A METHOD TO A PROBLEM OF R. NEVANLINNA, II

By Mitsuru Ozawa

§ 1. Introduction. This paper is a continuation of our earlier paper [3]. In this paper we shall prove the following theorems.

ThEOREM 1. Let $f(z)$ be a meromorphic function of regular growth of order ρ. Then

$$
K(f) \geqq L(\rho) \liminf _{t \rightarrow \infty} S(t, E) / T(t, f) .
$$

ThEOREM 2. Let $f(z)$ be a meromorphic function defined by a quotient of two canonical products of genus q

$$
f(z)=\Pi E\left(\frac{z}{a_{n}}, q\right) / \Pi E\left(\frac{z}{b_{n}}, q\right) .
$$

Suppose that the order λ and the lower order μ of $f(z)$ satisfies $q \leqq \mu<\lambda<q+1$. Let β be a number satisfying $\mu<\beta<\lambda$. Them for any E

$$
\sup _{\mu<\beta<\lambda} L(\beta) \lim _{t \rightarrow \infty} \inf S(t, E) / T(t, f) \leqq K(f)
$$

Theorem 2 was already stated without proof in [3].
In order to prove Theorem 1 we make use of the notion of proximate order of $T(t, f)$. The proximate order $l(t)$ is defined by the following conditions:
(i) $l(t)$ is real continuous and piecewise differentiable for $t>t_{0}$,
(ii) $l(t) \rightarrow \rho$ as $t \rightarrow \infty$,
(iii) $t l^{\prime}(t) \log t \rightarrow 0$ as $t \rightarrow \infty$,
(iv) $\underset{t \rightarrow \infty}{\lim \sup } \frac{T(t, f)}{t^{2(t)}}=1$.

Let us put

$$
\mu(t)=t^{\rho-l(t)}
$$

then $\mu(t)$ is a slowly varying function in the sense of Karamata, that is, $\mu(t)$ satisfies $\mu(c t) / \mu(t) \rightarrow 1$ as $t \rightarrow \infty$ for any positive c. It is known that the above convergence is uniform in the wider sense in ($0, \infty$). See Seneta [5]. Then it is easy to prove that

$$
\int_{t_{0}}^{\infty} T(t, f) t^{-1-l(t)} d t=\infty
$$

for any finite t_{0}. Further it is also easy to prove the following result: Let $\mu(t)$ be slowly varying for $0<t<\infty$ and let $\phi(s)$ be absolutely integrable over $(0, \infty)$. and such that

$$
\begin{array}{ll}
|\phi(s)|=O\left(s^{\gamma-1}\right) & \gamma>0(s \rightarrow 0), \\
|\phi(s)|=O\left(s^{-\alpha-1}\right) & \alpha>0(s \rightarrow \infty) .
\end{array}
$$

Then

$$
\int_{0}^{\infty} \frac{\mu(s t)}{\mu(t)} \phi(s) d s=\int_{0}^{\infty} \phi(s) d s+o(1)
$$

for $t \rightarrow \infty$. Hence for an arbitrary $\varepsilon_{1}>0$ there exists an s_{0} such that for any $s \geqq s_{0}$

$$
\int_{0}^{\infty} \frac{\mu(s t)}{\mu(t)} \cdot \frac{x^{q-\rho-\varepsilon}}{x+e^{-i \theta}} d x=\int_{0}^{\infty} \frac{x^{q-\rho-\varepsilon}}{x+e^{-i \theta}} d x+m(s)
$$

with

$$
|m(s)|<\varepsilon_{1} .
$$

Here $q=[\rho]<\rho<q+1, \varepsilon>0$. Further for any $\varepsilon_{2}>0$

$$
\left|t l^{\prime}(t) \log t\right|<\varepsilon_{2}, \quad 0<|\rho-l(t)|<\varepsilon_{2}
$$

for $t \geqq s_{0}$.
In order to prove Theorem 2 we need the following Lemma, which was stated in Edrei and Fuchs [2] and Edrei [1].

Lemma A. Let $f(z)$ be defined as in Theorem 2. Then for $|z| \leqq R$

$$
\log |f(z)|=\sum_{\left|a_{\mu}\right| \leq 2 R} \log \left|E\left(\frac{z}{a_{\mu}}, q\right)\right|-\sum_{\left|b_{\nu}\right| \leqslant 2 R} \log \left|E\left(\frac{z}{b_{\nu}}, q\right)\right|+S(z, R),
$$

where

$$
|S(z, R)| \leqq 14(r / 2 R)^{q+1} T(4 R, f), \quad r=|z|
$$

for $q \geqq 1$.
§ 2. Proof of Theorem 1. Let us put

$$
f(z)=A z^{p} e^{P(z)} \Pi_{1} / \Pi_{2},
$$

where

$$
\Pi_{1}=\Pi E\left(\frac{z}{a_{n 1}}, q\right), \quad \Pi_{2}=\Pi E\left(\frac{z}{b_{n}}, q\right)
$$

and $P(z)$ is a polynomial of degree at most q and p is an integer, A a constant. Put

$$
g(z)=A z^{p} e^{P(z)} \Pi_{1}^{*} / \Pi_{2}^{*}
$$

where

$$
\Pi_{1}^{*}=\prod_{\left|a_{n}\right| \leqq s_{0}} E\left(\frac{z}{a_{n}}, q\right), \quad \Pi_{2}^{*}=\prod_{\left|b_{n}\right| \leqslant s_{0}} E\left(\frac{z}{b_{n}}, q\right) .
$$

Here s_{0} is a constant defined in $\S 1$. Let $F(z)$ be $f(z) / g(z)$. We shall consider

$$
\int_{0}^{\infty} \log \left|F\left(t e^{i \theta}\right)\right| t^{-1-l(t)-\varepsilon} d t
$$

Here $l(t)$ is a proximate order of $T(t, f)$ and ε is an arbitrary positive constant. It is convenient to consider the following integral

$$
\begin{aligned}
& \int_{0}^{\infty} \log E\left(-\frac{t}{\left|a_{n}\right|} e^{\imath\left(\theta-\varphi_{n}\right)}, q\right) t^{-1-l(t)-\varepsilon} d t \\
= & (-1)^{q} e^{\imath\left(\theta-\varphi_{n}\right) q} \int_{\left|a_{n}\right|}^{\infty} s^{-1-q} d s \int_{0}^{\infty} \frac{t^{q-l(t)-\varepsilon}}{t+s e^{-\imath\left(\theta-\varphi_{n}\right)}} d t
\end{aligned}
$$

The inner integral of the above is equal to

$$
\begin{aligned}
\int_{0}^{\infty} \mu(t) \frac{t^{q-\rho-\varepsilon}}{t+s e^{-2\left(\theta-\varphi_{n}\right)}} d t & =\int_{0}^{\infty} \mu(s x) \frac{x^{q-\rho-\varepsilon}}{x+e^{-2\left(\theta-\varphi_{n}\right)}} d x s^{q-\rho-\varepsilon} \\
& =\mu(s) s^{q-\rho-\varepsilon} \int_{0}^{\infty} \frac{\mu(s x)}{\mu(s)} \cdot \frac{x^{q-\rho-\varepsilon}}{x+e^{-2\left(\theta-\varphi_{n}\right)}} d x \\
& =s^{q-l(s)-\varepsilon}\left(\int_{0}^{\infty} \frac{x^{q-\rho-\varepsilon}}{x+e^{-2\left(\theta-\varphi_{n}\right)}} d x+m(s)\right) \\
& =-s^{q-l(s)-\varepsilon}\left(\pi \frac{\exp (\rho+\varepsilon-q) i\left(\theta-\varphi_{n}\right)}{\sin \pi(q-\rho-\varepsilon)}+m(s)\right),
\end{aligned}
$$

where $|m(s)| \leqq \varepsilon_{1}$ for $s \geqq s_{0}$ as in $\S 1$. Hence

$$
\begin{aligned}
& \int_{0}^{\infty} \log E\left(-\frac{t}{\left|a_{n}\right|} e^{2\left(\theta-\varphi_{n}\right)}, q\right) \frac{d t}{t^{1+l(t)+\varepsilon}} \\
= & \frac{\pi}{\sin \pi(\rho+\varepsilon)} e^{2(\rho+\varepsilon)\left(\theta-\varphi_{n}\right)} \int_{\left|a_{n}\right|}^{\infty} \frac{d s}{s^{1+l(s)+\varepsilon}}+c \int_{\left|a_{n}\right|}^{\infty} m(s) \frac{d s}{s^{1+l(s)+\varepsilon}} .
\end{aligned}
$$

Since $l(t) \rightarrow \rho$ for $t \rightarrow \infty$,

$$
\begin{gathered}
n(t, 0, F) \int_{t}^{\infty} s^{-1-l(s)-\varepsilon} d s \rightarrow 0, \\
N(t, 0, F) t^{-L(t)-\varepsilon} \rightarrow 0
\end{gathered}
$$

for $t \rightarrow \infty$. Hence

$$
\begin{aligned}
& \sum_{\left|a_{n}\right|>s_{0}} \int_{\left|a_{n}\right|}^{\infty} s^{-1-l(s)-\varepsilon} d s=\int_{s_{0}}^{\infty} d n(t, 0, F) \int_{t}^{\infty} s^{-1-l(s)-\varepsilon} d s \\
= & \int_{s_{0}}^{\infty} \frac{N(t, 0, F)}{t^{1+l(t)+\varepsilon}}\left(t l^{\prime}(t) \log t+\varepsilon+l(t)\right) d t \\
= & \int_{s_{0}}^{\infty} \frac{N(t, 0, F)}{t^{1+l(t)+\varepsilon}} d t+\int_{s_{0}}^{\infty} m_{2}(t) \frac{N(t, 0, F)}{t^{1+l(t)+\varepsilon}} d t,
\end{aligned}
$$

where $\left|m_{2}(t)\right|=\left|l(t)-\rho+\varepsilon+t l^{\prime}(t) \log t\right| \leqq 2 \varepsilon_{2}+\varepsilon$. Hence we have

$$
\begin{aligned}
& \int_{0}^{\infty} \log \left|F\left(t e^{i \theta}\right)\right| t^{-1-l(t)-\varepsilon} d t \\
= & \frac{\pi}{\sin \pi(\rho+\varepsilon)} \sum_{\left|a_{n}\right|>s_{0}} \cos (\rho+\varepsilon)\left(\theta-\varphi_{n}\right) \int_{\left|a_{n}\right|}^{\infty} s^{-1-l(s)-\varepsilon} d s \\
& -\frac{\pi}{\sin \pi(\rho+\varepsilon)} \sum_{\left|b_{n}\right|>s_{0}} \cos (\rho+\varepsilon)\left(\theta-\psi_{n}\right) \int_{\left|b_{n}\right|}^{\infty} s^{-1-l(s)-\varepsilon} d s \\
& +\sum_{\left|a_{n}\right|>s_{0}} \int_{\left|a_{n}\right|}^{\infty} \mathcal{R}(c m(t)) t^{-1-l(t)-s} d t-\sum_{\left|0_{n}\right|>s_{0}} \int_{\left|b_{n}\right|}^{\infty} \mathcal{R}(c m(t)) t^{-1-l(t)-\varepsilon} d t
\end{aligned}
$$

Let E be a measurable subset of $[-\pi, \pi]$. Then

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{2 \pi} \int_{E} \log \left|F\left(t e^{i \theta}\right)\right| d \theta t^{-1-l(t)-\varepsilon} d t \\
& =\frac{1}{\sin \pi(\rho+\varepsilon)} \sum_{\left|a_{n}\right|>s_{0}} \frac{\rho+\varepsilon}{2} \int_{E} \cos (\rho+\varepsilon)\left(\theta-\varphi_{n}\right) d \theta \frac{1}{\rho+\varepsilon} \int_{\left|a_{n}\right|}^{\infty} S^{-1-l(s)-\varepsilon} d s \\
& -\frac{1}{\sin \pi(\rho+\varepsilon)} \sum_{\left|0_{n}\right|>s_{0}} \frac{\rho+\varepsilon}{2} \int_{E} \cos (\rho+\varepsilon)\left(\theta-\psi_{n}\right) d \theta \frac{1}{\rho+\varepsilon} \int_{\left|b_{n}\right|}^{\infty} S^{-1-l(s)-\varepsilon} d s \\
& +S_{1},
\end{aligned}
$$

where

$$
\begin{aligned}
\left|S_{1}\right| & \leqq|c| \varepsilon_{1}\left[\mid \sum_{n} \sum_{s_{0}} \int_{\left|a_{n}\right|}^{\infty} t^{-1-l(t)-\varepsilon} d t+\sum_{\left|0_{n}\right|>s_{0}} \int_{\left|b_{n}\right|}^{\infty} t^{-1-l(t)-s} d t\right] \\
& \leqq|c| \varepsilon_{1}\left[\left(\rho+\varepsilon+2 \varepsilon_{2}\right)\right] \int_{s_{0}}^{\infty} \frac{N(t, 0, F)+N(t, \infty, F)}{t^{1+l(t)+\varepsilon}} d t .
\end{aligned}
$$

Let us put

$$
S(t, E, F)=\frac{1}{2 \pi} \int_{E} \log \left|F\left(t e^{i \theta}\right)\right| d \theta+N(t, \infty, F) .
$$

Hence

$$
\begin{aligned}
& \quad \int_{0}^{\infty} S(t, E, F) t^{-1-l(t)-\varepsilon} d t \\
& \leqq \\
& \frac{1}{(\rho+\varepsilon) L(\rho+\varepsilon)}\left\{\sum_{\left|a_{n}\right|>s_{0}} \int_{\left|a_{n}\right|}^{\infty} s^{-1-l(s)-\varepsilon} d s+\sum_{\left|0_{n}\right|>s_{0}} \int_{\left|b_{n}\right|}^{\infty} s^{-1-l(s)-\varepsilon} d s\right\} \\
& \quad+S_{2},
\end{aligned}
$$

where

$$
S_{2}=S_{1}+\frac{\varepsilon}{\rho(\rho+\varepsilon)} \sum_{\mid 0_{n}>s_{0}} \int_{\left|b_{n}\right|}^{\infty} s^{-1-L(s)-\varepsilon} d s
$$

Thus

$$
\int_{0}^{\infty} S(t, E, F) t^{-1-l(s)-\varepsilon} d t \leqq L(\rho+\varepsilon)^{-1} \frac{\rho}{\rho+\varepsilon} \int_{s_{0}}^{\infty} \frac{N(t, 0, F)+N(t, \infty, F)}{t^{1+l(t)+\varepsilon}} d t+S_{3},
$$

where S_{3} can be estimated as

$$
\left|S_{3}\right| \leqq H\left(\rho, \varepsilon, \varepsilon_{1}, \varepsilon_{2}\right) \int_{s_{0}}^{\infty} \frac{T(t, F)}{t^{1+l(t)+\varepsilon}} d t
$$

Here $H\left(\rho, \varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)$ is a constant satisfying

$$
\lim _{\varepsilon, \varepsilon_{1}, \varepsilon_{2} \rightarrow 0} H\left(\rho, \varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)=0 .
$$

Since s_{0} is sufficiently large, $N(t, 0, F)+N(t, \infty, F) \leqq\left(K(F) \div \varepsilon_{3}\right) T(t, F)$ for any $t \geqq s_{0}$. Hence

$$
\int_{0}^{\infty} S(t, E, F) t^{-1-l(t)-\varepsilon} d t \leqq \frac{K(F)+\varepsilon_{3}}{L(\rho+\varepsilon)} \cdot \frac{\rho}{\rho+\varepsilon} \int_{s_{0}}^{\infty} \frac{T(t, F)}{t^{-1-l(t)-\varepsilon}} d t\left(1+H\left(\rho, \varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)\right\rangle .
$$

Since $T(t, F) \geqq T(t, f)-c t^{q}$ for any sufficiently large t,

$$
\int_{s_{0}}^{\infty} T(t, F) t^{-1-l(t)-s} d t \rightarrow \infty
$$

as $\varepsilon \rightarrow 0$. Therefore

$$
L(\rho) \liminf _{t \rightarrow \infty} S(t, E, F) / T(t, F) \leqq K(F)+\varepsilon_{3}+H\left(\rho, 0, \varepsilon_{1}, \varepsilon_{2}\right) L(\rho)
$$

Here $\varepsilon_{3}, \varepsilon_{1}, \varepsilon_{2}$ are arbitrary. Hence we have the desired result for F. It is easy to prove the following relations:

$$
\begin{aligned}
& |T(t, f)-T(t, F)| \leqq A t^{q} \\
& 0 \leqq N(t, 0, f)-N(t, 0, F) \leqq A \log t \\
& 0 \leqq N(t, \infty, f)-N(t, \infty, F) \leqq A \log t \\
& |S(t, E, f)-S(t, E, F)| \leqq A t^{q}
\end{aligned}
$$

for any sufficiently large t. Therefore $K(f)=K(F)$ and

$$
L(\rho) \liminf _{t \rightarrow \infty} S(t, E, f) / T(t, f) \leqq K(f),
$$

which is just our desired result.•
§3. Proof of Theorem 2. Let ρ_{0} be any positive number satisfying $\rho_{0} \leqq$ $\min \left(\left|a_{1}\right|,\left|b_{1}\right|\right)$. Let us consider

$$
\begin{aligned}
\int_{\rho_{0}}^{R} \log \left|f\left(t e^{i \theta}\right)\right| t^{-1-\beta} d t= & \sum_{\left|a_{\mu}\right| \leqslant 2 R} \log \left|E\left(-\frac{t}{\left|a_{\mu}\right|} e^{2\left(\theta-\varphi_{\mu}\right)}, q\right)\right| \frac{d t}{t^{1+\beta}} \\
& -\sum_{\left|b_{\nu}\right| \leqslant 2 R} \log \left|E\left(-\frac{t}{\left|b_{\nu}\right|} e^{\imath\left(\theta-\psi_{\nu}\right)}, q\right)\right| \frac{d t}{t^{1+\beta}} \\
& +\frac{14}{q+1-\beta} \cdot \frac{T(4 R)}{2^{q+1} R^{q+1}}\left(R^{q+1-\beta}-\rho_{0}^{q+1-\beta}\right),
\end{aligned}
$$

where β is a constant satisfying $q<\beta<q+1$. We shall compute

$$
I=\int_{\rho_{0}}^{R} \log \left|E\left(-\frac{t}{|a|} e^{2(\theta-\varphi)}, q\right)\right|^{-1-\beta} d t
$$

for $R<|a| \leqq 2 R$ or for $|a| \leqq R$.
As in the proof of Theorem 2 in [3] we have

$$
I=O\left(R^{-\beta}\right)
$$

for the first case and hence

$$
\sum_{R<|a| \leq 2 R} I=n(2 R) O\left(R^{-\beta}\right) .
$$

For the second case we need the method of contour integration and have

$$
I=(-1)^{q} \frac{\pi \cos \beta(\theta-\varphi)}{\beta \sin \pi(\beta-q)} \cdot \frac{1}{|a|^{\beta}}+L_{1}+L_{2}+L_{3},
$$

where

$$
\begin{aligned}
& L_{3}=O\left(\rho_{0}^{q-\beta+1}|a|^{-q-1}\right), \\
& L_{2}=O\left(R^{-\beta}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{1}= & A_{0} R^{q-\beta}\left(|a|^{-q}-R^{-q}\right)+A_{1} R^{q-\beta-1}\left(|a|^{1-q}-R^{1-q}\right)+\cdots \\
& +A_{q-1} R^{1-\beta}\left(|a|^{-1}-R^{-1}\right)+A_{q} R^{-\beta} \log (R /|a|)+A_{q+1} R^{-\beta}
\end{aligned}
$$

with positive constants A_{0}, \cdots, A_{q+1}. Hence

$$
\begin{aligned}
& \sum_{|a| \leq R}\left|L_{3}\right|=O\left(\rho_{0}^{q+1-\beta}\right) \int_{\rho_{0}}^{R} t^{-q-1} d n(t, 0), \\
& \sum_{|a| \leq R}\left|L_{2}\right|=n(R, 0) O\left(R^{-\beta}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{|a| \leqslant R}\left|L_{1}\right|= & O\left(n(R, 0) R^{-\beta}\right)+O\left(N(R, 0) R^{-\rho}\right) \\
& +\sum_{j=1}^{q} O\left(R^{\jmath-\beta} \int_{\rho_{0}}^{R} N(t, 0) t^{-\jmath-1} d t\right) .
\end{aligned}
$$

Similar results hold for poles. Therefore we have

$$
\begin{aligned}
\int_{\rho_{0}}^{R} \log \left|f\left(t e^{i \theta}\right)\right| \frac{d t}{t^{1+\beta}}= & \frac{\pi}{\beta \sin \pi \beta} \sum_{\mid a_{\mu} \leqslant R} \frac{\cos \beta\left(\theta-\varphi_{u}\right)}{\left|a_{\mu}\right|^{\beta}} \\
& -\frac{\pi}{\beta \sin \pi \beta} \sum_{\left|b_{\nu}\right| \leqslant R} \frac{\cos \beta\left(\theta-\psi_{\nu}\right)}{\left|b_{\nu}\right|^{\beta}}+S^{*},
\end{aligned}
$$

where

$$
S^{*}=O\left(T(4 R) / R^{\beta}\right)+\sum_{j=1}^{q} O\left(R^{\jmath-\beta} \int_{\rho_{0}}^{R} T(t) t^{-\jmath-1} d t\right)+S_{1}\left(\rho_{0}\right) .
$$

Here $S_{1}\left(\rho_{0}\right) \rightarrow 0$ as $\rho_{0} \rightarrow 0$. Let E be a measurable subset of $[-\pi, \pi]$. Then as
in our earlier paper

$$
\begin{aligned}
\int_{\rho_{0}}^{R} S(t, E) \frac{d t}{t^{1+\beta}}= & \frac{1}{\beta^{2} \sin \pi \beta} \sum_{\mid a_{\mu} \leqq R} \frac{\beta}{2} \int_{E} \cos \beta\left(\theta-\varphi_{\mu}\right) d \theta\left|a_{\mu}\right|^{-\beta} \\
& +\frac{1}{\beta^{2} \sin \pi \beta} \sum_{\left|b_{\nu}\right| \leqslant R}\left\{\sin \pi \beta-\frac{\beta}{2} \int_{E} \cos \beta\left(\theta-\psi_{\nu}\right) d \theta\right\}\left|b_{\nu}\right|^{-\beta}+S_{1}^{*}
\end{aligned}
$$

where S_{1}^{*} behaves like S^{*}. Then we can prove that

$$
\int_{\rho_{0}}^{R} S(t, E) t^{-1-\beta} d t \leqq L(\beta)^{-1} \int_{\rho_{0}}^{R}(N(t, 0)+N(t, \infty)) t^{-1-\beta} d t+S_{2}^{*}
$$

where S_{2}^{*} behaves like S_{1}^{*}. The right hand side term can be estimated by

$$
L(\beta)^{-1}\left(K(f)+\varepsilon_{1}\right) \int_{\rho_{0}}^{R} T(t) t^{-1-\beta} d t+S_{2}^{*}+O(1) \int_{\rho_{0}}^{t_{0}} T(t) t^{-1-\beta} d t
$$

Firstly we put $\rho_{0} \rightarrow 0$. Let $\left\{r_{n}\right\}$ be a sequence of Pólya peaks of the first kind and of order β_{1} for $T(t)$. Here we take $\max (\mu, q)<\beta_{1}<\beta<\lambda<q+1$. Further we put $4 R=2 A_{n} r_{n}$ with $A_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Existence of such a sequence $\left\{r_{n}\right\}$ is well-known. Now suppose

$$
L(\beta) \liminf _{t \rightarrow \infty} \frac{S(t, E)}{T(t)} \leqq K(f)+\varepsilon_{1}
$$

is false. Then for $t \geqq t_{1} \geqq t_{0}$

$$
\begin{aligned}
& S(t, E)>C T(t) \\
& C>L(\beta)^{-1}\left(K(f)+\varepsilon_{1}\right)
\end{aligned}
$$

Then

$$
\left\{C-L(\beta)^{-1}\left(K(f)+\varepsilon_{1}\right)\right\} \int_{0}^{R} T(t) t^{-1-\beta} d t \leqq S_{2}^{*}+O(1)
$$

Evidently with $n(t)=n(t, 0)+n(t, \infty)$ and $N(t)=N(t, 0)+N(t, \infty)$

$$
\begin{aligned}
\int_{0}^{R} T(t) t^{-1-\beta} d t \geqq & \frac{1}{2} \int_{0}^{R} N(t) t^{-1-\beta} d t \\
= & \sum_{\left|\alpha_{n}\right| \leq R}\left|a_{n}\right|^{-\beta} / 2 \beta^{2}+\sum_{\left|b_{n}\right| \leq R}\left|b_{n}\right|^{-\beta} / 2 \beta^{2} \\
& -O\left(n(R) / R^{\beta}\right)-O\left(N(R) / R^{\beta}\right) .
\end{aligned}
$$

Further

$$
\begin{aligned}
\int_{0}^{R} T(t) t^{-1-\beta} d t & \geqq \int_{r_{n}}^{2 r_{n}} T(t) t^{-1-\beta} d t \\
& \geqq T\left(r_{n}\right) \int_{r_{n}}^{2 r_{n}} t^{-1-\beta} d t=\frac{2^{\beta}-1}{\beta 2^{\beta}} \cdot T\left(r_{n}\right) / r_{n}^{\beta}
\end{aligned}
$$

If $T\left(r_{n}\right) / r_{n}^{\beta} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\int_{0}^{R} T(t) t^{-1-\beta} d t \rightarrow \infty
$$

for $R \rightarrow \infty$. If $T\left(r_{n}\right) / r_{n}^{\beta}$ is bounded for $n \rightarrow \infty$, then by

$$
\frac{T(2 R)}{(2 R)^{\beta}} \leqq \frac{T\left(r_{n}\right)}{r_{n}^{\beta_{1}}} \cdot \frac{1}{(2 R)^{\beta-\beta_{1}}}=\frac{1}{A_{n}^{\beta-\beta_{1}}} \cdot \frac{T\left(r_{n}\right)}{r_{n}^{\beta}}=o\left(\frac{T\left(r_{n}\right)}{r_{n}^{\beta}}\right)
$$

and by

$$
\sum_{\left|a_{n}\right| \leqq R}\left|a_{n}\right|^{-\beta}+\sum_{\left|b_{n}\right| \leqq R}\left|b_{n}\right|^{-\beta} \rightarrow \infty \quad(R \rightarrow \infty)
$$

for $\beta<\lambda$ we have again

$$
\int_{0}^{R} T(t) t^{-1-\beta} d t \rightarrow \infty \quad(R \rightarrow \infty)
$$

We now consider the residual terms. For example

$$
\begin{aligned}
& R^{\jmath-\beta} \int_{0}^{R} T(t) t^{-\jmath-1} d t \leqq R^{\jmath-\beta} T\left(r_{n}\right) r_{n}^{-\beta_{1}} \int_{0}^{R} t^{\beta_{1}-\jmath-1} d t \\
& \quad=\frac{1}{\left(\beta_{1}-j\right) A_{n}^{\beta-\beta_{1}}} T\left(r_{n}\right) r_{n}^{-\beta}=o\left(T\left(r_{n}\right) / r_{n}^{\beta}\right)
\end{aligned}
$$

Hence

$$
\left\{C-L(\beta)^{-1}\left(K(f)+\varepsilon_{1}\right)\right\} \int_{0}^{R} T(t) t^{-1-\beta} d t=o(1) \int_{0}^{R} T(t) t^{-1-\beta} d t
$$

This is clearly a contradiction. Therefore we have the desired result.

References

[1] Edrei, A., The deficiencies of meromorphic functions of finite lower order, Duke Math. J., 31 (1964), 1-22.
[2] Edrei, A. and Fuchs, W.H.J., On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc., 93 (1959), 292-328.
[3] Ozawa, M., A method to a problem of R. Nevanlinna, Kodai Math. J. 8 (1985), 14-24.
[4] Petrenko, V.P., The growth of meromorphic functions of finite lower order, Izv. Ak. Nauk USSR, 33 (1969), 414-454.
[5] Seneta, E., Regularly varying functions, Lecture Note 508, Springer (1976).

