
K. ATSUYAMA
KODAI MATH. J.
8'(I985), 236—248

THE CONNECTION BETWEEN THE SYMMETRIC SPACE

E6/SO(10) SO(2) AND PROJECTIVE PLANES

BY KENJI ATSUYAMA

Introduction.

We are interested in symmetric spaces of the three types EJR, EVl and EW
on the same line as projective planes, since we want to understand all exceptional
Lie groups geometrically and systematically. The first aim in this paper is to
clarify the structure of maximal flat tori in a compact symmetric space 77 of the
type EW which is constructed in the set of projections associated with involu-
tive automorphisms of the compact simple Lie algebra of the type E6 (Theorem
3.6). Next we write down the roots of the symmetric space 77 and also give a
relation between the roots and the isotropy groups of two points in 77. In Sec-
tion 5 two objects, points and lines, are introduced into 77, and this space is
studied from the viewpoint of projective geometry. Finally it is showed that
77 is a projective plane in the wider sense (Theorem 5.10).

1. Preliminaries.

Let 2ί be a composition algebra over the real field R and let a, b, c be
elements in 2L If a conjugation — : a -»a is usually defined in % we have a
symmetric inner product (a, b)=l/2(ab+Έb)> If a commutator and an associator
are defined by [α, b~\ — ab—ba and (a, b, c)—(ab)c—a(bc) respectively, any inner
derivation of 2ί can be generated by Da>b, where 7)α,6(c)=[[α, b~\y c]— 3(α, b, c).

Let 2ί(1)(g)M3(g)2ί(2) denote an tensor product over R composed of one 3x3
matrix algebra Ms with coefficients in R and two composition algebras 2ϊ( ί ).
If the confusion does not occur, we write aXu instead of a®X®u, where α e
2ί(1), MG5ί(2) and Z e M 3 . In this vector space a product can be defined by
xy — abXYuv for x — aXu and y—bYv. Furthermore an involution and a trace
Tr can be introduced by aXu-^dXτΰ and Tr(aXu)=atr(X)Iu respectively,
where T : X-±XT is the transposed operator of matrix, tr(Z)—l/3(x1i+x2 2+X33)
for X=(xιj)^M3, and I is the 3x3 unit matrix.

Let W denote a vector space over R which is generated by all elements in
$ί(1)(g)M3(S)2ΐ(2) with the trace Tr being 0 and the skew-symmetric form with
respect to the involution aXu-*aXτU. Let L(9Ϊ(1), M3, 9ϊ(2>) be the vector space

Received June 20, 1984

236



THE CONNECTION BETWEEN THE SYMMETRIC SPACE 237

Der K{1)®m®Der 2ί(2) (direct sum) over R, where Der Ψι) is the Lie algebra of
inner derivations of 2ί( ί). In this space we define an anti-commutative product
[, ] in the following way (cf. [1], Section 3):

f the Lie product of DerΈ{i) (*=/)
(1) [ £ ( ί ) , D<»1 \

I 0 (iΦj)

(2) [£>(1), aXu^{D^ a)Xu and [ £ ( 2

(3) For x = aXu and y=bYv,

lx, yl={X, Y){u, v)Da>b+{xy-yx-Tr(xy-yx))+{X, Y)(a, b)DUiV,

where D^tEDerW™ and (X, Y)=tr(XY). Then L(2I(1), M3, 2ϊ(2)) becomes a
real Lie algebra by this product. If 2Ϊ(1) is the Cay ley algebra (S (over i2) with
the non-split type, it is a compact simple Lie algebra of the type Fif E6, EΊ or
E8 according as 2ί(2) is R, C, Q or (£, where C and Q are the fields of complex
and quaternion numbers with the non-split types respectively. We note that
DerC={0} and the Killing form B of L(g, M3, C) is given by BiD.+aXu, D2

+bYv)=3B0(Dlf D2)+lU(a> b)(X, Y){u, v), where Bo is the Killing form of Der&.
For the remaining sections, a basis of (£ is given explicitly:
a basis : #<,, βlf •••, ̂ 7

rules of product:

eιej— — ejeι (i, ^ l and 2^;), e ^ ΐ = — e 0 (ί'^1), ^0 is the unit element,

a conjugate operator — : eo->eo, eι->—eι (lfgz^
Then we can realize R, C and Q as subalgebras in (5 generated by {<?oh {̂ o, βi}
and {̂ o, ^i, β2, £3} respectively.

2. Construction of a symmetric space 77.

Let © be a real semi-simple Lie algebra with a Lie product [ , ]. Let 36 be
a subset in © consisting of all elements x which satisfy an identity (ad x)
((ad x)2+l)((ad x)2+4)=0, where ad x is the adjoint representation of x. Then,
for each x e 36, the eigenspaces for ad x can be obtained in ®:

(ad;02z=--ί22), *=1, 2.

Moreover three transformations {P^x)} of ® can be defined by P0(x)
(adx)2+l/4(adx)4, P2(Λ:) = -4/3(adΛ;)2-l/3(a(iΛ;)4 and P2(x) = l/12(aάx)2+l/12
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(adx)4, where 1 is the identity transformation of ®. We assume that 36^ {0}

and (SiOO^W.
By direct calculations we have the two following lemmas.

LEMMA 2.1. Each transformation Pt{x) is a projection of © onto ©t(x).
These satisfy Pi(x)Pj(x)=0 (i*j) and P0(

LEMMA 2.2. (S has a direct sum decomposition ®=®o(*)Θ®i(x)Θ®2(*)> and
(®o(*)Θ®2(*))Θ®i(*) is a Cartan decomposition of © with respect to an involutive
automorphism l—2P1(x) (=expπ(adx)).

EXAMPLE. When © is the compact simple Lie algebra L(®, M3, C) with
/0 0 0\

the type E6, we take ϋCi= 0 0 11 in WlrΛdί and then the eigenspaces {©t(/Q}
\0 - 1 0/

can be given by

Deriί

0

-b2

bι

0

0

b2

0

0

Θ

0

α2

0

0

a2

0

0

0 0

[0 a 0

\0 0 - α

dimension

14+16=30,

16+16=32,

8+8=16,

where a, alt β2(resp. b, blf b2) are linear combinations of
^o®^o a n d e^βί), i—1, 2, •••, 7.

and

PROPOSITION 2.3. // iS is a semi-simple Lie algebra, the connected component
of any element x in 36 is a reductive homogeneous space and the tangent space at
x is ®X

Proof (cf. [5]). The tangent space at x can be considered a subspace in
© (as a vector space) which consists of all elements w satisfying

lira— {Φ(x+tw)-Φ(.x)}=0 ( ί ε ί ) ,
ί-*0 ί

(1)

where Φ(^)=(adz)5+5(adz)3+4(ad^) for Z G & Note that Φ(x)=0 for
First it is shown that any element w in ©i(x)θ©2(*) is a tangent vector at
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x. Since adx is a non-singular transformation on ©i(*)Θ©2(*)> there exists an
element — ze(8i(x)0β 2(x) such that [*, —z\ — w. Hence, for ίeJB,

lim—{Φ(jc+ίu;)--Φ(Λ;)}=lim~Φ((exρί(adz))Λ:)=O.
ί-0 t ί-0 ί

Next we show that any tangent vector M E © at i is contained in ©iU)©
®2(*). (1) can be rewritten as, for #=adiί ; and x =

(2) w)£4+*$£3+;c2$£2+;P#£+;£4$+5#^

Since this equation is linear for w and any element in ©i(x)0©2(*) satisfies (2),
we may assume we@0(χ). Then xw—wx holds by [x, u;]=0 and so (2) becomes
T2)(5JC 4+15Λ 2+4)=0. This implies - 6 [ > , ;y]=0 for any j y e © ^ ) , i.e., [>, ©Λ*)]
= {0}. Since [©Λ*), ®i(*)]=®0(*)θ®2(*) by Lemma 2.2 and the semi-simplicity
of ©, we obtain [w9 ©]={0}. Hence w=0.

Let G be the adjoint group of © and let H be the isotropy group at x<=%.
Then, the connected component of x becomes a reductive homogeneous space
G/H with a pseudo-Riemannian structure defined by the Killing form of © (cf.
[7], p. 343). In fact, © (resp. ®0(*)) is the Lie algebra of G (resp. H) and
©i(%)®©2(#) is the tangent space at x to %. Furthermore, since g(adw)g~1=
aάgw and g(aάx)g~1=:adx for any g^H and any tangent vector w at x, we
can see, from (2), that H makes the tangent space at x invariant.

/0 0 0\
Remark. If ®=L(δ, M3, W2)) and K^IO 0 1 , the dimension of the

\Ό - 1 0/
connected component of Kx is 30, 48, 84 or 156 according as © is a compact
simple Lie algebra with the type F4, E6, E7 or E8.

Hereafter we write P(x) for simplicity instead of Pλ{x). The action of the
adjoint group G on the set of all endomorphisms h of © is defined by g-h=
ghg-1 for g€ΞG. When we assume that ®=L(6, M\ 5ί(2)), let Π be the orbit
of P(ϋCi) by G, i.e., Π-lg-PiKi); g^G}. Then the tangent space at P(Kύ
to Π can be given by ©i(ΛΊ) and the Lie algebra of the isotropy group at P(Kj)
can be also given by ®0(K1)(B®2,(K1). These facts are proved, making use of

in the proof of the following.

PROPOSITION 2.4. Π is a compact connected (globally) symmetric space. Its
dimension is 16, 32, 64 or 128 according as © is a compact simple Lie algebra
with the type F4, E6, EΊ or E8. Moreover Π is locally diffeomorphic to FJSptn(9),
E6/SO(10)'SO(2), E7/SO(l2)'SO(3) or E8/SO(16).

Proof. Let U be the Lie algebra of the isotropy group at P(AΊ), i.e., U=
fce© : (expί(ad^)) P(A 1)=P(A 1) for all ί εΛ} . First we show Vί=®o(K1)@®2(K1).
Since 1—2P(K1) is an (involutive) automorphism of © as in Lemma 2.2, it holds
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that (l-2P(K1))(expt(aaz))(l-2P(K1))-1=expt(aa(l-2P(K1))z) for z<=® and
If z<=U, this identity and the simplicity of (S imply z—{l—2P{Kλ))z and so
P(K^z—Q. This means 2'e(S0(/ί1)φ©2(7;ί1). The converse can be also seen easily.

Next we introduce a G-invariant Riemannian structure into 77 by the Killing
form of ®. Then G is exactly the connected component (of the identity map)
in the isometry group of 77. The action of G on 77 is given by h : P(gK^-+
h PigKJ for h^G and PigKJeΠ. Each point P(gKx) in 77 has an involutive
isometry 1—2P(gK1) which makes P{gK^) itself an isolated fixed point. In this
way 77 becomes a compact connected (globally) symmetric space. The types of
symmetric spaces can be determined by direct calculations.

0

0

0

0

0

0

1

0

0

- 1

0

1

0

0

0

0

0

3. Maximal flat tori in 77.

In the sections 3, 4 and 5, we assume that © is the compact simple Lie
algebra (over R) with the type E6, i.e., (S=L((S, M3, C). Then

, 0 0 .

KM 0 0 0 , K3=

\~1 0 0/

are elements in the manifold did®, where we neglect the unit elements e0 in
the composition algebras C and (S.

The matrix representation of the projection P^exp^adiQ)/^), t^R, is given
here by Px{x) — — 4/3(ad%)2—l/3(ad%)4 for x^X, making use of (expt(aάK2))K1

=(cosί)#"i—(s'mt)Ks: We remark that L((S, M3, C)—Der&®W and the set of
all elements (of ©) written in (2), (3) and (4) below becomes a basis of $ί ;

(1) on Der (£, the form is the 0 matrix,
(2) on the each subspace consisting of βiK^j, eiK2e3 and βiKze3 (/, ; = 0 or

i, ^ l ) , the form is
•t 0 1/2 sin 2A

0 1

1/2 sin 2ί 0

0

cos2ί

(3) on the each subspace consisting of etlu ej2, etFlf eτF2 and eτFz (ϊ^
the form is

Ί/2sin22f

l/2sin22ί

0

1/4 sin 4ί

0

l/2sin22ί

l/2sin22ί

0

1/4 sin it

0

0

0

sin2ί

0

-l/2sin2ί

1/2 sin it

1/2 sin it

0

cos22ί

0

0

0

-1/2 sin 2ί

0

cos2ί
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and F 3 =where
/O

1
\O

1
0
0

o\
0 ,
0/

ao
lo

0
- 1

0

°\
o ,0/

(0
0

0
1
0

°\o I /- 1 /

/o?l=ίθ
0
0
1

°\1' I
0/

/o
Ho

\1

0
0
0

1
0
0

(4) on the subspace consisting of lχeλ, I2eu Fλelt F2eλ and F3elf the form is
the same as that in (3).

LEMMA 3.1. The curve /^(exp^ad/Q)^), fejβ, in Π is a simply closed
geodesic with the initial point P(/d) and the tangent vector K2. The period is π
and the length is 4\/~6π. In this geodesic, the midpoint P((expπ/2(adK2))K1)

is the only point which commutes with P(Kχ).

Proof. We calculate only the length / of this geodesic r(t)=P((expt(adK2))K1)r

t<=R. The remainning assertion can be derived easily by the above matrix
representation of r(f). Let B be the Killing from of ©, then —B gives an inner
product on each tangent space to Π by the definition of Rimannian structure on
77. Since r(t) has the tangent vector K2 at every point, we have

l=\\-B(f(t),
Jo

In the tangent space ®i(Kχ) at P(Kλ) to Π, let % be the subspace spanned
by two vectors K2 and βxK^x. Since the symmetric space Π has the rank 2,
% is a maximal abelian subspace. We shall study in detail the maximal flat
torus T in Π associated with %.

LEMMA 3.2. The tangent vectors K2 and e1K2e1 are transitive by the adjoint
group G of ©.

Proof. Put a1=exp3π/2(aάe1K1e1) and a2—expπ/2(adK1), then α1α2(JfiΓ2) =

In the torus T, two simply closed geodesies r{t) and h(s) are defined by
r(ί)=/>((expί(adϋr2))/Γ1) and A(s)=P((exps(adβ1/f2β1))/C1), 0^t, s<π. Note that

LEMMA 3.3. The geodesies r(t) and h(s) meet at only two point with t=s=O
and t—s—π/2.

Proof. From the two relations r(t)Kλ=(sin20#i+l/2(sin2t)Ks and
(sm2s)i;ί1+l/2(sin2s)£1/

;Γ3£1, we can see easily r(t)^h(s) as projections of ©
except for the two cases of t=s—O and t—s—π/2. In the former case, r(0)
and λ(0) are equal to P(KX). In the latter case, r(π/2)=P(—K3)=P(K3) and
h(π/2)=P(e1Kze1) hold. Since axa2 in Lemma 3.2 preserves the Killing form B
of ($, it makes the 0- and 1-eigenspaces of P(KS) invariant by ®i(ϋQ=®i(£i/f30i)
and 5(®oWΘ®2W, ®iW)={0} for xeΞXa®. This concludes that P(KS) =
P(e1Kte1).
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In the torus T we shall find all points commuting with P ( i Q . Put a(t)~
expt(no(aάK2)+n1(aάe1K2e1)) for n0) n^R. Moreover, put Θi(t)—expt(adeiK2ei)
and tx—tUi (i=0, 1), then a(t) can be rewritten as a(O=#o(io)#i(ii). The com-
mutativity P(/jf1)P(α(ί)A:i)=P(α(O/fi)P(/ίCi) implies that P(/f1)P(α(0AΓ1)z=0 for

We use this fact in the next proof.

PROPOSITION 3.4. In the maximal flat torus T, the number of points com-
muting with P(Ky) is exactly three except for itself.

Proof. By Lemma 3.1, it is sufficient to consider the points P(a(f)Kύ, res-
tricted to O f̂o, tx<πt as elements in T. If P(α(ί)AΊ) and P{KX) are commutative,
it can be shown by the above remark that

=l/2(sm2t0cos2t1)K3+l/2(cos2tQsm2t1)e1K3e1.

Hence there are two possible cases (i) sin2ii=0 (ί=0, 1) and (ii) cos2ti—0 (ί=0,1).
We decompose (i) into the four cases. (1) If ^ = ^ = 0 , P(aK1)=P(K1) holds,
where the parameter t in a{f) is omitted. (2) If to—π/2 and ίi=0, P(aK^~
P{KZ) is obtained. (3) If to=-0 and t^π/2, PiaK^P^K.e^PiKs) holds as
in the proof of Lemma 3.3. (4) If to=t1=π/2, we have PiaK^^PiK^, in fact
P{aK1)^P{θιθQKι)=θ1P{θQK1)θ-1

1=θ1P{θ1K1)θ-ι

1 (by (2) and (3))=P(i?X1)=P(/i:1).
Next (ii) is also decomposed into the four cases: (1) to=ti=π/4:, (2) to=π/4, ί x =
3ίr/4, (3) *o=3;r/4, t^π/4 and (4) u=u=Zπ/L Put JV<=P(αΛΓ1), ι = l , 2, 3, 4,
corresponding to the each case. Then Nι—Nί and N2—Nz hold from (2), (3), (4)
in (i).

Since Nly N2 and P(KZ) are midpoints in simply closed geodesies with the
initial point P(/d), the geodesic symmetry 1—2P(K1) makes them fixed (cf. [2]).
This means that these points are commutative with P(Kχ). At last we show
that the four points P(/Ci), P(K3), Λfj and N2 are different from each other. That
PiKJ^PiKs) is given by PiKJK^O and PiK^K^K^ That P{K1)*Nt ( ί=l , 2)
is obtained from P{K1)eiF2-eiF2 and Ni(eiF2)=0. It follows that P(Ks)*Nt.
By PiKJ^ψPiKs), we can see

LEMMA 3.5. T/iβ j&<?mίs ΛΊ and Λf2 are transitive by an involutive isometry
of Π which makes P(ϋΓi) fixed.

Proof. Put j8(β=expf(adjDβ8,e6), t^R, then /3(ί) is an automorphism of (S.
Especially β(π/2) is involutive and its eigenvalue is 1 (resp. —1) on the subspace
{β #8, 05, e6} (resp. {βj, e2, ̂ 4, eΊ}). We extend 8̂(ί) (=]8) to an automorphism of

by

The same notation as β(t) is given for this extended automorphism. It is easy
that β{t)-P{K1)-P{β{f)K1)^P{K1). Furthermore it holds that β(π/2)-Nx=
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eιKιe1-Kz+e1K9e1)) =
iV2.

Let Z be the ring of integers. Put g β = {(f0, fi)e/28: fo=(e/2+n)7r and ίχ=
(ε/2+m)π for n, raeZ}, where ε—0 or 1. Since exp(ad^) acts transitively on
the torus T, we have the following theorem by the same method as the proof
of Proposition 3.4 again.

THEOREM 3.6. In the maximal flat torus T, two points P(θo(to)θ1(t1)K1) and
P(θQ(s0)θ1(s1)K1) are identical if and only if they satisfy (to—sQ, t1—s

Remark. Let d(, ) denote the distance between two points in 77. Then it
can be obtained as in Lemma 3.1 that d(P{Kχ), P(Ks))=2V~6π and d(P(Kτ), Nj)

ττ for ί = l, 3 and / = 1 , 2.

4. The roots of the symmetric space 77.

The Lie algebra (§ has a direct sum decomposition ®=(®0(
®iCKi) by Lemma 2.2. Then, as in Proposition 2.4, the Lie triple system
is the tangent space at P(/Q to 77 and the Lie subalgebra ®o(-Ki)θ®2CKi) is the
Lie algebra U of the isotropy group U at P(Kχ). The maximal flat torus T in
77 has the tangent space % at P{KX). % is spanned by two tangent vectors K%
and eιK^e1 and it is a maximal abelian subspace of ®iCίQ.

We give here a Cartan subalgebra φ, containing the abelian space %, by

where the unit elements e0 are omitted again. Let {λ\ be the set of roots in
the root space decomposition with respect to ξ>. Then, by restricting {λ} to the
subspace % in ξ>, we can have the restricted roots for the symmetric space 77,
In fact, the positive roots for the operation ^{aK^beJi^e^, a, b<^C, are — (a
—b)i, —2(a—b)i, —(a+b)i, —2(a+b)i, -2ai and —2bi, where C is a field of
coefficients and contains i with £2=—-1. The multiplicities of the restricted roots
are 8, 1, 8, 1, 6 and 6 respectively. The simple roots are —{a—b)i and — 2bi.
Then two vectors xx and x2 in % corresponded to them with respect to the
Killing form B of © are given by x1=i/%K2—i/%e1K2e1 and Xz^i/ASexK^ex.
Consequently, we have the same Dynkin diagram for the symmetric space 77 as
that in Helgason's [4] (p. 534) from the fact B(xu Λ: 1 )=1/48, B(X2, X2)=1/24 and
B(xl9 * ,)=-1/48.

If we make the correspondence of any vector aK^beJi^x in % with the
point (a, b)<sR2, the diagram <5 of the pair (G, U), i.e., the set ( I G Ϊ : λ(x)&
πiZ for some root λ of 77}, is given by the straight lines in R2 (cf. [4], p. 295)
such that, for any W G Z , a—b—nπ, a—b—nπ/2, a+b—nπ} a+b~nπ/2, a — nπ/2
and b=nπ/2. Hence the singular set 5 in the torus T can be determined by
S=P((exp(ad<δ))7;ί1). Moreover, since we can define the bijective correspondence :
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(α, b)-+P((expad(aK2+be1K2e1))K1) by Theorem 3.6 between the set {(a,
0^a<π, 0^b<π/2} and the torus T, the singular set S can be decomposed into
the seven geodesies, i.e., S=\jSl} where (1) S1=P((expί(adϋC2))/iΓ1), Q^t<π, (2)
S2=P((βxpt(aάe1K2e1))K1)9 0^t<π/2, (3) S8=P((expί(adβ1/f8e1))/ίι), 0^t<π/2, (4)
S4=P((expίad(ϋ:2+e1/i:2e1))/ί1), 0^<π/2, (5) SB=P((exptad(K2+e1K2e1))Ki), 0^
ί<π/2, (6) S6=P((expίad(-7f2+M^i))7Q, 0^t<π/2 and (7) S7 = P((expad((τr
-t^+te^e^KJ, 0<t<π/2.

In the Lie subalgebra U of ©, three subsets are defined by (1) for any Q G
77, i l(Q)={xeU: (exp (ad *))•<? = (?}, (2) U(S)={*€=U: [x, ϊ ] = {0}}, and (3) for
each root Λ of 77, ]Xλ={x^]l: [3;, [^, xJ\=-λ(yYx for any ^e^:}. Moreover put
Sλ={Q^T: Q=P((exp(ad3;))JK1) with λ{y)tΞπiZ for some ;ye%}. Then we
can state the following lemma by the useful identity (cf. [6], p. 64)

where Q G T and the sum J? runs over the positive roots {λ} such that
Note that the dimension of U(£) is 16 and that of U; is equal to the multi-
plicity of λ.

LEMMA 4.1. For each point Q^T, the Lie subalgebra M{Q) can be determined
as follows:

(1) UCP(ΛTi))=U, because all roots pass through P{Kλ)y

(2) U(P(AΓβ))=U(ϊ)ΘU..(α-«lΘ»->(α+«ί
(3) U(ΛΓi)=U(ϊ)ΘU-2(α-WίΘU-.(α+»iΘU-(α-».,
(4) U(iV.)=U(3:)ΘU-2(α-WiΘU.»(α+WlΘU-(α + «<,
(5) U(0)=U(ϊ)ΘU-2 6. for QΪΞS! but
(6) U(Q)=U(^)ΘU_2αι for Q^S2USZ but
(7) U(O)=U(ϊ)ΘU-(α-«iΘU-2(α-w, /or ( ? e 5 4 teί Q^PiKJ, Nlf

(8) U(0)=U(ϊ)ΘU.2(α-w. for QtΞSδ but Q*P(KS),NZ,
(9) U((3)=U(ϊ)ΘU-β(α+w. for Q<=Sβbut Q*P{K9),Nl9

(10) U(Q)=U(^)ΘU-(α+δ)I ΘU-2 (α+ δ) l /or ( ? G 5 7 fcw
(11) it(<3)=U(£) /or Q G Ξ T - S , i.e., eαc/z π?gz//αr

Remark. ( i) The dimension of these subalgebras are : ( 1 ) 46, ( 2 ) 30, ( 3 )
26, ( 4 ) 26, ( 5 ) 22, ( 6 ) 22, ( 7 ) 25, ( 8 ) 17, ( 9 ) 17, (10) 25 and (11) 16. (ii) For
each U(Q) in ( 5 ) , ( 6 ) , ( 8 ) , ( 9 ) or (11), it is a subalgebra also in U(P(iQ). (iii)
U has the one-dimensional center {(271+72)^1}. (iv) The bases of U-2(a+b)i and
U-2(α-&). can be given by eJ^—Ue^ and e1lz

Δrlze1 respectively, where I3=—I1—
72. The basis of U-(α-δ)ι consists of eight elements K^—e-Ji^, F^+e^ and
eιK1e1-e1etF1 (z=2, 3, -- ,7) .

5. The connection between 77 and projective planes.

Two geometrical objects, points and lines, are introduced into the symmetric
space 77 and the connection between 77 and projective planes is studied there.
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The aim in this section is to give an affirmative answer to a FreudenthaΓs con-
jecture (cf. [3], p. 175) which asks the existence of one line passing through
two general points in 77.

By the isotropy group U at P(KX), we can make two orbits in 77: the one
contains P(KZ) and the other contains Nx and JV3 (=N2) (see Lemma 3.5). Since
d{P{Kλ)9 P(K3))^2V~6~K and d(P(Kx\ N1)=2Λ/Ύπ, they are mutually disjoint
sets. Moreover, they are compact connected totally geodesic submanifolds (i.e.,
globally symmetric spaces) by Lemma 2.1 in [2] because both P(KZ) and Nx are
midpoints in simply closed geodesies with the initial point P(KX). By the transi-
tivity of U on the set of maximal flat tori in 77 passing through P(KX), we can
see the following.

LEMMA 5.1. Any point in 77 commuting with P(KX) is contained in the orbits
of P(KS) or Nlf and the converse is also true.

Let L(P(KX)) mean the orbit of P(KZ) by U. The geodesic symmetry at any
point Q in L(P{KX)) is given again by the restriction of 1—2Q to this space
because this involutive isometry makes P(KX) fixed, i.e., it does L{P{Kλ)) in-
variant. The Lie algebra of the connected component in the isometry group of
L{P(Kλ)) can be given by (@o(#i)Θ®2(#i))- {z}(^so(10)), where 2=(2/ 1+/ 2)e 1.
In fact, the isotropy group U does not act on L{P{KX)) effectively and expί(adz),
fe/2, is the identity transformation on L(P(K1)). Hence, the Lie algebra of the
isotropy group at P(KZ) for U also becomes (®0(#i)Θ®2(#i))n(®0(/QΘ®2(/Q)--
M , i.e., (Der£®{eiI1}®{eiI2})®{I2e1}(^so(8)®so(2)), ί = l, 2, - - , 7 . From

these arguments, we have the following.

PROPOSITION 5.2. The orbit L{P{KX)) is a compact connected symmetric space.
It is locally diffeomorphic to SO(10)/SO(8) SO(2) with the dimension 16.

LEMMA 5.3. {l-2P{Kι)){χ-2P{K2)){l-2P{Kz))^l.

This is a direct consequence by an easy calculation. We note that the in-
volutive isometries {1—2P(Kι)} are commutative with each other.

PROPOSITION 5.4. In the orbit L(P(KX)), P(K2) is the only point such that it
commutes with P(KS) and has the distance 2y/'Q~π from P{KZ).

Proof. Since a P(K1)=P(K1) and a'P(K3)=P(K2) hold for an isometry a =
of 77, P(K2) is contained in L(P(KX)). And, it commutes with

from the same reason as in Lemma 3.1 and the distance 2V~6~π is also
obtained similarly.

From the fact that the symmetric space L(P(K3) has the rank 2 by Pro-
position 5.2, we can get a 2-dimensional maximal flat torus V (in this space)
which contains P(K2) and P(KZ). Then, for any point Q in L(P(KX)), there
exists an isometry β&U, by the transitivity of the isotropy subgroup at P{KZ)
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in U on the maximal flat tori of L{P(K^) passing through P(K8), such that β V
contains P(KS) and Q. If Q commutes with P(KS) and has the distance
d(Q, P(KB))=^2V~6π, β-P(K2)=Q holds by Proposition 3.4 and by the remark in
Theorem 3.6. On the other hand, since β makes P(KX) and P(KS) fixed, we
can also have β-P(K2)=P(K2) by Lemma 5.3. Therefore this concludes that

Remark. (1) In the orbit L(P(KJ) there is a 12-dimensional compact con-
nected symmetric space with the same type as SO(8)/SO(6) SO(2). This con-
sists of all points which commute with P(KS) and have the distance 2Λ/ΊΓTΓ from
P(K3). (2) The orbit of Nx by U becomes a compact connected symmetric space
with the same type as SO(10)/St/(5) SO(2).

Now we generalize the notation L{P{Kλ)) to an arbitrary point P in 77.
Let L(P) denote the set of all points in 77 which commute with P and have
the distance 2V!Γ;r from P. We call this set L(P) a line associated with P and
call P a point again in the sense of projective geometry. And the incidence is
defined by the relation of inclusion. Any line is diffeomorphic to L(P(K±)) as a
manifold. Let ΠL denote the set of all lines in 77.

LEMMA 5.5. The correspondence L : 77—>77L is bijective.

Proof. By the transitivity of isometries of 77, it is sufficient to show that
L(P(ϋίi))=L(O) implies P(7Q=<3. For any Q in 77, there exists an isometry
a in U such that a-Q is contained in the torus T (see Theorem 3.6). Since a
makes P{Kλ) fixed and LiPiK^—L^a-Q) holds, we can see that a Q commutes
with all points in L(P(Ki)). Hence a-Q=P{Kλ) by Proposition 3.4, since
d(a-Q, P(Ks))=2V~&π and a-Q and P(KS) are commutative. Therefore, it
follows that Q^a-

PROPOSITION 5.6. The correspondence L gives the duality between 77 and ΠL.

Proof. If L{P) is a line containing a point Q, we get easily P^L(Q)
because P commutes with Q and has the distance d(P, Q)=z2VΊϊπ The con-
verse is also true.

LEMMA 5.7. For two distinct points there exists at least one line passing
through them.

Proof. By the transitivity, we may assume that one point is P{KX) and the
other is an arbitrary point Q. Since TdL(P(K2)) and there is an isometry a in
U such that α Q e T , Lia^-PiK^) is a line containing P(KX) and Q.

From now on we shall study the number of lines passing through two
distinct points. In the next lemmas, let P(KX) be the base point in 77 and we
consider only the maximal flat tori containing this point.

If V is an arbitrary maximal flat torus in 77 containing P(Kλ) and Q, the
tangent space 55 at P{KΎ) to V can be given by the set {y&t&^Kx): (exρf(ad;y))
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^V for any t(=R}. We remark that if Q=P(x), XEΞX, the subspace ®1(x)
in ® can be regarded as the tangent space at Q as before. Then we can
assert that:

LEMMA 5.8. %ci®1(K1)n®1(x) holds as a subset in ®.

Proof. Let r(ί)==(expί (ad 3;)) •/*(/£"!), ^ e φ , be a geodesic with a tangent
vector y such that r(U)=Q for some t^R. Then ©iM^expfΛad y))®!^!)
holds. Hence we can get S3c®i(x) by S3c®i(ΛΓi) and [3;, $]={0}. This means
that any element in $ can be regarded as a tangent vector at Q again.

LEMMA 5.9. For two maximal flat ton VΊ and V2 containing P(Kλ) and Q,
there exists zell(Q) such that (exp(adz)) F ! = F 2 .

Proof. Select ^ e ^ , i=l, 2, such that the closures of the sets {(exp ί*(ad 3O)
for any tt^R, become Vτ respectively. Define a continuous function

/ of exp(adϊKO)) into R by f(h)=B(h(y1), y2), where B is the Killing form of
®. Since the group exp(adlX(Q)) is the connected component in a subgroup in
U which makes Q fixed, it is a compact set. Hence / has a extremal value at
some /zoeexp(adlX(C?)) and we obtain

£((exp ί(ad y))ho(yi), y2)\ - 0

for any jyell«?). It follows that 0=β([3;, ΛO(JΊ)], 3^2)=^(^, [Λo(3Ίλ 3>2]). This
means that [Λ0(3Ί), yΔ is contained in the orthogonal complement U(O)1 for
On the other hand, we have [Λ0(^i), ^el^UCO) because it holds that
(®o(^i)Θ®2(iίi))Π(®o(Λ:)0®2(Λ:)) by Lemma 2.2 and also /ιo(^i), ^2^®i(^i)Π®1(x)
by Lemma 5.8, where Q=P(χ) is assumed. Hence we can show [/zoC î), ^ 2 ] ^
U(O)ΛU(O)-L={0} by the nondegeneracy of the Killing form B. This concludes
that ^0(^1)^^82 and, therefore, hO'V1=V2-

DEFINITION. (1) Two distinct points in Π are said to be in the general
position if any simply closed geodesic with the minimal length does not contain
both of them. If not so, they are said to be in the singular position. (2) Two
distinct lines L(P) and L(Q) in Π are said to be in the general (resp. singular)
position if P and Q are in the general (resp. singular) position.

THEOREM 5.10. Π is a projective plane in the wider sense, that is, Π satisfies
the following properties:

(1) For two distinct points there exists only one line passing through them if
the points are in the general position. If in the singular position, the set of lines
passing through the points forms a complex projective space in the usual sense as
a manifold.

(2) The correspondence L asserts the duality of (1) for two distinct lines.

Proof. We prove only (1) for two distinct points P and Q. (2) is a direct
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consequence from Proposition 5.6 and (1). Let two lines L(Qχ) and L(Q2) pass
through the points. By transitivity, it may be assumed that P=P(/Γi), Q2=P(K2)
and Q e T , where T is the torus in Theorem 3.6 and so TaL(P(K2)\ Then,
since there exists a maximal flat torus V in L{QX) which contains P(ϋfi) and Q,
we have an element 2<ΞU(Q) by Lemma 5.9 such that (exp(adz))-T=V. Under
the notations in Lemma 4.1, simply closed geodesies in T with the initial point
P(Ki) and the minimal length WΎπ are only S4 and S7. If Q is in T-(S4WS7),
the isometry exp (ad z) makes P(K3) fixed by the Remark (ii) in Lemma 4.1.
This implies P ( i Q e 7 c L ( Q i ) . Hence Qx commutes with P(KX) and P(K3), and
it also has the distance d(Qu P(Kt))=2V~6~π, i—^> 3. We can say, therefore,
Qi—PiKz) from Proposition 5.4. If Q is in S4\JS7, many lines passing through
P(Kj) and Q can be found. We study in the case of ( J e S 4 because the other
case is similar. By (2) in Lemma 4.1, the isometries exp(adU_(α-δ)i) move P(KS)
and, hence, do also P(K2). Put Ω— {(exp(ad3θ) PCfiΓ2)}, for all ;yeU_(α_6)£.
Then, since L(Ω) gives all lines passing through P(KX) and Q, the following
lemma completes our proof.

LEMMA 5.11. Ω is the complex projecttve space with the complex dimension 4.

Proof. Note that Ω depends only on the geodesic S4 but does not on each
point Q e S 4 . Since U_<α-δ)ι is the tangent space at P(K2) to Ω and it is a Lie
triple system in the tangent space ©i(/Q at P(K2) to 77, Ω is a compact con-
nected (globally) symmetric space and the type of Ω can be determined from
(3), (7) and Remark (iv) in Lemma 4.1. Consequently Ω is diffeomorphic to
SU(5)/SU(A)'SO(2) because this type has only one kind of local isometry class.
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