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ON CONVERGENCE OF CONDITIONAL

PROBABILITY MEASURES

BY AKIHIRO SUGAWARA

1. Introduction.

In this paper we are concerned with a relation between convergence of
conditional probability measures given sample means and minimization of I-
divergence (Kullback-Leibler information quantity) under some constraint. For
statistical and information-theoretical meanings of this problem, we refer to
Vincze [15]. Similar problem was investigated by Bartfai [3] and Vasicek [14],
but our approach is slightly different from theirs. We apply Sanov-type theo-
rems which were obtained by Groeneboom, Oosterhoff and Ruymgaart [6]. They
were working in the intrest of rates of convergence for probabilities of large
deviations given sample means. We recognize their result as a limit of average
information quantity gained by measurement of sample means.

The basic definitions and results which will be used in the sequal are
provided in Section 2. The result of Section 3 is not so difficult, but it would
be helpful for understanding the following work. Section 4 is our main one.
At first we rewrite a large deviation theorem obtained in Groeneboom, Oosterhoff
and Ruymgaart [6] employing /-divergence of conditional probability measures
given sample means. From this point of view we can show convergence of
conditional probability measures in the total variation metric. We also consider
a problem of convergence in τ-topology.

2. Preliminaries.

The purpose of this section is to state the basic definitions and the principal
results which will be used in what follows.

Let X be a Hausdorff space of points x, $ the σ-field of Borel subsets of
X. Let Π be the set of all probability measures on (X, B), which is considered
as a convex set in the usual sense: (aλ+(l—a)μ){')—aλ{-)J

Γ(l—ά)μ(-), O^α^l ,
λ, μ^Π. The 1'-divergence or Kullback-Leibler information quantity I(λ\μ) for λ,
μ in 77 is defined by

dλ ,Λ

if λ€μ,b dμ

=+°° otherwise.
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The information quantity I(λ\μ) is always non-negative and vanishes only for
λ—μ. If A is a subset of Π, we define for μ in Π

I(Λ\μ)=]nf{I(λ\μ):λeΛ}.

If A is empty, we put I(A\μ)—+co.
A topology on Π, which we will consider in this paper, is defined by setwise

convergence on all Borel sets. In Groeneboom et al. [6], this topology is called
τ-topology. A sequence of probability measures {λn} in Π converges to a pro-
bability measure λ^Π in r-topology, if and only if,

dλn=\g dλ

for any bounded measurable function g: X-+R. For a fixed μ in 77, the func-
tion λ->I(λ\μ), Λe/7, is lower τ-semicontinuous.

Let μ e / 7 be fixed. For each positive integer n, let (Xn, Bn, μn) be the
ra-th product of a probability space (X, JS} μ). We define the empirical prob-
ability measure dn(-\xlf •••, xn) on (X, IB) for a sample (xu •••, i n ) e Z n by

δn(B\xu - , * » ) = - Σ l a U * ) , 5 e ^ .

For a subset yl of /7, βn[Λ] which means the probability that the empirical
probability measure belongs to A is defined by

finίΛ2:=μn{(Xi9 " , Xn) Sn('\xu ••', Λ n ) e ^ } .

If yl is an arbitrary subset of Π, the event {{xι)^Xn : δn(-\xu •••, xn)^A} is
not necessarily ^^-measurable. Henceforth it will be assumed without explicit
reference that finlA] is well defined for all positive integer n (c.f. Remark 3.1
in Groeneboom et al. [6]).

We are now in position to describe a few theorems which play a very
important role in the sequel. They were all obtained in Groeneboom et al. [6].

THEOREM A. Let μ^Π and A be a nonempty τ-closed subset in Π. Then
there exists a probability measure μ*^A such that

I(μ*\μ)=I(Λ\μ).

We remark that if A is also a convex subset in Π and I{Λ\μ)<+oo, then
/i* is unique since I(λ\μ) is strictly convex in λ.

THEOREM B. Let μ^Π and A be a τ-closed subset in Π. Then

lim sup — \ogβn[_A']^—I{A\μ). ~
n-*oo fl

Let μ^Π, let F be a real Hausdorff topological vector space and let
{Bι:i—1, 2, 3, •••} be an increasing sequence of Borel subsets of X such that
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limm^oojti(jBTO)=l. Let ZΓTO—{Λe/7 : λ(Bm)—l\ for any positive integer in and
let /7*=Um=i#7*. Let T : /7*-*F be a transformation whose restriction T\Πm is
affine and r-continuous at each λ(=Πm such that I(λ\μ)<+co} for each positive
integer m. Then the following theorem holds.

THEOREM C. For a convex subset C of V with nonempty interior C° satis-
fying KT-'iC0)Iμ)< +00, then

3. Conditional Probabilities.

Let μ e / 7 and let A be an event in & such that //(^)^0. The conditional
probability measure μΛ( ) is defined as

Under this notion we have the following result. It is not so difficult, but it
seems worthwhile to us for understanding intuitively a relation between /-diver-
gence and conditional probability measures.

THEOREM 3.1. Let μ^Π and let A be an event in & satisfying μ(A)Φ0.
Let ΠA^{λ(Ξl7:λ(A)=l}. Then,

I(μΛ\μ)=I(ΠΛ\μ).

Proof. We first recall I(μA\μ) ——\ogμ(A)< + oo. Therefore we may assume
that λ^ΠA and I(λ\μ)< + oo. Denote by / the Radon-Nikodym derivative dλ/dμ.
We also write g to denote dμA/dμ~lA/μ(A). Then,

j / U ) log g{x) μ(dx)^\\og g(x) λ(dx) = ~log μ(A)

Therefore

\g(x) log g(x) μ(dx)-\f(x) log /(*) μ(dx)

where we use the inequality l o g α ^ α —1, α^O. Thus we obtain the following,
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This completes the proof.
We can afford another proof of this theorem employing Theorem 2.1 in

Csiszar [5]. However we have a preference for a proof which does not re-
quire an extra knowledge.

4. Convergences.

Throughout this section we fix a probability measure μ^Π and a bounded
measurable function f\X^Rk, where Rk is ^-dimensional Euclidean space.

We consider a transformation T: Π-*Rk, defined by

T(λ)=\fdλ, λ^Π.

Clearly T( ) is r-continuous. Hereafter we write

: \f

for a measurable subset C of Rk. We note that the empirical probability measure
1 n

δn( |* i , •••, xn) belongs to Πf[C] if and only if — Σ / ( * i ) ^ C . Thus
n t=i

» : - Σ
ϊl t=i

1 n

For convention, we put fn(xi, •••, i j = - Σ /(^r). Then we write μΐfn(=c}( )
TL %=• l

to denote the conditional probability measure μn( | / n e Q
Now we can rewrite Theorem C employing conditional probability measures

in the above case.
THEOREM 4.1. Let μ^Π and f be a bounded measurable function with values

in Rk. If C is a measurable convex subset of Rk with nonempty interior C° such
that KΠftC0^μ)<+oo, then

\ιm~I(μΐfn(ΞC) I μn)-^I{Πf\_C-] \ μ).

For 2 = 1, 2, -- , n , the z'-th marginal measure of μ^f^o is denoted by
μ\Ϋnec\- By the symmetry of the event J W e P : / n e C } ,

Λi) .Λj)

if&O—μίf

Hence we simply write μ{fn&c) to denote the z-th marginal measure. If C is a
closed convex set and /(/7/[C]|μ)<+oo, then there exists the unique probability
measure μ*^Πf\_C] such that
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I(μ*\μ)=I(ΠflC]\μ),
by Theorem A.

Then it seems that Theorem 4.1 suggests some relation between μ{fn<=c\
and μ*. Really we obtain the following theorems.

THEOREM 4.2. Let μ^Π and f be a bounded measurable function with values
in Rk. Let C be a measurable convex subset of Rk with interior C° such that

[fdμtΞC°. Then,

μifn<EC)-+μ (n->oo)

in the total variation metric.

Proof. It is easy to see that

/ n e c l | μ).

The assumption [fdμ^C0 implies /(77/[C]|/i)=0. Then, by Theorem 4.1,

Henceforth it follows that

\iml(μ

Now we recall the inequality,

for all λ, η^Π. This completes the proof.

L E M M A 4.1. Let {an: n = l , 2, •••} be a sequence of real numbers. If

lim sup—an<0, then l i m α n = — oo.
n->oo Π n->oo

THEOREM 4.3. Let μ^Π and f be a bounded measurable function with values
in Rk. Let C be a closed convex subset of Rk with nonempty interior C° such
that KΠflCΊlμ)<+oo. Then

μι/nec}-*μ* (n->oo)

in τ-topology, where μ*^Πf[C] satisfies

I(μ*\μ)=I(Πf[Cl\μ).

Proof. Let g be a real-valued bounded measurable function. To prove this
theorem, we observe
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\ dμιfneo = \g dμ*.

We use the following notations:

f 1 n
ί*=\gdμ*, gn(Xl, '" , Xn)=— Σ,

For an arbitrary ε>0, we write

Since μ* does not belong to i7 ( / , s ) [C, ε], it is easy to see that

IOIf[.Cl\μ)<iaitf.β>lC,el\μ).
By Theorem 4.1,

l i m -
7i-»oo ft

From r-closedness of /7 ( / > ί ) [C, ε], it follows by Theorem B that

lim sup -J-log/£»{/»eC, \gn-g*\^ε}^-I(Πι/.ΛlC, β]|/ί).

Therefore we obtain

1 1
lim sup —logμn{fn<=C, \gn—g*\ = ε̂} <lim—

This implies

lim sup —log————~γ

By Lemma 4.1, it follows that

Then it is easily verified that

for all sufficiently large n. Here we note that

Γ 1 n Γ
\gndμ?fn<=c) = ~ Σ \g(x%)dμ?f ec)(xi, '" > xn)

Since ε is arbitrary, we obtain
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lim\g dμ{fnec>=g*.

This completes the proof.
In the previous proof, the following corollary is already shown. A similar

result is proved in Vasisek [15], where he required that X was a finite set.

COROLLARY 4.1. Let g be a real-valued bounded measurable function. Then
for an arbitrary ε>0

as n->oo.

Next we consider a condition such that /(/7/[C]|/i)<-ί-oc for an open set
C. In Bahadur and Zabell [2], they provide a condition on which

exists and is finite for an open convex set C. Inspired by their result we
obtain the following proposition.

PROPOSITION 4.1. Let μ^Π and f be a bounded measurable function with
values in Rk. Let Siμf'1) be the support of a probability measure μf~ι on Rk.
If C is an open subset of Rk, then Cίλcδ S(μf~ί)Φ0 if and only if I(ΠflC]\μ;
<+co.

Proof. If CΓΛcδS(μf~1)Φ0, we can choose an element v in CΠcό S(μf~r).
Then there exists an open neighborhood U of v such that

Since v is also belonging to cδSiμf"1), there exist non-negative numbers alf

am and open convex sets Uu " , Um in Rk which satisfy that

ι=i

and UiΓ\S(μf-1)Φ0 (/=1, ••• , m).

Since μf~1(Uz)Φθ (i=l, •••, m), we can define a probability measure / as

^( ) = Σ α ϋ « ( l/-1(£/.)).
1 = 1

Then it follows that

dλ= Σ aι\^f(x)μ(dx\ f~KUx))

= Σ aλw μf-1(dw\Uι)£Ξ Σ aiϋ\ .
1 = 1 J %=1
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From ΣiaίUιdU, it is clear that λ^Πf\_C]. And it is easy to see that I(λ\μ)

Conversely if 7(77 /[C]|μ)<+oo, then there exists a probability measure
λ<=Πf[C] such that 7(Λ|μ)< + oo. Hence it follows that

and

This completes the proof.
Our next object is to give additional information about the probability

measure μ*e77/[C] assuming that / is real-valued. For convention we write
77/[β] instead of 77/[{α}] for a real number a.

LEMMA 4.2. Let μ^Π and f be a real-valued measurable function. Assume

that f=\fdμ exists. If f <a<b or f>a>b, then

Proof. We may assume that 7(77/[&]|μ)<+oo. Then, for λ^Πf[b\ it
follows that (l—ί)μ+tλ&Πf[ά], where t is the positive constant satisfying that
a=(l-t)f+tb (0<f<l). Therefore we obtain that

I(Πftά] I μ)^m-t)μ+tλI μ)SKλ \ μ)

for all λ<=Πf\_b~\. This completes the proof.
As an easy consequence of this lemma, we can see the following proposition.

PROPOSITION 4.2. Let μ^Π and f be a real-valued bounded measurable

function. Let f~\fdμ and C=[α, b~\. If f^a (resp.} f^b), then there exists

μ*^Πf[_a] (resp., μ*^Πf[b~\) which satisfies that

I(μ*\μ)=I(ΠflC]\μ).

We remark that if μ*GΞ77/[α] satisfies that 7(/i*|/£)=/(/7 /[α]|^)<+oo, then
the Radon-Nikodym derivative dμ*/dμ is of form

if

= 0 if

where Â  has λ(N)=0 for every λ^Πf[_a] such that I(λ\μ)< + co (c.f. Theorem
3.1 in Csiszar [5]).
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