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ESTIMATES FOR THE HYPERBOLIC METRIC

[BY DAVID MINDA

Abstract. Bounds for the density of the hyperbolic metric of a hyperbolic
region X in the complex plane C or on the Riemann sphere P are given in
terms of the euclidean or spherical distance to the boundary of X. Also,
bounds for the infimum of the density of the hyperbolic metric are given in
terms of the supremum of the radii of all disks in X. These bounds are
related to various Landau constants and are implicit in previous work on
finding lower bounds for Landau constants.

1. Introduction. Let X denote a hyperbolic region in the complex plane
C that is, C\X contains at least two points. The hyperbolic, or Poincare,
metric on X is denoted by λx{z)\dz\. It is a complete Riemannian metric on X
with constant curvature —4. Recall that

\dz
λD(z)\dz\=-

1-1
where D = {z\ \z\<\) is the unit disk. Typically, there is no explicit formula
for the density λx(z) of the hyperbolic metric, so estimates are useful. However,
there are few results that deal explicity with the size of the hyperbolic metric.
Let us survey some of these. Ahlfors ([1], [2]) gave analytic bounds in case X
is the thrice punctured sphere. Often, one is interested in bounds for λx(z) in
terms of the geometric quantity δx(z) which is the enclidean distance from z to
the boundary of X. The upper bound λx(z)^l/δx(z) is a direct consequence of
Schwarz' lemma [6, p. 45]. If X is simply connected, then λx(z)^l/4δx(z) [6,
p. 45]. This lower bound is equivalent to the Koebe one-quarter theorem. If
X is convex, then the factor 4 in the lower bound can be replaced by 2 [9].
Blevins [4] obtained a sharp lower bound for simply connected regions that are
bounded by a quasiconformal circle. Beardon and Pommerenke ([3], [12]) in-
vestigated bounds in terms of δx{z) and another geometric quantity. In par-
ticular, they determined a necessary and sufficient condition on a region X for
the existence of a positive constant c such that λx(z)^c/δx{z). The condition
is that there exists a positive constant M such that the modulus of any annulus
in X that separates dX\J {oo} is at most M. Hence, it is necessary that dX
have no isolated points.

We are interested in obtaining a lower bound for λx(z) in terms of δx(z)

that is valid even if the boundary of X has isolated points. The clue to the
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form of the bound is provided by examining the hyperbolic metric of a punctured
disk. If X={z:0<\z-a\<R\, then

Then δx(z)=\z-a\ for 0<\z-a\^R/2 and so

'^J 2δx(z)\og(R/δx(z))

for z in X nearα. This example also shows explicitly that λx(z)δx(z) has no
positive lower bound as z approaches a. It also suggests that for a general
hyperbolic region we consider the possibility of finding a lower bound of the form

(1)
2δx(z)\og(b/δx(z))'

where b is a positive constant. Such a bound is implicit in Ahlfors' method for
determining a lower bound for the Landau constant [1]. This idea is also used
in [8]. 'Since bounds for the hyperbolic metric are relatively scarce, it seems
worthwhile to make explicit these bounds.

Let A(X) be the supremum of δx(z) as z ranges over X. We only consider
lower bounds of the form (1) with b^A(X) this insures that the lower bound
is positive in X. Since the right-hand side of (1) is a decreasing function of b
on the interval (A(X), oo), we let b(X) denote the infimum of all constants b>
A(X) such that (1) holds for all ZGX in order to obtain the best possible lower
bound of the form (1) when b is replaced by b(X). Set b{X)—oo if there is no
lower bound of the form (1). We shall show that e1/2A(X)^b(X)^eA(X). Con-
sequently, there is a lower bound of the form (1) for the density of the hyper-
bolic metric [if and only if there is a uniform bound on the size of the disks
that are contained in X. As an application of this result we show that λx{z)
has a positive lower bound if and only if A(X) is finite. More precisely, if
Λ(X)=mf{λx(z):zeiX}, then l/2^Δ(Z)Λ(Z):gl. The upper bound is sharp,
but the lower bound 1/2 is not. The best possible lower bound is related to
Landau's constant. For convex regions we show that zr/4 is the sharp lower
bound.

Finally, we consider analogs of the preceding results for regions on the
Riemann sphere P. In this context we consider the "spherical" density (1+
\z\2)λx(z) which is invariant under rotations of P and seek estimates of this
quantity in terms of the size of the largest spherical disk in X with center z.

2. Lower bound for plane regions. In this section we consider lower
bounds for the density of the hyperbolic metric in a plane region.

THEOREM 1. Let X be a hyperbolic region in the complex plane C. Then
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Proof. We first establish the lower bound for b(X). Of course, there is no
harm in assuming that b(X)<oo. Then (1) holds for b=b(X). Since the upper
bound λχ(z)^l/δχ(z) holds in any hyperbolic region in C, we obtain from (1)

2\og(b(X)/δx(z))
or

This yields e1/2A(X)^b(X).
Next, we demonstrate the upper bound for b{X) under the assumption that

Δ=Δ(Z)<oo. We begin by assuming that we actually have the strict inequality
δχ(z)<A for all zeX. Define

,«id*ι= ldzl

^ ' " " ' 2δχ(z)log(eA/δx(z)) '

We will show that ρ{z)\dz\ is an ultrahyperbolic metric on X. The inequality
p{z)^λx{z) will then follow from Ahlfors' generalization of Schwarz' lemma
([1]; [2, p. 13]). Since δx{z) is a continuous function, it is clear that ρ(z)\dz\
is a positive continuous metric on X. To show that ρ(z)\dz\ is an ultrahyper-
bolic metric on X, we must exhibit a supporting metric at each point z0 of X.
This is a metric λo(z)\dz\ defined in a neighborhood of z0 with constant curva-
ture —4 such that λo(z)^p(z) for ^ near z0 with equality at z0. Given zQ^X,
select a^dX with ko-~β|=^x(^o) Then ^χ(^)^|-ε—fl| <Δ for z near ^0 with
equality at z0. The hyperbolic metric for {z :0<\z—a\<eA} is

°^ '^ ' 2 |z-α| log(*Δ/|z-α|) β

Because the function h(t)~l/2t\og(eA/t) is decreasing on (0, Δ] and increasing
on [Δ, eA), the inequality δx(z)^\z—a\<A for z near z0 yields λo(z)^p(z) for
z close to z0 with equality at z0. Since the hyperbolic metric λo(z)\dz\ has con-
stant curvature —4, it is a supporting metric for ρ(z)\dz\ at z0. Then Ahlfors'
lemma yields (1) with b=eA. Hence, b(X)^eA in case δx(z)<A for all z e X
In the general case, just replace Δ by Δn=Δ+(l/n), n any positive integer, and
obtain b(X)^eAn. Finally, let n tend to infinity to conclude that b{X)^eA in
the general case.

As an application of Theorem 1 we obtain estimates for Λ(X), the infimum
of the hyperbolic metric in X, in terms of the quantity A(X).

THEOREM 2. Let X be a hyperbolic region in C. Then

Proof. We begin by proving the upper bound. Since λx(z)^l/δx{z) for any
hyperbolic plane region with equality at z if and only if X is a disk with center
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z [6, p. 45], the upper bound is immediate. Also Λ(X)—1/A(X) for any disk.
Second, we establish the lower bound. If Δ=Δ(Z)=oo, then there is

nothing to prove, so we may assume Δ<oo. Then from Theorem 1

Since h(t)=l/2tlog(eA/t) has its minimum value 1/2Δ on the interval (0, eA) at
the point f=Δ, we have λx(z)>l/2A. Then A{X)^1/2A.

The best possible constant C such that Λ(X)^C/A(X) for any hyperbolic
region X in C is related to Landau's constant X. We briefly recall the defini-
tion of X. In our notation X=infA(f(D)), where the infimum is taken over all
holomorphic functions / defined in D and normalized by /'(())=1. Assume that
/ is such a function, X=f(D) and Δ(Z)<oo. Then for M E I

The principle of hyperbolic metric [5, p. 336] yields

so that

Δ(X)

Consequently, C^Δ(Z) and so C<X. From Theorem 2 we obtain the known
lower bound J7^1/2 that is due to Ahlfors [1]. This is not surprising since the
lower bound in Theorem 1 is implicit in [1], The best known upper bound for
the Landau constant is [13]

Γ(l/3)Γ(5/6)

~ 1X1/6) <

and this bound is conjectured to be the actual value of the Landau constant.
It seems plausible that C—X. We now demonstrate that the analogous result is
valid for convex regions.

THEOREM 3. Let X be a convex hyperbolic region in C. Then

4A(X)

and both bounds are sharp.

Proof. In the proof of Theorem 2 we already noted that the upper bound
is sharp for any disk. Now, we establish the lower bound and its sharpness.
Let X be any convex hyperbolic region in C with Δ=Δ(X)<oo. Then Minda
[9] obtained the lower bound
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- > - π

4A '

(Actually, in [9] the denominator in the lower bound has the factor 2 rather
than 4. This is due to the fact that the hyperbolic metric was normalized to
have curvature —1 rather than —4 in [9].) Thus, Λ(X)^π/4A. Finally, we
demonstrate the sharpness. If S={z :0<Re(z)<2M}, then

4 M

with equality for Re(z)=M. Thus, Λ(S)=π/4A(S). Actually, equality holds for
any strip.

Recall that the Bloch-Landau constant for convex regions is π/4 ([9], [14]).

3. Lower bounds for spherical regions. For a plane region X the density
of the hyperbolic metric can be viewed as the quotient of the hyperbolic metric
λx(z)\dz\ and the euclidean metric \dz\. Note that λx(z) is invariant under
translations and rotations of C. For a region on the Riemann sphere P we
need to determine the proper analog of the density. Throughout the remainder
of this section we assume that X denotes a hyperbolic region on P. The
spherical metric | d 2 | / ( l + | z | 2 ) is a Riemannian metric on P with constant
curvature 4. This metric is invariant under the group of rotations of the sphere.
Precisely, if either T(z)=eiθ(z—a)/(l+άz), CKΞC, or else T(z)=eiθ/z, where
ίEβ, then

\T\z)\ = 1
1+|7»|2 1+M2 *

We define the spherical hyperbolic density of the hyperbolic metric to be the
quotient of the hyperbolic metric and the spherical metric; in symbols,

\dz\

If T is a rotation of the sphere, then the conformal invariance of the hyperbolic
metric [9] yields

It follows that

so the spherical hyperbolic density is invariant under rotations of the sphere.
Observe that if OeZ, then μx(0)=λx(0). Set M(Z)=inf {μx{z) \Z<ΞX}.

Next, we need a notion of distance on the sphere. Define
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l+ϊϋz
d{z, w)=

z—w .. _
if z, w<=C,

kl
if

The quantity d(z, it;) is invariant under all rotations T of P ; that is, d(T(z),
T(w)) — d(z, w), but it is not a true distance function. However, it is related to
the chordal distance 1 and the spherical distance φ by

φ(z} w)=tan-\d(z, w)).

Recall that φ(z, w) denotes half the angle at the center of the sphere subtended
by the shorter arc of the great circle connecting z and w. Because of this con-
nection with X(z, w) and φ(z, w) we shall employ d(z, w) as a measure of dis-
tance on P. The advantage of this approach is a simplicity in the formulas and
a clearer analogy with the results in the planar case. Of course, all results
could be expressed in terms of 1 or ψ instead of d by making use of their
relationship. For c e P and r > 0 let D(a, r)—{z^P :d(a, z)<r}. This is a
spherical disk with center a and radius r. The boundary of D(a, r) is a euclidean
circle when we view D(a, r) on the Riemann sphere. For r = l we obtain a
hemisphere with center a. For ^ e Z let $x(z) denote the largest value of r such
that D(z, r)cX. The geometric quantity εx(z) is a measure of the spherical
distance from z to dX. We are interested in estimating μx{z) in terms of εx{z)
and M(X) by means of E(X)=sup{εx(z) :z(=X}.

THEOREM 4. Let X be a hyperbolic region on the Riemann sphere P. Then
μx(z)^l/εx(z) for z e l // equality holds at a point z, then X is a spherical
disk with center z.

Proof. Because of the rotational in variance of the quantities μxiz) and εx(z),
there is no harm in assuming that z—0. In this case μx(0)=λx(0) and εx(0)=
δχ(0), so the conclusion μx(0)^l/εx(0) is equivalent to the known bound λx(0)^
l/Sx(0) [6, p. 45]. If equality holds in this latter inequality, then I is a disk
centered at the origin. In the general case X would be a rotation of a disk
centered at the origin that is, X would be a spherical disk.

This theorem helps to show that the geometric quantity εx(z) is a reasonable
candidate for estimating μx{z). The following example will motivate the form
of our lower bound for μx(z).

EXAMPLE 1. Let us calculate μx(z) for a punctured spherical disk. Let Z =
{z:0<d(a, z)<R\. Let T be a rotation of P that sends a to the origin. Then
T(X)={z:0<\z\<R} and
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l+d*(a, z)

2d{a, z) log (R/d(a, z)j'

since d(a, z)=d{T(a), T(z))=d(fl, T(z))=\Tz\. For d{a,z) small we have d(a,z)
= εx{z) and so

2εx(z)log(R/εx(z)) '

In view of the preceding example we seek a lower bound of the form

t2) μ x { z ) = 2εx{tl
where c^E(X) is a positive constant. Let c(X) be the smallest such constant.
We wish to estimate c{X) in terms of E(X). Since C\ {0} is not hyperbolic and
£(C\{O})=1 because C\{0} contains a hemisphere but no larger spherical disk,
it is plausible that a restriction E(X)<1 be imposed in order to obtain a bound
of the form (2).

THEOREM 5. Let X be a hyperbolic region on P. Then E(X)exp((l+E2(X))
J2)^c(X). If E(X)<1, then c(X)^E(X)exp(a+E2(X))/2(l-E2(X))).

Proof. We start by establishing the lower bound for c(X) under the as-
sumption that c(X)<oo. Then (2) holds with c—c(X). Because μχ(z)^l/εx(z),
we obtain from (2)

l+ε(z)
2\og(c(X)/εx(z))

or

The lower bound follows immediately.
Now we derive the upper bound under the assumption that E=E(X)<1.

Initially, we assume that εx{z)<E for all z e l We shall show that

( \\j , 1+εK^) \dz\
2εx(z)\og(Λ/εx(z)) l+\z *

is an ultrahyperbolic metric on X, where Λ=Eexp((l+E2)/2(l-E2)). Fix
we will construct a supporting metric at z0. Select a^dX with εx(z0)=d(a, z0).
Then εx(z)^d(a, z)<E for z near z0 with equality at z0. From Example 1 it
follows that the hyperbolic metric on the punctured disk {z:0<d(a, z)<Λ} is

a ' z ) l d z

2d(a,z)log(A/d(a,z)) l+\z\2
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The fact that the function k(t)={l+t2)/2t log (4/0 is decreasing on (0, £] and
increasing on [_Ey A) together with the inequality εx(z)^d(a, z)<E for z near
zQ imply that λo(z)\dz\^p(z)\dz\ for z near z0 with equality at z0. Thus
λo(z)\dz\ is a supporting metric for p{z)\dz\ at z0. Ahlfors' lemma yields
λx(z)\dz\^p{z)\dz\. If we divide both sides of this inequality by the spherical
metric |dz |/(l+|z | 2 ), then we obtain (2) with c—A. Hence, c(X)^A in case
εx(z)<E for all z e l In the general case, replace E by En=E+(l/n), where
the positive integer n is taken so large that En<l. Then obtain
Let n tend to infinity to get c(X)^A in the general case.

THEOREM 6. Let X be a hyperbolic region on P. Then

E{X)

Proof. The upper bound follows easily from Theorem 4. Equality holds
for any spherical disk. The lower bound is nonpositive for E(X)^l, so we may
assume that E—E(X)<1 in the course of establishing it. Then Theorem 5 gives

2εx(z)\og(A/εx(z)) '

where 4=£exp((l+£ 2)/2(l-£ 2)). Since fe(0=(l+ί8)/2ί log(4/0 attains its
minimum value E~x—E on the interval (0, A) at the point t=E, we have μx(z)
^E^-E. Hence, M{X)^E~ι-E.

The lower bound for M(X) in terms of E(X) is not sharp. The best pos-
sible lower bound is related to Landau constants for meromorphic functions for
more information about these constants the reader is directed to [8].

EXAMPLE 2. For each positive integer n let Xn denote the complex plane
punctured at both the origin and all the nth roots of unity. For instance, Xx is
the Riemann sphere punctured at 0, 1 and oo. We wish to determine a lower
bound for λn(z), the hyperbolic density on Xn. Theorem 1 is of no help in this
situation because Xn contains arbitrarily large euclidean disks. We shall make
use of Theorem 6. Set En—E(Xn). Triviallv, £ i = l . Elementary geometric
considerations show that for n^2 En—(V3+cos(2π/n)— Vl+cos(2π/n))/VT.
In particular, £ 2 =1, £8=(V~5"-1)/V~2' a n d £ 4 = ( V I - 1 ) / V I . We see that
En<l only for n^3 so we can apply Theorem 6 to obtain a meaningful lower
bound in these cases. For n^3we obtain

As special cases we have
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For n ^ 3 we have shown that the hyperbolic metric on Xn dominates a constant
multiple of the spherical metric.

It is possible to obtain similar lower bounds for λx{z) and λ2(z) by making
use of the following device. The function p{z)—z^ is a covering of Z 4 onto Xx

so the invariance of the hyperbolic metric under a covering [7] yields

If we set w=z\ then

^ 1 1 1 + k l 8

2V2 l+\w\2 \z\*+\z\*

1 1

This lower bound is implicit in the work of Pommerenke [11]. By making use
of the covering g(z)=z2 of X2 onto Xx one can demonstrate in a similar manner
that

Thus, in all cases λn(z) dominates an explicit scalar multiple of 1/(1+ \z\2).
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