A CERTAIN SPACE-TIME METRIC AND SMOOTH GENERAL CONNECTIONS

By Tominosuke Otsuki

Introduction.

For a manifold M with a general connection Γ we say a connected subset A is a black hole, if it has a neighborhood U such that if any one going on along a geodesic enters U, then he will be finally swallowed in A. The present author gave a way in [8] by which we can construct a general connection Γ for any Riemannian manifold (M, g) and any point p of M such that Γ has p as a black hole and has the same system of geodesics as the one of (M, g) outside of a neighborhood.

In the theory of general relativity, the Eddington-Finkelstein metric g is given by

$$
\begin{equation*}
d \tau^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+2 d t d r+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right), \tag{1}
\end{equation*}
$$

where (r, θ, φ) are the polar coordinates of the space R^{3} with the coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ as

$$
r=\sqrt{\sum x_{2}^{2}}, \quad x_{1}=r \sin \theta \cos \varphi, \quad x_{2}=r \sin \theta \sin \varphi, \quad x_{3}=r \cos \theta .
$$

As is well known, the curve $r=0$ in the space-time is a black hole as is mentioned above, even though the metric (1) loses the meaning along this curve, (1) is locally equivalent to the Schwarzschild metric

$$
\begin{equation*}
d \tau^{2}=-\frac{r-2 m}{r} d t^{2}+\frac{r}{r-2 m} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right), \tag{2}
\end{equation*}
$$

through the change of time t in (2) to $t-r-\log |r-2 m|^{2 m}$. (2) loses its meaning where $r=0$ and $r=2 m$ but (1) is everywhere regular except $r=0$.

Now, we denote the affine connection made by the Christoffel symbols from the space-time metric (1) by Γ_{g}. Taking a tensor field P of type $(1,1)$, consider the general connection $\Gamma=P \Gamma_{g}$. Then, any geodesic of Γ_{g} is also a geodesic with respect to Γ. Conversely any geodesic of Γ is also a geodesic with respect to Γ_{g}, where P is an isomorphism on the tangent space of $R \times\left(R^{s}-\{0\}\right)$. We consider a problem: Taking P suitably, is it possible $\Gamma=P \Gamma_{g}$ to extend smoothly

Received September 18, 1984
over $R \times R^{3}=R^{4}$ with the canonical coordinates ($x_{0}, x_{1}, x_{2}, x_{3}$)? Let $\Gamma=\left(P_{\jmath}^{2}, \Gamma_{j k}^{j}\right)$, where P_{j}^{\imath} and $\Gamma_{j k}^{i}$ are the components of Γ with respect to the coordinates

$$
t=u_{1}, \quad r=u_{2}, \quad \theta=u_{3}, \quad \varphi=u_{4} .
$$

We have the Christoffel symbols $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ made by (1) as follows:

$$
\begin{aligned}
& \left(\left\{\begin{array}{c}
1 \\
j k
\end{array}\right\}\right)=\left(\begin{array}{cccc}
m / u_{2} u_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -u_{2} & 0 \\
0 & 0 & 0 & -u_{2} \sin ^{2} u_{3}
\end{array}\right), \\
& \left(\left\{\begin{array}{c}
2 \\
j k \\
\}
\end{array}\right)=\left(\begin{array}{cccc}
m B / u_{2} u_{2} & -m / u_{2} u_{2} & 0 & 0 \\
-m / u_{2} u_{2} & 0 & 0 & 0 \\
0 & 0 & 2 m-u_{2} & 0 \\
0 & 0 & 0 & \left(2 m-u_{2}\right) \sin ^{2} u_{3}
\end{array}\right)\right. \\
& \left(\left\{\begin{array}{c}
3 \\
j k
\end{array}\right\}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 / u_{2} & 0 \\
0 & 1 / u_{2} & 0 & 0 \\
0 & 0 & 0 & -\sin u_{3} \cos u_{3}
\end{array}\right),
\end{aligned}
$$

and

$$
\left(\left\{\begin{array}{c}
4 \\
j k
\end{array}\right\}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / u_{2} \\
0 & 0 & 0 & \cot u_{3} \\
0 & 1 / u_{2} & \cot u_{3} & 0
\end{array}\right),
$$

where $B=1-2 m / r$. Since we have by definition $\Gamma_{j k}^{i}=\Sigma P_{h}^{2}\left\{\begin{array}{c}h \\ j k\end{array}\right\}$ and from the condition that Γ is extended smoothly to R^{4}, P_{\jmath}^{2} must be of the forms as

$$
\begin{equation*}
P_{\jmath}^{2}=F_{j}^{i} u_{2} u_{2}+2 m F_{2}^{i} u_{2}, \quad P_{2}^{2}=F_{2}^{i} u_{2} u_{2}, \quad P_{3}^{2}=F_{3}^{i} u_{2}, \quad P_{4}^{2}=F_{4}^{i} u_{2} \sin u_{3}, \tag{3}
\end{equation*}
$$

where, F_{j}^{i} are continuous near $r=0$. Hence we have

$$
\left(\Gamma_{j k}^{i}\right)=\left(\begin{array}{cccc}
m\left(F_{1}^{i}+F_{2}^{i}\right)-m F_{2}^{2} & 0 & 0 \tag{4}\\
-m F_{2}^{2} & 0 & F_{3}^{2} & F_{4}^{2} \sin u_{3} \\
0 & F_{3}^{2} & -\left(F_{1}^{i}+F_{2}^{i}\right)\left(u_{2}\right)^{3} & F_{4}^{i} u_{2} \cos u_{3} \\
0 & F_{4}^{2} \sin u_{3} & F_{4}^{2} u_{2} \cos u_{3} & *
\end{array}\right)
$$

where $*$ is $-\left(F_{1}^{2}+F_{2}^{i}\right)\left(u_{2}\right)^{3} \sin ^{2} u_{3}-F_{3}^{2} u_{2} \sin u_{3} \cos u_{3}$. This expression tells us that if we compute the components of Γ in the canonical coordinates ($x_{0}, x_{1}, x_{2}, x_{3}$) of $R \times R^{3}$, it is possible to make it continuous but impossible to make it smooth. Since we have the expression of g in the coordinates ($x_{0}, x_{1}, x_{2}, x_{3}$) as

$$
d \tau^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\frac{2}{r} \sum_{i=1}^{3} x_{i} d t d x_{i}+\sum_{i=1}^{3} d x_{i} d x_{i}-\left(\sum_{i=1}^{3} \frac{x_{i}}{r} d x_{i}\right)^{2}
$$

and the coefficients of the quadratic form $r d \tau^{2}$ are continuous but some of them are not differentiable at the points where $r=0$. This fact may be the reason which implies the above situation on the general connection.

§ 1. A certain space-time metric.

In this section, we shall give a space-time metric on $R \times\left(R^{3}-\{0\}\right)$ with the curve $r=0$ as a black hole and make smooth general connections on R^{4} having the same system of geodesics with the one of this pseudo-Riemannian metric in $R \times\left(R^{3}-\{0\}\right)$.

First we consider a space-time metric g given by

$$
\begin{equation*}
d \sigma^{2}=-\left(1-\frac{4 m^{2}}{r^{2}}\right) d t^{2}+\frac{2}{r} d t d r+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) \tag{1.1}
\end{equation*}
$$

in the same coordinates (t, r, θ, φ) in Introduction and setting $d \sigma^{2}=\sum_{\imath, j} g_{\imath,} d u_{i} d u_{\nu}$, where $t=u_{1}, r=u_{2}, \quad \theta=u_{3}$ and $\varphi=u_{4}$. Then we have the Christoffel symbols $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ made by (1.1) as follows.

$$
\begin{aligned}
& \left(\left\{\begin{array}{c}
1 \\
j k
\end{array}\right\}\right)=\left(\begin{array}{cccc}
4 m^{2} / u_{2} u_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -u_{2} u_{2} & 0 \\
0 & 0 & 0 & -u_{2} u_{2} \sin ^{2} u_{3}
\end{array}\right), \\
& \left(\left\{\begin{array}{c}
2 \\
j k
\end{array}\right\}\right)=\left(\begin{array}{cccc}
4 m^{2} B / u_{2} & -4 m^{2} / u_{2} u_{2} & 0 & 0 \\
-4 m^{2} / u_{2} u_{2} & -1 / u_{2} & 0 & 0 \\
0 & 0 & -B\left(u_{2}\right)^{3} & 0 \\
0 & 0 & 0 & -B\left(u_{2}\right)^{3} \sin ^{2} u_{3}
\end{array}\right), \\
& \left(\left\{\begin{array}{c}
3 \\
j k \\
\hline
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 / u_{2} & 0 \\
0 & 1 / u_{2} & 0 & 0 \\
0 & 0 & 0 & -\cos u_{3} \sin u_{3}
\end{array}\right),\right. \\
& \left(\left\{\begin{array}{c}
4 \\
j k \\
j
\end{array}\right\}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / u_{2} \\
0 & 0 & 0 & \cot u_{3} \\
0 & 1 / u_{2} & \cot u_{3} & 0
\end{array}\right),
\end{aligned}
$$

where $B=1-4 m^{2} / r^{2}$. Hence the equation of a geodesic with respect to this space-time metric are

$$
\left\{\begin{array}{l}
\frac{d^{2} t}{d p^{2}}+\frac{4 m^{2}}{r^{2}}\left(\frac{d t}{d p}\right)^{2}-r^{2}\left(\frac{d \theta}{d p}\right)^{2}-r^{2} \sin ^{2} \theta\left(\frac{d \varphi}{d p}\right)^{2}=0 \tag{1.2}\\
\frac{d^{2} r}{d p^{2}}+\frac{4 m^{2} B}{r}\left(\frac{d t}{d p}\right)^{2}-\frac{8 m^{2}}{r^{2}} \frac{d t}{d p} \frac{d r}{d p}-\frac{1}{r}\left(\frac{d r}{d p}\right)^{2} \\
\quad-B r^{3}\left(\frac{d \theta}{d p}\right)^{2}-B r^{3} \sin ^{2} \theta\left(\frac{d \varphi}{d p}\right)^{2}=0 \\
\frac{d^{2} \theta}{d p^{2}}+\frac{2}{r} \frac{d r}{d p} \frac{d \theta}{d p}-\cos \theta \sin \theta\left(\frac{d \varphi}{d p}\right)^{2}=0 \\
\frac{d^{2} \varphi}{d p^{2}}+\frac{2}{r} \frac{d r}{d p} \frac{d \varphi}{d p}+2 \cot \theta \frac{d \theta}{d p} \frac{d \varphi}{d p}=0
\end{array}\right.
$$

where p is the canonical parameter of the geodesic as

$$
\begin{align*}
\frac{d \sigma^{2}}{d p^{2}} & =-\left(1-\frac{4 m^{2}}{r^{2}}\right)\left(\frac{d t}{d p}\right)^{2}+\frac{2}{r} \frac{d t}{d p} \frac{d r}{d p}+r^{2}\left\{\left(\frac{d \theta}{d p}\right)^{2}+\sin ^{2} \theta\left(\frac{d \varphi}{d p}\right)^{2}\right\} \tag{1.3}\\
& =c=\left\{\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right.
\end{align*}
$$

according to the sign of $\sum_{i, g} g_{i j}(d u i / d p)(d u j / d p)$.
Next, consider a geodesic which pass through a given point $q_{0}=\left(t_{0}, r_{0}, \theta_{0}, \varphi_{0}\right)$ and $(d q / d p)_{0}=\left(\xi_{0}, \eta_{0}, \lambda_{0}, \mu_{0}\right)$. Then we may put

$$
\theta_{0}=\frac{\pi}{2} \quad \text { and } \quad \lambda_{0}=0
$$

without loss of generality, because the metric (1.1) is spherical symmetric with respect to $\left(x_{1}, x_{2}, x_{3}\right)$. Noticing that the third of (1.2) is satisfied with $\theta \equiv \pi / 2$, we put $\theta=\pi / 2$ in (1.2) and (1.3), we obtain the following equations:

$$
\left\{\begin{array}{l}
\frac{d^{2} t}{d p^{2}}+\frac{4 m^{2}}{r^{2}}\left(\frac{d t}{d p}\right)^{2}-r^{2}\left(\frac{d \varphi}{d p}\right)^{2}=0, \\
\frac{d^{2} r}{d p^{2}}+\frac{4 m^{2} B}{r}\left(\frac{d t}{d p}\right)^{2}-\frac{8 m^{2}}{r^{2}} \frac{d t}{d p} \frac{d r}{d p}-\frac{1}{r}\left(\frac{d r}{d p}\right)^{2}-B r^{3}\left(\frac{d \varphi}{d p}\right)^{2}=0, \\
\frac{d^{2} \varphi}{d p^{2}}+\frac{2}{r} \frac{d r}{d p} \frac{d \varphi}{d p}=0
\end{array}\right.
$$

and

$$
\begin{equation*}
-B\left(\frac{d t}{d p}\right)^{2}+\frac{2}{r} \frac{d t}{d p} \frac{d r}{d p}+r^{2}\left(\frac{d \varphi}{d p}\right)^{2}=c, \tag{1.3'}
\end{equation*}
$$

From the third of $\left(1.2^{\prime}\right)$ we see that $r^{2}(d \varphi / d p)$ is constant along the geodesic and so we put this constant as

$$
\begin{equation*}
r^{2} \frac{d \varphi}{d p}=r_{0}^{2} \mu_{0}=J . \tag{1.4}
\end{equation*}
$$

Using this fact, the first and second of (1.2') become

$$
\left\{\begin{array}{l}
\frac{d^{2} t}{d p^{2}}=-\frac{4 m^{2}}{r^{2}}\left(\frac{d t}{d p}\right)^{2}+\frac{J^{2}}{r^{2}}, \\
\frac{d^{2} r}{d p^{2}}+\frac{4 m^{2} B}{r}\left(\frac{d t}{d p}\right)^{2}-\frac{8 m^{2}}{r^{2}} \frac{d t}{d p} \frac{d r}{d p}-\frac{1}{r}\left(\frac{d r}{d p}\right)^{2}-\frac{B}{r} J^{2}=0
\end{array}\right.
$$

from which we obtain

$$
\frac{d^{2} r}{d p^{2}}-\frac{8 m^{2}}{r^{2}} \frac{d t}{d p} \frac{d r}{d p}-\frac{1}{r}\left(\frac{d r}{d p}\right)^{2}-B r \frac{d^{2} t}{d p^{2}}=0
$$

by cancelling J and hence

$$
\frac{d}{d p}\left(\frac{d r}{d p}-B r \frac{d t}{d p}\right)=\frac{1}{r} \frac{d r}{d p}\left(\frac{d r}{d p}-B r \frac{d t}{d p}\right) .
$$

Therefore we see that $(1 / r)(d r / d p-B r(d t / d p))$ is also constant along the geodesic and we put this constant as

$$
\begin{equation*}
\frac{1}{r}\left(\frac{d r}{d p}-B r \frac{d t}{d p}\right)=\frac{\eta_{0}}{r_{0}}-\left(1-\frac{4 m^{2}}{r_{0}^{2}}\right) \xi_{0}=A . \tag{1.5}
\end{equation*}
$$

Finally using (1.4) and (1.5) for (1.3') we have

$$
-\left(B \frac{d t}{d p}-\frac{1}{r} \frac{d r}{d p}\right)^{2}+\frac{1}{r^{2}}\left(\frac{d r}{d p}\right)^{2}+\frac{B}{r^{2}} J^{2}=c B
$$

and so

$$
\begin{equation*}
-A^{2}+\frac{1}{r^{2}}\left(\frac{d r}{d p}\right)^{2}=-B\left(\frac{J^{2}}{r^{2}}-c\right) \quad \text { or } \quad\left(\frac{d \log r}{d p}\right)^{2}=A^{2}-B\left(\frac{J^{2}}{r^{2}}-c\right) \tag{1.6}
\end{equation*}
$$

From (1.6) we see the following fact. When $c=-1$ or 0 , if $r \leqq 2 m(B \leqq 0)$, which implies

$$
\left|\frac{d \log r}{d p}\right| \geqq|A|
$$

Let t_{1} be the moment such that the geodesic passes through the hypersurface $r=2 m$ at the point ($t_{1}, 2 m, \pi / 2, \varphi_{1}$) then we have from (1.5)

$$
A=\frac{1}{2 m} \eta_{1}, \quad \eta_{1}=\left.\frac{d r}{d p}\right|_{l=t_{1}}
$$

Therefore the geodesic enters the hypersurface $r=2 m$ with $\eta_{1}<0$, then the decreasing ratio of $\log r$ is greater than $|A|$.

TheOrem 1. The space-tıme metric (1.1) has the curve $r=0$ in $R \times R^{3}$ as a black hole for the system of visible geodesics, i.e. $c=-1$ or $0 \mathrm{in}(1.3)$.

§ 2. Smooth general connections with the same system of geodesics of (1.1).

In the canonical coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ of $R \times R^{3}$ with $x_{0}=t$, (1.1) can be represented as

$$
\begin{equation*}
d \sigma^{2}=-\left(1-\frac{4 m^{2}}{r^{2}}\right) d t^{2}+\frac{2}{r^{2}} \sum_{i=1}^{3} x_{i} d t d x_{i}+\sum_{i=1}^{3} d x_{i} d x_{i}-\frac{1}{r^{2}}\left(\sum_{i=1}^{3} x_{i} d x_{i}\right)^{2} \tag{2.1}
\end{equation*}
$$

and setting the right hand side of (2.1) as $\sum_{\alpha, \beta=0}^{3} g_{\alpha \beta} d x_{\alpha} d x_{\beta}$, we have

$$
\begin{equation*}
g_{00}=-\left(1-\frac{4 m^{2}}{r^{2}}\right)=-B, \quad g_{0,}=g_{j 0}=\frac{x_{2}}{r^{2}}, \quad g_{\imath \jmath}=g_{j i}=\delta_{i j}-\frac{x_{2} x_{\jmath}}{r^{2}}, \tag{2.2}
\end{equation*}
$$

from which $\left(g^{\alpha \beta}\right)=\left(g_{\alpha \beta}\right)^{-1}$ are given as

$$
\begin{equation*}
g^{00}=0, \quad g^{02}=g^{i 0}=x_{\imath}, \quad g^{\imath \jmath}=\delta_{i j}+\left(B-\frac{1}{r^{2}}\right) x_{\imath} x_{\jmath} . \tag{2.3}
\end{equation*}
$$

Making use of (2.2) and (2.3), the Christoffel symbols $\left\{\begin{array}{l}\alpha \\ \beta \gamma \gamma\end{array}\right\}$ of (1.1) in the canonical coordinates $\left(x_{\alpha}\right)$ are given by the formulas as follows

Now, take a tensor field P of type $(1,1)$ with local components P_{β}^{α} and let Γ be the general connection $P \Gamma_{g}$, where Γ_{g} is the affine connection with the components $\left\{\begin{array}{c}\alpha \\ \beta \gamma\end{array}\right\}$. Since for $\Gamma=\left(P_{\beta}^{\alpha}, \Gamma_{\beta \gamma}^{\alpha}\right)$ we have

$$
\Gamma_{\beta r}^{\alpha}=\sum_{\tau=0}^{s} P_{\tau}^{\alpha}\left\{\begin{array}{c}
\tau \tag{2.5}\\
\beta \gamma
\end{array}\right\}
$$

and so in order to be determined Γ so that it is smooth near $r=0$ and has the same system of geodesics as the one of (2.1) in $R \times\left(R^{3}-\{0\}\right)$, it is necessary and sufficient to put

$$
\begin{equation*}
P_{0}^{\alpha}=F_{0}^{\alpha} r^{2}, \quad P_{2}^{\alpha}=F_{\imath}^{\alpha} r^{4}, \tag{2.6}
\end{equation*}
$$

where F_{β}^{α} are smooth near $r=0$, and

$$
\begin{equation*}
\left|F_{\beta}^{\alpha}\right| \neq 0 \quad \text { where } \quad r \neq 0 \tag{2.7}
\end{equation*}
$$

Then, Γ is regular where $r \neq 0$. Thus we obtain

$$
\left(\Gamma_{\beta r}^{\alpha}\right)=F_{o}^{a}\left(\begin{array}{cc}
4 m^{2} & 0 \tag{2.8}\\
0 & -\left(r^{2} \dot{\delta}_{i \jmath}-x_{\imath} x_{j}\right)
\end{array}\right)
$$

$$
+\sum_{n} F_{n}^{\alpha} x_{n}\left(\begin{array}{cc}
4 m^{2}\left(r^{2}-4 m^{2}\right) & -4 m^{2} x_{j} \\
-4 m^{2} x_{\imath} & -x_{\imath} x_{j}-\left(r^{2}-4 m^{2}-1\right)\left(r^{2} \delta_{i j}-x_{\imath} x_{j}\right)
\end{array}\right)
$$

There are many freedoms of the choice of P for the purpose mentioned above for (2.1). We request that

$$
\begin{equation*}
\delta_{\beta, 0}^{\alpha}=0, \tag{2.9}
\end{equation*}
$$

where "," denotes the covariant differentiation with respect to Γ. If we put for F the condition

$$
\begin{equation*}
\frac{\partial F_{\beta}^{\alpha}}{\partial t}=0, \tag{2.10}
\end{equation*}
$$

then we have for the covariant components of Γ :

$$
\Lambda_{\beta \gamma}^{\alpha}:=\Gamma_{\beta \gamma}^{\alpha}-\frac{\partial P_{\beta}^{\alpha}}{\partial x_{\gamma}}
$$

the equalities

$$
\Lambda_{\beta 0}^{\alpha}=\Gamma_{\beta 0}^{\alpha},
$$

and hence

$$
\delta_{\beta, 0}^{\alpha}=\sum_{\rho} \Gamma_{\rho 0}^{\alpha} P_{\beta}^{\rho}-\sum_{\rho} P_{\rho}^{\alpha} A_{\beta_{0}^{\rho}}^{\rho}=\sum_{\rho} \Gamma_{\rho 0}^{\alpha} P_{\beta}^{\rho}-\sum_{\rho} P_{\rho}^{\alpha} \Gamma_{\beta_{0} \rho}^{\rho}=0 .
$$

From (2.6) and (2.8), we have

$$
\left(P_{\beta}^{\alpha}\right)=r^{2}\left(F_{0}^{\alpha}, r^{2} F_{j}^{\alpha}\right), \quad\left(\Gamma_{\beta 0}^{\alpha}\right)=4 m^{2}\left(F_{0}^{\alpha}+\left(r^{2}+4 m^{2}\right) V^{\alpha},-V^{\alpha} x_{j}\right),
$$

where $V^{\alpha}:=\sum_{h} F_{n}^{\alpha} x_{h}$. Hence, setting $W_{\alpha}=\Sigma F_{\alpha}^{h} x_{h}$, and using (2.7), the condition $\delta_{0,0}^{\alpha}=0$ is equivalent to

$$
\left\{\begin{array}{l}
\left(r^{2}-4 m^{2}\right) V^{0}=0, \tag{2.11}\\
r^{2}\left\{F_{0}^{3}+\left(r^{2}-4 m^{2}\right) V^{j}\right\}=\left\{\left(r^{2}-4 m^{2}\right) F_{0}^{0}-W_{0}\right\} x,
\end{array}\right.
$$

and the condition $\delta_{\jmath, 0}^{\alpha}=0$ is equivalent to

$$
\left\{\begin{array}{l}
-V^{0} x_{j}=r^{2} F_{j}^{0} \tag{2.12}\\
-V^{h} x_{j}=\left\{\left(r^{2}-4 m^{2}\right) F_{j}^{0}-W_{j}\right\} x_{h}
\end{array}\right.
$$

From the first of (2.11) and (2.12) we obtain

$$
\left\{\begin{array}{l}
F_{j}^{0}=0, \tag{2.13}\\
\sum_{h} F_{h}^{2} x_{h}=\lambda x_{\imath}, \quad \sum_{n} x_{h} F_{\jmath}^{n}=\lambda x_{j} .
\end{array}\right.
$$

where λ is an auxiliary function. Then using (2.13) for the second of (2.11) we can put

$$
\begin{equation*}
F_{v}^{2}=\mu x_{2}, \tag{2.14}
\end{equation*}
$$

where μ is an auxiliary function, and hence we obtain

$$
\begin{equation*}
2 r^{2} \mu=\left(r^{2}-4 m^{2}\right)\left(F_{0}^{0}-\lambda r^{2}\right) . \tag{2.15}
\end{equation*}
$$

Thus, we see that
Lemma 2.1. Supposing that P does not depend on t, then $\delta_{\beta, 0}^{\alpha}=0$ is equivalent to (2.13), (2.14) and (2.15).

Now, considering (2.13), we take a special one such that

$$
\begin{equation*}
F_{0}^{0}=r^{2} F \text { and } F_{j}^{i}=\lambda \delta_{j}^{2}, \tag{2.16}
\end{equation*}
$$

then from (2.15) we obtain

$$
\lambda=-\frac{2 \mu}{r^{2}-4 m^{2}}+F
$$

and so if we put

$$
\begin{equation*}
\mu=\left(r^{2}-4 m^{2}\right) G, \tag{2.17}
\end{equation*}
$$

then we oblain from the above equality

$$
\begin{equation*}
\lambda=F-2 G . \tag{2.18}
\end{equation*}
$$

Thus, we obtain a special $P=\left(P_{\beta}^{\alpha}\right)$ implying $\delta_{\beta, 0}^{\alpha}=0$ given by

$$
\left(P_{\beta}^{\alpha}\right)=r^{2}\left(\begin{array}{cc}
r^{2} F & 0 \tag{2.19}\\
\left(r^{2}-4 m^{2}\right) G x_{\imath} & r^{2}(F-2 G) \delta_{j}^{i}
\end{array}\right),
$$

where F and G are smooth, $F \neq 0$ and $F-2 G \neq 0$.
Theorem 2. The general connection $\Gamma=P \Gamma_{g}$ with P given by (2.19) is smooth on $R \times R^{3}$, has the same system of geodesics as the one of the space-time metric (2.1) where $r \neq 0$, and satisfies the conditions:

$$
\delta_{\beta, 0}^{\alpha}=0 \quad \text { and } \quad \tilde{g}_{\alpha \beta, 0}=0,
$$

where $\tilde{g}_{\alpha \beta}=r^{2} g_{\alpha \beta}$.
Proof. Except the last condition $\tilde{g}_{\alpha \beta, 0}=0$, the rest ones are evident from the above argument. In fact, we have

$$
\left(\tilde{g}_{\alpha \beta}\right)=\left(\begin{array}{cc}
-\left(r^{2}-4 m^{2}\right) & x_{j} \\
x_{\imath} & r^{2} \delta_{i j}-x_{\imath} x_{j}
\end{array}\right)
$$

and

$$
\tilde{g}_{\alpha \beta, 0}:=\sum_{\rho, \sigma} P_{\alpha}^{\rho} P_{\beta}^{\sigma} \frac{\partial \tilde{g}_{\rho \sigma}}{\partial x_{0}}-\sum_{\rho, \sigma} \tilde{g}_{\rho \sigma} \Lambda_{\alpha 0}^{\rho} P_{\beta}^{\sigma}-\sum_{\rho, \sigma} \tilde{g}_{\rho \sigma} P_{\alpha}^{\rho} \Lambda_{\beta 0}^{\sigma},
$$

into which substituting (2.19) and

$$
\left(\Lambda_{\beta 0}^{\alpha}\right)=\left(\Gamma_{\beta 0}^{\alpha}\right)=4 m^{2}\left(\begin{array}{cc}
r^{2} F & 0 \\
\left(r^{2}-4 m^{2}\right)(F-G) x_{2} & -(F-2 G) x_{\imath} x_{j}
\end{array}\right)
$$

we can easily obtain $\tilde{g}_{\alpha \beta, 0}=0$.
Q.E.D.

Finally, we give the components $\Gamma_{\beta r}^{\alpha}$ of $\Gamma=P \Gamma_{g}$ in Theorem 2, which are

$$
\begin{align*}
\left(\Gamma_{\beta r}^{\alpha}\right)= & F_{0}^{\alpha}\left(\begin{array}{cc}
4 m^{2} & 0 \\
0 & -\left(r^{2} \delta_{i j}-x_{\imath} x_{j}\right)
\end{array}\right) \tag{2.20}\\
& +\sum_{h} F_{h} x_{h}\left(\begin{array}{cc}
4 m^{2}\left(r^{2}-4 m^{2}\right) & -4 m^{2} x_{j} \\
-4 m^{2} x_{\imath} & -x_{\imath} x_{j}-\left(r^{2}-4 m^{2}-1\right)\left(r^{2} \delta_{i j}-x_{\imath} x_{j}\right)
\end{array}\right)
\end{align*}
$$

where

$$
F_{0}^{0}=r^{2} F, \quad F_{0}^{i}=\left(r^{2}-4 m^{2}\right) G x_{\imath}, \quad F_{J}^{0}=0, \quad F_{J}^{2}=(F-2 G) \delta_{j}^{2} .
$$

§ 3. The curvature form for a special general connection in Theorem².

In this section, we shall give the curvature form for the special general connection in Theorem 2 given by

$$
\begin{equation*}
F \equiv 1 \quad \text { and } \quad G \equiv 0 . \tag{3.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
P_{\beta}^{\alpha}=r^{4} \delta_{\beta}^{\alpha} \tag{3.2}
\end{equation*}
$$

and (2.20) becomes

$$
\begin{align*}
& \left(\Gamma_{\beta \gamma}^{0}\right)=r^{2}\left(\begin{array}{cc}
4 m^{2} & 0 \\
0 & -r^{2} \delta_{j h}+x, x_{h}
\end{array}\right), \\
& \left(\Gamma_{\beta \gamma}^{i}\right)=x_{i}\left(\begin{array}{cc}
4 m^{2}\left(r^{2}-4 m^{2}\right) & -4 m^{2} x_{h} \\
-4 m^{2} x^{2} & -x, x_{h}+\left(r^{2}-4 m^{2}-1\right)\left(x, x_{h}-r^{2} \delta_{j h}\right)
\end{array}\right) . \tag{3.3}
\end{align*}
$$

The connection $\Gamma=P \Gamma_{g}$ in Theorem 2 is smooth on $R \times R^{3}$ and hence we can obtain the curvature along $r=0$ by taking its limit from the outside of the curve. Where $r \neq 0, \Gamma$ is regular, i.e. $\operatorname{det}\left(P_{\beta}^{\alpha}\right) \neq 0$, therefore the curvature form Ω_{β}^{α} can be computed from the one of Γ_{g} by the formula ([2], §7)

$$
\begin{equation*}
\Omega_{\beta}^{\alpha}=\Sigma P_{\gamma}^{\alpha} P_{\rho}^{\gamma} \Omega_{\sigma}^{\rho} P_{\beta}^{\sigma}+\Sigma P_{\rho}^{\sigma} D P_{\sigma}^{\rho} \wedge^{\prime} D P_{\beta}^{\sigma}, \tag{3.4}
\end{equation*}
$$

where ' D denote the covariant differentiation with respect to Γ_{g}. Hence (3.4) becomes in this case as

$$
\begin{equation*}
\Omega_{\beta}^{\alpha}=r^{12} \Omega_{\beta}^{\alpha} . \tag{3.5}
\end{equation*}
$$

Since we obtain the connection forms of Γ_{g} from (2.4) as follows:

$$
\begin{equation*}
{ }^{\prime} \omega_{0}^{0}=\frac{4 m^{2}}{r^{2}} d t, \quad ' \omega_{j}^{0}=-d x_{j}+x_{j} d \log r, \quad \omega_{0}^{2}=\frac{4 m^{2}}{r^{2}} x_{i}(B d t-d \log r), \tag{3.6}
\end{equation*}
$$

$$
' \omega_{j}^{2}=-\left(B-\frac{1}{r^{2}}\right) x_{i} d x_{j}+x_{\imath} x_{j}\left\{-\frac{4 m^{2}}{r^{4}} d t+\left(B-\frac{2}{r^{2}}\right) d \log r\right\},
$$

the curvature forms of Γ_{g}

$$
' \Omega_{\beta}^{\alpha}:=d^{\prime} \omega_{\beta}^{\alpha}+\sum_{\rho}^{\prime} \omega_{\rho}^{\alpha} \wedge^{\prime} \omega_{\beta}^{\rho}
$$

are given by a little long computation as follows:

$$
\begin{aligned}
& \prime \Omega_{0}^{0}= \frac{8 m^{2}}{r^{2}} d t \wedge d \log r, \\
& \prime \Omega_{j}^{0}= \\
&-\frac{4 m^{2}}{r^{2}} d t \wedge d x_{j}+\frac{4 m^{2}}{r^{2}} x_{j} d t \wedge d \log r+d x_{\jmath} \wedge d \log r, \\
& ' \Omega_{0}^{i}=-\frac{4 m^{2} B}{r^{2}} d t \wedge d x_{i}+\frac{12 m^{2}}{r^{2}} B x_{i} d t \wedge d \log r-\frac{4 m^{2}}{r^{2}} d x_{\imath} \wedge d \log r, \\
& \prime \Omega_{j}^{2}= \\
&-\left(B-\frac{1}{r^{2}}\right) d x_{\imath} \wedge d x_{j}+\frac{4 m^{2}+1}{r^{2}} x_{i} d x_{\jmath} \wedge d \log r \\
&-\frac{12 m^{2}}{r^{2}} x_{\imath} x_{j} d t \wedge d \log r+\frac{4 m^{2}}{r^{4}} x_{j} d t \wedge d x_{i}+\left(B-\frac{2}{r^{2}}\right) x_{j} d x_{\imath} \wedge d \log r .
\end{aligned}
$$

We see that the curvature forms vanish on the curve $r=0$.

References

[1] T. Otsuki, Tangent bundles of order 2 and general connections, Math. J. Okayama Univ., Vol. 8 (1958), 143-179.
[2] T. Otsuki, On general connections I, Math. J. Okayama Univ., Vol. 9 (1960), 99164.
[3] T. Otsuki, On general connections II, Math. J. Okayama Univ., Vol. 10 (1961), 113-124.
[4] T. Otsuki, On metric general connections, Proc. Japan Acad., Vol. 37 (1961), 183188.
[5] T. Otsuki, A note on metric general connections, Proc. Japan Acad., Vol. 38 (1962), 409-413.
[6] T. Otsuki, On normal general connections, Kōdai Math. Sem. Reports, Vol. 13 (1961), 152-166.
[7] T. Otsuki, General connection $A \Gamma A$ and the parallelism of Levi-Civita, Kōdai Math. Sem. Reports, Vol. 14 (1962), 40-52.
[8] T. Otsuki, A construction of space with general connections which have points swallowing geodesics, Math. J. Okayama Univ., Vol. 24 (1982), 157-165.

Department of Mathematics
Science University of Tokyo
Tokyo 162, Japan

