.

In this section, we shall give the curvature form for the special general
connection in Theorem 2 given by

(3.1) FΞΞI and GΞΞO.

Then we have

(3.2) P*β=r'δ*p

and (2.20) becomes

/4m2(r2-4m2) -4?n2xΛ \
)/

The connection Γ=PΓg in Theorem 2 is smooth on RxR3 and hence we can
obtain the curvature along r = 0 by taking its limit from the outside of the curve.
Where rΦO, Γ is regular, i.e. det (Pβ)Φθ, therefore the curvature form Ωβ

can be computed from the one of Γg by the formula ([2], §7)

where fD denote the covariant differentiation with respect to Γg. Hence (3.4)

becomes in this case as

(3.5) Ω«β=r12'Ωa

β.

Since we obtain the connection forms of Γg from (2.4) as follows:

(3.6) fωl——τ-dtf

 tω)— — άxjJrXjd logr, fω\——~Xi(Bdt—d logr),
Y Y
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the curvature forms of Γs

'Ωa

β:-=d'ωa

β+Σ,'ω?Λ'afβ
P

are given by a little long computation as follows:

Ώ)— —dt/\d%jΛ

~)dxvΛdxj+ 4 m ^ 2

12TU2 Am2 / 2 \

dtAd logH — XjdtAdxi+(B -)xjdxιAd logr.

We see that the curvature forms vanish on the curve r=0.
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