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THE CONNECTION BETWEEN THE SYMMETRIC SPACE
E,/S0(10)-SO(2) AND PROJECTIVE PLANES

By KENJI ATSUYAMA

Introduction.

We are interested in symmetric spaces of the three types EIl, EVI and EVI
on the same line as projective planes, since we want to understand all exceptional
Lie groups geometrically and systematically. The first aim in this paper is to
clarify the structure of maximal flat toriin a compact symmetric space I/ of the
type EII which is constructed in the set of projections associated with involu-
tive automorphisms of the compact simple Lie algebra of the type E,(Theorem
3.6). Next we write down the roots of the symmetric space II and also give a
relation between the roots and the isotropy groups of two points in /7. In Sec-
tion 5 two objects, points and lines, are introduced into II, and this space is
studied from the viewpoint of projective geometry. Finally it is showed that
IT is a projective plane in the wider sense (Theorem 5.10).

1. Preliminaries.

Let A be a composition algebra over the real field R and let a, b, ¢ be
elements in A. If a conjugation —: a — & is usually defined in U, we have a
symmetric inner product (a, b)=1/2(ab+ab). If a commutator and an associator
are defined by [a, b]=ab—ba and (a, b, c)=(ab)c—a(bc) respectively, any inner
derivation of % can be generated by D, , where D, (c)=[[a, b], c]—3(a, b, c).

Let AVYRM*QU® denote an tensor product over R composed of one 3X3
matrix algebra M?® with coefficients in R and two composition algebras %A@,
If the confusion does not occur, we write aXu instead of a@XQu, where ac
AV, ueYA® and XeM® In this vector space a product can be defined by
xy=abXYuv for x=aXu and y=>bYv. Furthermore an involution and a trace
Tr can be introduced by aXu—a@XTa and Tr(aXu)=atr(X)Iu respectively,
where T: X— X7 is the transposed operator of matrix, tr (X)=1/3(x11~4Xs2-+X33)
for X=(x,;)eM?® and I is the 3X3 unit matrix.

Let M denote a vector space over R which is generated by all elements in
APVQMRQA® with the trace Tr being 0 and the skew-symmetric form with
respect to the involution a Xu—aXT@. Let L(UAP, M? A®) be the vector space
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Der APPHMP Der A® (direct sum) over R, where Der A™ is the Lie algebra of
inner derivations of A®. In this space we define an anti-commutative product
[, ] in the following way (cf. [1], Section 3):

the Lie product of Der AP (e=7)

M [, ijz{
0 G#7)

@) [D™, aXul=(D®a)Xu and [D?, aXul=aX(D®u),
(3) For x=aXu and y=bYv,
Lx, y1=(X, Y)(u, v)Do,p+(xy—yx—Tr(xy—yx)+(X, Y)(a, b)Dy,v,

where D@ < Der AP and (X, YV)=tr(XY). Then LAY, M3, A®) becomes a
real Lie algebra by this product. If U™ is the Cayley algebra € (over R) with
the non-split type, it is a compact simple Lie algebra of the type F,, E¢ E; or
E; according as A® is R, C, Q or €, where C and Q are the fields of complex
and quaternion numbers with the non-split types respectively. We note that
Der C={0} and the Killing form B of L(€, M? C) is given by B(D;+aXu, D,
+bYv)=3B,(D,, D,)+144(a, b)(X, Y)(u, v), where B, is the Killing form of Der G.

For the remaining sections, a basis of € is given explicitly :

a basis: e ey, -, eq;

rules of product :

€1€,=203, 104705, €¢;—01, €905—¢y,
€3€,=20q, ©€3€5—0Cg €cC4—Cy
e,e;=—eje, (1, =1 and 13%7), e;e,=—¢, (1=21), ¢, is the unit element,

a conjugate operator — : e¢,—e,, ¢,——e, (1=1=7).
Then we can realize R, C and Q as subalgebras in € generated by {e,}, {e,, e:}
and {e,, e;, e,, ¢5} respectively.

2. Construction of a symmetric space /7.

Let & be a real semi-simple Lie algebra with a Lie product [, J. Let X be
a subset in & consisting of all elements x which satisfy an identity (ad x)
((ad x)*+1)((ad x)*+4)=0, where ad x is the adjoint representation of x. Then,
for each x<¥, the eigenspaces for ad x can be obtained in ®&:

Go(x)={z€@: (ad x)z=0},
G:(x)=1{z€@: (ad x)?z=—1i%z}, =1, 2.

Moreover three transformations {P;(x)} of & can be defined by P,(x)=1-+5/4
(ad x)*+1/4(ad x)*, Py(x)=—4/3(ad x)*—1/3(ad x)* and P,(x)=1/12(ad x)?+1/12
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(ad x)*, where 1 is the identity transformation of &. We assume that X=x {0}
and &,(x)=={0}.
By direct calculations we have the two following lemmas.

LEMMA 2.1. Each transformation Pi(x) is a projection of & onto &,(x).
These satisfy Pi(x)Pi(x)=0 (i37) and Py(x)+Py(x)+P(x)=1.

LEMMA 2.2. ® has a direct sum decomposition @=8,(x)PG,(x)PG.(x), and
(G(x)PG(x))DG,(x) is a Cartan decomposition of & with respect to an involutive
automorphism 1—2P,(x) (=exp r(ad x)).

ExaMPLE. When & is the compact simple Lie algebra L(€, M? C) with
0 00
the type E,, we take K1:<0 0 l) in MN¥ and then the eigenspaces {&;(K,)}

0—1 0
can be given by

dimension
2a 0 0

(K : Der€@ &H|1 0 —a b 144-16=30,
0 —b —a

0 b bs 0 a; a;
G(K): |—b 0 0 |PBla, 0 0 16416=32,
—b, 0 0 a, 0 0
0 0 0 0 0 0
G(K): |0 0 a|B |0 a O 8+8=16,
0 a O 0 0 —a

where a, a,, a,(resp. b, by, b,) are linear combinations of ¢,&Qe; and e,&e, (resp.
€0®eo and ei®81), Z':l, 2’ e 7.

PROPOSITION 2.3. If © is a semi-simple Lie algebra, the connected component
of any element x in X is a reductive homogeneous space and the tangent space at

x 1s & (x)PGy(x).

Proof (cf. [5]). The tangent space at x can be considered a subspace in
® (as a vector space) which consists of all elements w satisfying

W lim - {O(x Hu)— B} =0 (<R,

where @(z)=(adz)°+5(adz)*+4(adz) for z&®. Note that @(x)=0 for x<¥%.
First it is shown that any element w in &,(x)®®,(x) is a tangent vector at
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x. Since ad x is a non-singular transformation on &,(x)P®,.(x), there exists an
element —z€®,(x)PG,(x) such that [x, —z]=w. Hence, for R,

ltlzl“)l—i— {D(x+tw)—D(x)} =1Li_1}3%—®((exp t(ad z))x)=0.

Next we show that any tangent vector we® at x is contained in &,(x)P
®,(x). (1) can be rewritten as, for w=adw and ¥=ad x,

2) W+ FWP BV BPOE W50 X5 WX +53%0 40 =0.

Since this equation is linear for w and any element in &,(x)@PG,(x) satisfies (2),
we may assume we®,(x). Then %=1 holds by [x, w]=0 and so (2) becomes
W(5F*+15%%°4+4)=0. This implies —6[w, y]1=0 for any ye®,(x), i.e., [w, G, (x)]
={0}. Since [G,(x), G,(x)]=6,(x)PG.(x) by Lemma 2.2 and the semi-simplicity
of &, we obtain [w, &]={0}. Hence w=0.

Let G be the adjoint group of ® and let H be the isotropy group at x<¥.
Then, the connected component of x becomes a reductive homogeneous space
G/H with a pseudo-Riemannian structure defined by the Killing form of & (cf.
[7], p. 343). In fact, & (resp. ®,(x)) is the Lie algebra of G (resp. H) and
B, (x)PGy(x) is the tangent space at x to ¥. Furthermore, since gladw)g =
adgw and g(adx)g '=adx for any g H and any tangent vector w at x, we
can see, from (2), that H makes the tangent space at x invariant.

0 00
Remark. If &=L(€, M? A?) and K,=(0 0 (1)), the dimension of the

connected component of K; is 30, 48, 84 or 156 according as @& is a compact
simple Lie algebra with the type F,, Es;, E,; or E,.

Hereafter we write P(x) for simplicity instead of P,(x). The action of the
adjoint group G on the set of all endomorphisms 4 of & is defined by g-h=
ghg™ for geG. When we assume that &=L(6, M3, A®), let II be the orbit
of P(K;) by G, i.e., [I={g-P(K,); g=G}. Then the tangent space at P(K;)
to II can be given by ®&,(K;) and the Lie algebra of the isotropy group at P(K))
can be also given by G (K,)DG,(K,). These facts are proved, making use of
g P(K;,)=P(gK,), in the proof of the following.

PROPOSITION 2.4. II is a compact connected (globally) symmetric space. Iis
dimension is 16, 32, 64 or 128 according as ® is a compact simple Lie algebra
with the type F,, E¢, E; or Es. Moveover 11 is locally diffeomorphic to Fi/Spin(9),
E¢/S0(10)-S0O(2), E;/S0O(12)-SO(3) or E4/SO(16).

Proof. Let I be the Lie algebra of the isotropy group at P(K)), i.e., U=
{ze® : (expt(adz))-P(K,)=P(K,) for all t€R}. First we show I=8,(K,)PDG.(K;).
Since 1—2P(K,) is an (involutive) automorphism of & as in Lemma 2.2, it holds
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that (1—2P (Ky))expt(ad z))(1—2P(K,)) '=expt(ad(1—2P(K,))z) for ze® and t=R.
If zell, this identity and the simplicity of & imply z=(1—2P(K)))z and so
P(K)z=0. This means z€®,(K,)PG,(K,). The converse can be also seen easily.

Next we introduce a G-invariant Riemannian structure into /7 by the Killing
form of @. Then G is exactly the connected component (of the identity map)
in the isometry group of II. The action of G on II is given by h: P(gK,) —
h-P(gK,) for heG and P(gK,)ell. Each point P(gK;) in II has an involutive
isometry 1—2P(gK,) which makes P(gK,) itself an isolated fixed point. In this
way II becomes a compact connected (globally) symmetric space. The types of
symmetric spaces can be determined by direct calculations.

KENJI ATSUYAMA

3. Maximal flat tori in /7.

In the sections 3, 4 and 5, we assume that & is the compact simple Lie

algebra (over R) with the type E;, i.e., &=L(6, M? C). Then
00 O 0 01 010

Ki={0 0 1| Ky={0 0 0|, K=—10 0

0-10 —10 0 0 00

are elements in the manifold ¥XC®, where we neglect the unit elements e, in
the composition algebras C' and €.

The matrix representation of the projection P((expit(ad K,))K,), t= R, is given
here by Pi(x)=—4/3(ad x)*—1/3(ad x)* for x=¥, making use of (expi(ad K3))K,
=(cost)K;—(sin?t)K,;: We remark that L(€, M3, C)=Der &HM and the set of
all elements (of &) written in (2), (3) and (4) below becomes a basis of M;

(1) on Der @, the form is the 0 matrix,

(2) on the each subspace consisting of e¢;Ke,, ¢;K;e, and e;Kze, (7, 7=0 or
17, 7=1), the form is

sin % 0 1/2sin2t\
0 1 0 ,
1/2sin2t 0 cos’t

(3) on the each subspace consisting of e;[,, e;l,, e, Fy, e.F, and e, F; (1=1),
the form is

1/2sin%*2t 1/2sin®2t 0 1/2sin4t 0
1/2sin®*2t 1/2sin®2t 0 1/2sin4t 0

0 0 sin? 0 —1/2sin2t
1/4sin4t 1/4sin4t 0 cos*2t 0

0 0 —1/2sin2t 0 cos?t
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1 00 00 0 000 00 1
where I,={0 —1 0|, I,=(0 1 0] F=(0 0 1}, F=(0 0 0) and F=
0 1 00 0 00 0 0 —1I 010 100
(100),
000

(4) on the subspace consisting of I,e,, I.e;, Fie,, Fye; and Fse,, the form is
the same as that in (3).

LEMMA 3.1. The curve P((expt(ad Ku))K,), t€R, mn II is a simply closed
geodesic with the initial point P(K,) and the tangent vector K,. The period is w
and the length is 44/ 6x. In this geodesic, the midpoint P((expr/2(ad K,))K,)
(=P(Kj3)) is the only point which commutes with P(K,).

Proof. We calculate only the length / of this geodesic 7(t)=P((expi(ad K,))K,),
teR. The remainning assertion can be derived easily by the above matrix
representation of »(t). Let B be the Killing from of &, then — B gives an inner
product on each tangent space to II by the definition of Rimannian structure on
II. Since 7(t) has the tangent vector K, at every point, we have

I=S:(—B(f’(t), f”(t)))l/zdt:S:(_B(Kz, K)'2dt=(—144tr K,K,)*r =4~/ 6 .

In the tangent space ®&,(K;) at P(K,) to II, let T be the subspace spanned
by two vectors K, and e¢,K,e;. Since the symmetric space II has the rank 2,
¥ is a maximal abelian subspace. We shall study in detail the maximal flat
torus T in II associated with .

LEMMA 3.2. The tangent vectors K, and e,Kye, are transitive by the adjoint
group G of G.

Proof. Put a,=exp3r/2(ade,K,e;) and a,=expr/2(ad K,), then a,a,(K;)=
a(Ks)=e Kse,.

In the torus T, two simply closed geodesics 7(t) and A(s) are defined by
r{t)=P((expt(ad K,))K,) and h(s)=P((exp s(ade;K,e,))K,), 0=¢, s<m. Note that
a ay-r(t)=h(t).

LEMMA 3.3. The geodesics v (t) and h(s) meet at only two point with t=s=0
and t=s=mr/2.

Proof. From the two relations »(#)K;=(sin®t)K,+1/2(sin2t)K; and h(s)K,=
(sin?s)K;+1/2(sin2s)e, K;e;, we can see easily r(1)=h(s) as projections of &
except for the two cases of t=s=0 and i=s==n/2. In the former case, »(0)
and A(0) are equal to P(K,). In the latter case, 7(x/2)=P(—K;)=P(K;) and
h(rx/2)=P(e,Kse;) hold. Since a;a, in Lemma 3.2 preserves the Killing form B
of @, it makes the 0- and l-eigenspaces of P(K;) invariant by &,(K;)=8,(e;K;e,)
and B(G(x)PG,(x), ®,(x))=1{0} for x<¥C®. This concludes that P(K;)=
P(e;Kse,).
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In the torus T we shall find all points commuting with P(K;). Put a()=
expt(ny(ad Kyp)+ni(ad e;K,e,)) for n,, n,eR. Moreover, put 0,(t)=expt(ade;K,e;)
and t,=tn; (=0, 1), then a(f) can be rewritten as a(t)=0,(,)0;({,). The com-
mutativity P(K,)P(a(t)K,)=P(a@)K,)P(K,) implies that P(K,)P(a(t)K,)z=0 for
2e@(K)DG,(K;). We use this fact in the next proof.

PROPOSITION 3.4. In the maximal flat torus T, the number of points com-
muting with P(K,) is exactly three except for itself.

Proof. By Lemma 3.1, it is sufficient to consider the points P(a(t)K;), res-
tricted to 0=t,, t;<=, as elements in 7. If P(a(?)K,) and P(K,) are commutative,
it can be shown by the above remark that

0=P(K)P(a()K)K,=P(K)a®)P(K)a(t) K,

Hence there are two possible cases (i) sin2t;=0 (=0, 1) and (ii) cos 2¢;=0 (=0, 1).
We decompose (i) into the four cases. (1) If ¢,=t¢,=0, P(aK,)=P(K,) holds,
where the parameter ¢ in a(t) is omitted. (2) If ¢{,=z/2 and #,=0, P(aK;)=
P(K;) is obtained. (3) If #,=0 and t,=nr/2, P(aK,)=P(e;K;e;)=P(K;) holds as
in the proof of Lemma 3.3. (4) If ¢t,=t,=n/2, we have P(aK,)=P(K,), in fact
P(aK,)=P(0,0,K,)=0,P(0,K,)07'=0,P(6,K,)07" (by (2) and (3))=P(6}K,)=P(K,).
Next (ii) is also decomposed into the four cases: (1) to=t,=n/4, (2) t,==n/4, t,i=
3n/4, (3) t,=3rn/4, t;=n/4 and (4) t,=t,=3rn/4. Put N;=P(aK,), i=1, 2, 3, 4,
corresponding to the each case. Then N,=N, and N,=N;, hold from (2), (3), (4)
in (i).

Since N,, N, and P(K;) are midpoints in simply closed geodesics with the
initial point P(K;), the geodesic symmetry 1—2P(K;) makes them fixed (cf. [2]).
This means that these points are commutative with P(K;). At last we show
that the four points P(K;), P(K;), N, and N, are different from each other. That
P(K,)xP(K,) is given by P(K;)K,=0 and P(K;)K,=K,. That P(K,)*N, (1=1,2)
is obtained from P(K)e;F,=e;F, and N;(e;F,)=0. It follows that P(K;)*N.,.
By P(K,)>=P(K,), we can see N;=N,.

LEMMA 3.5. The points N, and N, are transitwe by an involutive isometry
of II which makes P(K,) fixed.

Proof. Put B(t)=expt(ad De,.,), t€R, then B(f) is an automorphism of €.
Especially 8(x/2) is involutive and its eigenvalue is 1 (resp. —1) on the subspace
{eo, s, @5, e5} (resp. {ey, ey, e, ¢;}). We extend B(f) (=p) to an automorphism of

® (=Der EPM) by
Doyt uXv —> Dga, go+(Bu)Xv.

The same notation as J(t) is given for this extended automorphism. It is easy
that B@)-P(K,)=P(Bt)K,)=P(K,). Furthermore it holds that A(x/2)-N,=
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P(19(73/2)01(77/4)00(77/4)]{1) = P(l/zﬂ(ﬁ/z)(Kl_'elKlel—KS—eleel)) = P(1/2(K,+
e K e, —Ki+e,Ksey) = P1/2(—Ki—e K e, +K;—e Kse,)) = P(0,(3n/4)0(n /4)K;) =
Ng.

Let Z be the ring of integers. Put €.={(t, t;)eR*: t,=(¢/24n)x and t,=
(e/2+m)r for n, mcZ}, where e=0 or 1. Since exp(ad¥) acts transitively on
the torus T, we have the following theorem by the same method as the proof
of Proposition 3.4 again.

THEOREM 3.6. In the maximal flat torus T, two points P(0(to)0:(t,)K,) and
P(6(s0)0.(s1)K,) are identical if and only if they satisfy (ty—s,, ti—3:)€€,UE,.

Remark. Let d(,) denote the distance between two points in /7. Then it
can be obtained as in Lemma 3.1 that d(P(K,), P(K;))=2+/6r and d(P(K,), N;)
=24/3r for =1, 3 and j=1, 2.

4. The roots of the symmetric space /.

The Lie algebra @ has a direct sum decomposition G=(G(K,)DG«(K,)D
&,(K,) by Lemma 2.2. Then, as in Proposition 2.4, the Lie triple system &,(K})
is the tangent space at P(K;) to Il and the Lie subalgebra G,(K,)PG,(K,) is the
Lie algebra 11 of the isotropy group U at P(K;). The maximal flat torus T in
IT has the tangent space T at P(K,). ¥ is spanned by two tangent vectors K,
and e¢,;K,e, and it is a maximal abelian subspace of &,(K)).

We give here a Cartan subalgebra £, containing the abelian space ¥, by

o= {D62,33y De,;,ey (Ii—=1Iyey, e\(I,—1I,), K,, e1K,ei},

where the unit elements ¢, are omitted again. Let {i} be the set of roots in
the root space decomposition with respect to $. Then, by restricting {i} to the
subspace ¥ in §, we can have the restricted roots for the symmetric space 1.
In fact, the positive roots for the operation ad(aK,+be,K,e,), a, bC, are —(a
—b)i, —2(a—b)i, —(a+0b)i, —2(a+b)i, —2ai and —2bi, where C is a field of
coefficients and contains { with i?>=—1. The multiplicities of the restricted roots
are 8 1,8 1,6 and 6 respectively. The simple roots are —(a—b)i and —2bi.
Then two vectors x; and x, in £ corresponded to them with respect to the
Killing form B of & are given by x,=i/96K,—i/96e,K,e, and x,=i/48¢,K,e;.
Consequently, we have the same Dynkin diagram for the symmetric space II as
that in Helgason’s [4] (p. 534) from the fact B(x,, x;)=1/48, B(x,, x,)=1/24 and
B(x,, x,)=—1/48.

If we make the correspondence of any vector aK,+be Ky,e, in T with the
point (a, b)) R? the diagram & of the pair (G, U), i.e., the set {x=Z: A(x)e
#iZ for some root A of II}, is given by the straight lines in R? (cf. [4], p. 295)
such that, for any n€Z, a—b=nn, a—b=nn/2, a+b=nr, a+b=n=x/2, a=nn/2
and b=n=z/2. Hence the singular set S in the torus 7 can be determined by
S=P((exp(ad ©))K;). Moreover, since we can define the bijective correspondence :
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(a, by—>P((expad (aK,+be,K,e,))K,) by Theorem 3.6 between the set {(a, b)eR*:
0=a<r, 0=b<mn/2} and the torus T, the singular set S can be decomposed into
the seven geodesics, i.e., S=US,, where (1) S;=P((expt(ad K,))K,), 0=t<m, (2)
S.=P((expt(ad e, K,e)K;), 0=t<w/2, (3) S;=P((expt(ad e, K,e,))K;), 0<t<xm/2, (4)
Si=P((exptad (K, +e,K,e1)Ky), 0=t<n/2, 5) Ss=P((exptad(K,+e,Kse1))Ks), 0=
t<n/2, (6) Se=P((exptad(—K,+e,K,;e,))K;), 0=t<rz/2 and (7) S,=P((expad((x
—0)K,+te, Kye)K)), 0<t<m/2.

In the Lie subalgebra Il of ®, three subsets are defined by (1) for any Q&
I, (Q)={x<ll: (exp(ad x))-Q=0Q}, 2) WE@)={xeU: [x, T]={0}}, and (3) for
each root Aof II, U;={x€U: [y, [y, x]1=4(y)%*x for any yeZ}. Moreover put
S:={QeT: Q=P((exp(ad y))K;) with A(y)eniZ for some y=Z}. Then we
can state the following lemma by the useful identity (cf. [6], p. 64)

WQ)=WD)DB2U;,

where @Q=7T and the sum X runs over the positive roots {i} such that Q&S,;.
Note that the dimension of W(¥) is 16 and that of 11; is equal to the multi-
plicity of A.

LEMMA 4.1. For each point QET, the Lie subalgebra WQ) can be determined
as follows:

(1) WP(Ky)=WU, because all roots pass through P(K),

(2) WPK)=WZ)DU-2(a-5iPU-2(a+0) iDU-20:PU-25:

(3) u(Nl)':u(z)@u—ﬂa—b)i@u—z(aﬂni@u—(a-b); »

(4) WN) =WE)YDU_2a-0yiPU-2¢a+0) iPU- (a40r:»

(5) WQ=WEX)PU-2,  for QES, but Q=P (Ky), P(K;),
(6) WQ=WD)DPU 20,  for QESUS; but Q=P(K,), P(K;),
(7)) WQ=UED)PU- a-0iDPU-2¢a-0r.  for QES, but QxP(Ky), N,
(8) WQ)=UEX)PU_2¢a-»n.  for QS5 but Q=P (Ky), N3,
(9) WO=UE)PU-2a+n.  for QESs but Q=P(Ky), Ny,
(10) WQ)=WE)DU- (a+0):DPU-2(a+00: for QeS; but Q=N;,
(1) wWe)=uE) for QeT—S, i.e., each regular point Q.

Remark. (i) The dimension of these subalgebras are: (1) 46, (2) 30, (3)
26, (4) 26, (5) 22, (6) 22, (7) 25, (8) 17, (9) 17, (10) 25 and (11) 16. (ii) For
each W(Q) in (5), (6), (8), (9) or (11), it is a subalgebra also in U(P(Ky)). (iii)
1 has the one-dimensional center {(2I,+1,)e;}. (iv) The bases of U_;+5; and
W_zca-1. can be given by e,/;—Ise, and e,[;+1se, respectively, where I;=—1I,—
I,. The basis of U__p, consists of eight elements K,—e,Ke,, Fie;+e,F; and
e, Kiey—ee Fy 1=2,3, -, 7).

5. The connection between I/ and projective planes.

Two geometrical objects, points and lines, are introduced into the symmetric
space I and the connection between II and projective planes is studied there.
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The aim in this section is to give an affirmative answer to a Freudenthal’s con-
jecture (cf. [3], p. 175) which asks the existence of one line passing through
two general points in 7.

By the isotropy group U at P(K,), we can make two orbits in I/ : the one
contains P(K;) and the other contains N, and N; (=N,) (see Lemma 3.5). Since
d(P(K,), P(Ky)=2+/6r and d(P(K,), N\)=24/ 3, they are mutually disjoint
sets. Moreover, they are compact connected totally geodesic submanifolds (i.e.,
globally symmetric spaces) by Lemma 2.1 in [2] because both P(K;) and N, are
midpoints in simply closed geodesics with the initial point P(K;). By the transi-
tivity of U on the set of maximal flat tori in // passing through P(K,), we can

see the following.

LEMMA 5.1. Any point in [I commuting with P(K,) 1s contained in the orbuts
of P(K;) or N,, and the converse 1s also true.

Let L(P(K,)) mean the orbit of P(K;) by U. The geodesic symmetry at any
point @ in L(P(K,)) is given again by the restriction of 1—2Q to this space
because this involutive isometry makes P(K,) fixed, i.e., it does L(P(K,)) in-
variant. The Lie algebra of the connected component in the isometry group of
L(P(K,)) can be given by (G,(K,)PG,(K,))— {z}(=2s0(10)), where z=(2I[,+1,)e,.
In fact, the isotropy group U does not act on L(P(K))) effectively and exp?(ad z),
teR, is the identity transformation on L(P(K,)). Hence, the Lie algebra of the
isotropy group at P(Kj) for U also becomes (&,(K)DG(K))N(Go(Ks)DSo(K)—
{z}, i.e., (DerCD{ed,}D{eds})P {0} (=s08)Pso(2),:1=1,2, ---,7. From
these arguments, we have the following.

PROPOSITION 5.2. The orbit L(P(K})) s a compact connected symmetric space.
It 1s locally diffeomorphic to SO(10)/SO(8)-SO(2) with the dimension 16.

LEMMA 5.3. (1—2P(K))(1—2P(K,)(1—2P(K,)=1.

This is a direct consequence by an easy calculation. We note that the in-
volutive isometries {1—2P(K,)} are commutative with each other.

PROPOSITION 5.4. In the orbet L(P(K)), P(K,) 1s the only point such that it
commutes with P(K,) and has the distance 2/ 6  from P(Kj).

Proof. Since a-P(K,)=P(K,) and a-P(K,;)=P(K,) hold for an isometry a=
expr/2(ad K,) of II, P(K,) is contained in L(P(K;)). And, it commutes with
P(K,) from the same reason as in Lemma 3.1 and the distance 24/ 6 x is also
obtained similarly.

From the fact that the symmetric space L(P(K,)) has the rank 2 by Pro-
position 5.2, we can get a 2-dimensional maximal flat torus V (in this space)
which contains P(K,) and P(K,). Then, for any point Q in L(P(K))), there
exists an isometry AU, by the transitivity of the isotropy subgroup at P(Kj)
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in U on the maximal flat tori of L(P(K,)) passing through P(Kj), such that -V
contains P(K;) and Q. If Q commutes with P(K,;) and has the distance
d(Q, P(Ky)=2+/6r, B-P(K:;)=Q holds by Proposition 3.4 and by the remark in
Theorem 3.6. On the other hand, since S makes P(K;) and P(K;) fixed, we
can also have §-P(K;)=P(K,) by Lemma 5.3. Therefore this concludes that
Q=P(K,).

Remark. (1) In the orbit L(P(K;)) there is a 12-dimensional compact con-
nected symmetric space with the same type as SO(8)/S0O(6)-SO(2). This con-
sists of all points which commute with P(K;) and have the distance 24/ 3 r from
P(K;). (2) The orbit of N, by U becomes a compact connected symmetric space
with the same type as SO(10)/SU®5)-SO(2).

Now we generalize the notation L(P(K;)) to an arbitrary point P in II.
Let L(P) denote the set of all points in // which commute with P and have
the distance 24/ 6 7 from P. We call this set L(P) a line associated with P and
call P a point again in the sense of projective geometry. And the incidence is
defined by the relation of inclusion. Any line is diffeomorphic to L(P(K))) as a
manifold. Let IT* denote the set of all lines in 1.

LEMMA 5.5. The correspondence L : Il —II* is bijective.

Proof. By the transitivity of isometries of I7, it is sufficient to show that
L(P(K,)=L(Q) implies P(K;)=Q. For any Q in II, there exists an isometry
a in U such that a-Q is contained in the torus T (see Theorem 3.6). Since a
makes P(K;) fixed and L(P(K,))=L(a-Q) holds, we can see that a-Q commutes
with all points in L(P(K;)). Hence a-Q=P(K,) by Proposition 3.4, since
da-Q, P(K;)=2+/6x and a-Q and P(K,) are commutative. Therefore, it
follows that Q=a™*-P(K,)=P(K)).

PROPOSITION 5.6. The correspondence L gives the duality between II and IT*.

Proof. 1If L(P) is a line containing a point @, we get easily P L(Q)
because P commutes with @ and has the distance d(P, Q)=2+/6r. The con-
verse is also true.

LEMMA 5.7. For two distinct points there exists at least one line passing
through them.

Proof. By the transitivity, we may assume that one point is P(X;) and the
other is an arbitrary point Q. Since TC L(P(K,)) and there is an isometry « in
U such that a-Q&eT, L(a™*-P(K,)) is a line containing P(K;) and Q.

From now on we shall study the number of lines passing through two
distinct points. In the next lemmas, let P(K,;) be the base point in I and we
consider only the maximal flat tori containing this point.

If V is an arbitrary maximal flat torus in /I containing P(K;) and Q, the
tangent space B at P(K,) to V can be given by the set {ye®,(K;): (expt(ad y))-
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P(K,) eV for any t€R}. We remark that if Q=P(x), x=¥%, the subspace &,(x)
in & can be regarded as the tangent space at Q as before. Then we can
assert that:

LEMMA 5.8. BCS(K)NS(x) holds as a subset in &.

Proof. Let r(t)=(expt(ad y))-P(K,), y=B, be a geodesic with a tangent
vector y such that r(#;)=Q for some #,=R. Then &,(x)=(expt,(ad ¥))8,(K;)
holds. Hence we can get BCG,(x) by BCG(K,) and [y, B]=1{0}. This means
that any element in B can be regarded as a tangent vector at @ again.

LEMMA 5.9. For two maximal flat tor: V; and V, contaaning P(K,) and Q,
there exists zeW(Q) such that (exp(adz))-V,=V,.

Proof. Select y;€%8,, i=1, 2, such that the closures of the sets {(expt;(ad y,))
-P(K,)}, for any t;€R, become V, respectively. Define a continuous function
f of exp(adl(Q)) into R by f(h)=B(h(y,), ¥.), where B is the Killing form of
&. Since the group exp(adl(Q)) is the connected component in a subgroup in
U which makes Q fixed, it is a compact set. Hence f has a extremal value at
some h,=exp(adll(Q)) and we obtain

{2 Blexptad ki, 30} _ =0
t=0

for any yel(Q). It follows that 0=B([y, ho(y1)], y2)=B(, [ho(y1), ¥21). This
means that [A(y,), y.] is contained in the orthogonal complement W(Q)* for 11(Q).
On the other hand, we have [A,(y,), y.]€W(Q) because it holds that W(Q)=
(B K)PGK )N (Bo(x)DG:(x)) by Lemma 2.2 and also ho(y,), y.€G,(K)NG,(x)
by Lemma 5.8, where Q=P(x) is assumed. Hence we can show [Ahy(y,), y.]1€
WQINM(Q)*= {0} by the nondegeneracy of the Killing form B. This concludes
that ho(y,;)€DB. and, therefore, Ay V,=V,.

DEFINITION. (1) Two distinct points in I/ are said to be in the general
position if any simply closed geodesic with the minimal length does not contain
both of them. If not so, they are said to be in the singular position. (2) Two
distinct lines L(P) and L(Q) in IT are said to be in the general (resp. singular)
position if P and @ are in the general (resp. singular) position.

THEOREM 5.10. IT 1s a projective plane in the wider sense, that is, Il satisfies
the following properties :

(1) For two distinct points there exists only one line passing through them if
the points are in the general position. If in the singular position, the set of lines
passing through the points forms a complex projective space in the usual sense as
a manifold.

(2) The correspondence L asserts the duality of (1) for two distinct lines.

Proof. We prove only (1) for two distinct points P and Q. (2) is a direct
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consequence from Proposition 5.6 and (1). Let two lines L(Q,) and L(Q,) pass
through the points. By transitivity, it may be assumed that P=P(K;), Q,=P(K,)
and QeT, where T is the torus in Theorem 3.6 and so TCL(P(K,)). Then,
since there exists a maximal flat torus V in L(Q,) which contains P(K;) and Q,
we have an element zell(Q) by Lemma 5.9 such that (exp(adz))-T=V. Under
the notations in Lemma 4.1, simply closed geodesics in T with the initial point
P(K;) and the minimal length 44/3 7 are only S,and S,;. If Q is in T—(S,US5),
the isometry exp(adz) makes P(K;) fixed by the Remark (ii) in Lemma 4.1.
This implies P(K;)eVCL(Q,). Hence Q, commutes with P(K,) and P(K,), and
it also has the distance d(Q,, P(K.))=2+4/6r, i=1, 3. We can say, therefore,
Q,=P(K,) from Proposition 5.4. If @ is in S,\US,, many lines passing through
P(K,) and @ can be found. We study in the case of Q&S, because the other
case is similar. By (2) in Lemma 4.1, the isometries exp(adll_ _s;) move P(Kj)
and, hence, do also P(K,). Put £=/{(exp(ady))-P(K,)}, for all yEl_ q_pi.
Then, since L(£2) gives all lines passing through P(K;) and @, the following
lemma completes our proof.

LEMMA 5.11. 2 is the complex projective space with the complex dimension 4.

Proof. Note that 2 depends only on the geodesic S, but does not on each
point Q€ S,. Since U_(;-5, is the tangent space at P(K,) to £ and it is a Lie
triple system in the tangent space &,(K,) at P(K,) to II, 2 is a compact con-
nected (globally) symmetric space and the type of £ can be determined from
(3), (7) and Remark (iv) in Lemma 4.1. Consequently 2 is diffeomorphic to
SU(5)/SU4)-SO(2) because this type has only one kind of local isometry class.
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