ON REAL HYPERSURFACES OF FINITE TYPE OF $C P^{m}$

By A. Martinez and A. Ros

§ 1. Introduction.

Let M be a closed Riemannian manifold and Δ the Laplace-Beltrami operator of M acting on the smooth functions $C^{\infty}(M)$. It is well known that Δ is an elliptic operator with a discrete sequence of eigenvalues $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<$ $\cdots \uparrow \infty$. Let V_{k} be the eigenspace corresponding to the eigenvalue λ_{k}. Then V_{k} has finite dimension. Moreover the decomposition is orthogonal respect to the inner product

$$
\begin{equation*}
(f, g)=\int_{M} f g d V \tag{1.1}
\end{equation*}
$$

and $\sum_{k} V_{k}$ is dense in $C^{\infty}(M)$.
Let $x: M \rightarrow E^{m}$ be an isometric immersion of M into the m-dimensional Euclidean space with coordinate functions x_{\imath}, that is, $x=\left(x_{1}, \cdots, x_{m}\right)$. Then for any $i=1, \cdots, m$, we have the decomposition

$$
\begin{equation*}
x_{\imath}=\sum_{k}\left(x_{2}\right)_{k} \quad\left(L^{2} \text {-sense }\right) . \tag{1.2}
\end{equation*}
$$

As M is closed, V_{0} consists of the constant functions on M and so, from (1.2) we can write

$$
\begin{equation*}
x_{i}-\left(x_{i}\right)_{0}=\sum_{k=p_{i}}^{q_{i}}\left(x_{2}\right)_{k} \tag{1.3}
\end{equation*}
$$

where $q_{\imath}=\left\{\right.$ Sup $\left.k \mid\left(x_{2}\right)_{k} \neq 0\right\}$ (respectively, $p_{i}=\left\{\operatorname{Inf} k \mid\left(x_{2}\right)_{k} \neq 0\right\}$).
If $p=\operatorname{Inf}_{i}\left\{p_{i}\right\}$ and $q=\operatorname{Sup}_{2}\left\{q_{i}\right\}$ using (1.3) we obtain the following spectral decomposition (in a vector form)

$$
\begin{equation*}
x-x_{0}=\sum_{k=p}^{q} x_{k} \tag{1.4}
\end{equation*}
$$

where $x_{k}: M \rightarrow E^{m}$ are smooth for any k, q is an integer or $q=\infty, x_{0}$ is a constant and $\Delta x_{k}=\lambda_{k} x_{k} . \quad x_{0}$ is called center of gravity of M.

We shall say that the immersion x is of finite type if $q<\infty$. If not it will be called of no finite type [5].

An immersion x of finite type will be called Mono-order (Bi-order, Tri-order, \cdots) if there exists only one (two, three, \cdots) of the x_{k} 's that is (are) non null. If $p=q, x$ is called of order p.

Considering the isometric immersion of the complex projective space $C P^{m}$ in an Euclidean space $H M(m+1)$ given in [10], any submanifold of the complex projective space is isometrically immersed in $H M(m+1)$. In this paper we study the real hypersurfaces M of $C P^{m}$ for which the immersion of M into $H M(m+1)$ is Mono-order or Bi-order.

In § 3 we classify the real hypersurfaces of $C P^{m}$ for which the immersion in $H M(m+1)$ is Mono-order. We also give a bound of the first eigenvalue of their spectrum.

In $\S 4$ we classify the minimal real hypersurfaces of $C P^{m}$ for which the immersion in $H M(m+1)$ is Bi -order. We prove a spectral inequality envolving the first and second eigenvalues of the spectrum.

The manifolds are supposed to be connected and of real dimension $\geqq 2$ (if no other thing is mentioned).

For the necessary knowledge and notations of submanifold theory see $[3,4]$. For the particular case of real hypersurfaces of $C P^{m}$ see also $[2,6,11]$ and for spectral geometry see [1].

§ 2. The complex projective space.

For details in this section see $[8,9,10]$.
Let $C P^{m}$ be the complex projective space obtained as a quotient space of the unit sphere $S^{2 m+1}(1)=\left\{Z \in C^{m+1} \mid z z^{*}=z z^{t}=1\right\}$ by identifying z with $\lambda z, \lambda \in C$ and $|\lambda|=1$. Let g be the cannonical metric on $C P^{m}$, that is, the invariant metric such that the fibration $\Pi: S^{2 m+1}(1) \rightarrow C P^{m}$ is a Riemannian submersion. It is known that $C P^{m}$ with this metric is a complex-space-form of constant holomorphic sectional curvature 4 and its Riemannian curvature tensor is given by

$$
\begin{align*}
\bar{R}(X, Y) Z=g(Y, Z) X & -g(X, Z) Y+g(J Y, Z) J X \tag{2.1}\\
& -g(J X, Z) J Y+2 g(X, J Y) J Z
\end{align*}
$$

for any X, Y, Z in $T C P^{m}$.
Let $H M(m)=\left\{B \in g l(m, C) \mid \bar{B}=B^{t}\right\}$ with metric

$$
\begin{equation*}
g(A, B)=\frac{1}{2} \operatorname{trace}(A B) \quad \text { for any } \quad A, B \in H M(m) . \tag{2.2}
\end{equation*}
$$

In [10], Sakamoto proves that the map $\tilde{\psi}: S^{2 m+1}(1) \rightarrow H M(m+1)$ given by

$$
\begin{equation*}
\tilde{\psi}(z)=z^{*} z=\bar{z}^{t} z \quad z \in S^{2 m+1}(1) \tag{2.3}
\end{equation*}
$$

induces an immersion $\psi: C P^{m} \rightarrow H M(m+1)$ satisfying
(A) $\psi\left(C P^{m}\right)=\left\{B \in H M(m+1) \mid B^{2}=B\right.$ and trace $\left.B=1\right\}$.
(B) ψ is an equivariant full isometric imbedding into

$$
H_{1}, M(m+1)=\{B \in H M(m+1) \mid \text { trace } B=1\} .
$$

In the following (if nothing is mentioned) we shall consider $C P^{n i}$ identified with $\psi\left(C P^{m}\right)$.

Under this identification [8,9] the tangent and normal spaces at each point $B \in C P^{m}$ are given. respectively, by

$$
\begin{align*}
& T_{B} C P^{m}=\{X \in H M(m+1) \mid X B+B X=X\}, \\
& T_{\bar{B}}^{\prime} C P^{m}=\{Z \in H M(m+1) \mid Z B=B Z\} . \tag{2.4}
\end{align*}
$$

For any Q in $H M(m \div 1)$, the component of Q in $T_{B} C P^{m}$ is

$$
\begin{equation*}
Q^{\top}=Q B+B Q-2 B Q B=Q B+B Q-4 g(B, Q) B \tag{2.5}
\end{equation*}
$$

Moreover the complex structure J induced on $C P^{m}$ by ψ is given by

$$
\begin{equation*}
J X=\sqrt{-1}(I-2 B) X \tag{2.6}
\end{equation*}
$$

for any $X \in T_{B} C P^{m}, I$ being the identity matrix of $H M(m+1)$.
We shall denote by D the Riemannian connection of $H M(m+1)$, by $\check{\nabla}$ the one induced on $C P^{m}$ and $\tilde{\sigma}, \tilde{\nabla}^{1}, \tilde{A}$ and \widetilde{H}, respectively, the second fundamental form, the normal connection, the Weingarten endomorphism and the mean curvature vector of $C P^{m}$ in $H M(m+1)$. Now, analogously as the case of holomorphic sectional curvature 1 . [8, 9] we have

$$
\begin{equation*}
\tilde{\sigma}(X, Y==X \Gamma \div Y X)(I-2 B), \quad \tilde{A}_{Z} X=(X Z-Z X)(I-2 B) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{H}_{B}=\frac{2}{m}(I-(m+1) B) \tag{2.8}
\end{equation*}
$$

for any X, Y^{-}in $T_{B} C P^{m}$ and Z in $T_{B}^{\perp} C P^{m}$. From (2.9) we get

$$
\begin{equation*}
\bar{\nabla} \tilde{\sigma}=0, \tag{2.10}
\end{equation*}
$$

that is, the second fundamental form of the immersion is parallel, where $\left(\bar{\nabla}_{X} \tilde{\sigma}\right)(Y, Z)=\tilde{\nabla}_{\frac{1}{x}}^{x} \tilde{\sigma}(Y, Z)-\tilde{\sigma}\left(\tilde{\nabla}_{X} Y, Z\right)-\tilde{\sigma}\left(Y, \tilde{\nabla}_{X} Z\right)$ for any $X, Y, Z \in T C P^{m}$.

From the equation of Gauss, (2.1), (2.6) and (2.7) it also follows

$$
\begin{align*}
& g(\tilde{\sigma}(X, Y), \dot{\sigma}(V, W))=2 g(X, Y) g(V, W)+g(X, V) g(Y, W) \tag{2.11}\\
& \quad+g(X, W) g(Y, V)+g(J X, V) g(J Y, W)+g(J X, W) g(J Y, V) \tag{2.12}
\end{align*}
$$

for any $X, Y, \Gamma, W \equiv T_{B} C P^{m}$.

§ 3. Immersions of order k.

Let M be a connected real hypersurface of $C P^{m}$. We shall denote by ∇ the Riemannian connection induced on M by $\tilde{\nabla}$, by N a unit normal vector field to M in $C P^{m}$, by A, σ, H, respectively, the Weingarten endomorphism, the second fundamental form and the mean curvature vector of M in $C P^{m}$, and by (ϕ, f) the almost-contact structure on M, [11].

It is known from $\S 2$ that $C P^{m}$ can be imbedded in $H M(m+1)$. So, any submanifold of $C P^{m}$ is isometrically immersed in $H M(m+1)$. In particular, $x=\phi \circ i: M \rightarrow H M(m+1)$ is an isometric immersion of M in $H M(m+1)$. We shall denote by \bar{H} its mean curvature vector in $H M(m+1)$ and by \bar{H}^{\perp} its component in $T^{\perp} C P^{m}$. Then we obtain the following result

Theorem 3.1. Let M be a real hypersurface of $C P^{m} ; m \geqq 2$). Then M is muntmal in some hypersphere of $H M(m+1)$ if and only if M is locally congruent to the geodesic hypersphere $\Pi\left(S^{1}\left(\sqrt{\frac{1}{2 m+2}}\right) \times S^{m-1}\left(\sqrt{\frac{2 m+1}{2 m-2}}\right)\right)$, where Π is the usual fibration of $C P^{m}$.

Proof. Let us suppose that M is minimal in a hypersphere of $H M(m+1)$ of center Q, which we can suppose diagonal (If it is not we can apply an isometry of type $B \rightarrow P B P^{-1}, P \in U(m+1)=\{P \in G L(m+1, C) / P \bar{P}=I\}$). Thus

$$
\begin{equation*}
\bar{H}_{B}=a(B-Q), \tag{3.1}
\end{equation*}
$$

for some non-null real number a, and

$$
Q=\left(\begin{array}{cccc}
{ }_{q_{1}} & & & \\
& \ddots\left(m_{1}\right. & & \\
& & q_{1} & \\
\\
& & & \\
\\
& & & q_{r} \\
& & & \\
.\left(m_{r}\right.
\end{array}\right), \quad q_{i} \neq q, \quad(i \div)
$$

From (2.4), $B \subseteq T_{\bar{B}} C P^{m}$. Thus from (2.12), multiplying scalarly (3.1) by B, we have

$$
\begin{equation*}
g(B, Q)=\alpha \quad \text { for any } \quad B \equiv M \tag{3.2}
\end{equation*}
$$

where α is a constant, $\alpha=\frac{2+a}{2 a}$.
From (3.2) Q is normal to M in $H M(m+1)$, and so, putung $g(Q, N)=\lambda$, we have $X(\lambda)=g(Q, \tilde{\sigma}(X, N))$ for any $X \in T M$. Consequently. from (2.11) and (2.12), multiplying scalarly (3.1) by $\tilde{\sigma}(X, N)$, we get

$$
\begin{equation*}
X(\lambda)=0 \tag{3.3}
\end{equation*}
$$

that is, λ is constant.
From (2.5), the component of Q in $T_{B} C P^{m}$ is $Q^{\top}=B Q+Q B-4 g(B, Q) B$, then

$$
\begin{aligned}
\lambda^{2} & =g\left(Q^{\top}, Q^{\top}\right)=g\left(Q^{\top}, Q\right)=g(Q B+B Q-4 g(B, Q) B, Q) \\
& =2 g\left(Q^{2}, B\right)-4 g(B, Q)^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
g\left(B, Q^{2}\right)=\beta=\frac{\lambda^{2}+4 \alpha^{2}}{2}=\mathrm{constant} \tag{3.4}
\end{equation*}
$$

for any $B \in M$.
As $g(B, I)=\frac{1}{2}$ for any $B \in C P^{m}, M$ being a real hypersurface and ψ a full imbedding into $H_{1} M(m+1)$, from (3.2) and (3.3) we get that Q, Q^{2} and I are linearly dependent vectors, that is, there exist $\theta_{1}, \theta_{2}, \theta_{3}$ real number such that

$$
\begin{equation*}
\theta_{1} Q^{2}+\theta_{2} Q+\theta_{3} I=0 \tag{3.5}
\end{equation*}
$$

Consequently

$$
Q=\left(\begin{array}{llll}
\lambda_{1} & & \tag{3.6}\\
& \ddots\left(m_{1}\right. & \\
& \lambda_{1} & \\
& & \lambda_{2} & \\
& & .\left(m_{2}\right. \\
& & \lambda_{2}
\end{array}\right), \quad \text { for some } \quad \lambda_{1}, \lambda_{2} \in R
$$

Note from (3.1) that trace $Q=1$. Then $m_{1} \lambda_{1}+m_{2} \lambda_{2}=1$.
If $\lambda_{1}=\lambda_{2}$, i.e. $Q=\frac{1}{m+1} I$, then from (3.1) it follows that M is minimal in $C P^{m}$. But it is known (Theorem 2.8, of [8]) that there exist no minimal real hypersurfaces in $C P^{m}(m \geqq 2)$ which are minimal in some hypersphere of $H M(m+1)$. So $\lambda_{1} \neq \lambda_{2}$ and the points of M satisfy the equation

$$
\begin{equation*}
\text { trace } Q B=2 \alpha=\text { constant } \quad \text { for any } \quad B \in M \tag{3.7}
\end{equation*}
$$

Let $B=\dot{\phi}(z)=z^{*} z$. with $\|z\|^{2}=z z^{*}=1$, then (3.7) can be written in the form

$$
\begin{equation*}
\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\cdots+\left|z_{m_{1}}\right|^{2}=r=\mathrm{constant} \tag{3.8}
\end{equation*}
$$

with $z=\left(z_{0}, \cdots, z_{m_{1}}, \cdots, z_{m}\right)$.
Consequently, from (3.8) M will be locally congruent to a hypersurface of the type $M_{p, q}\left(r_{1}, r_{2}\right)=\Pi\left(S^{p}\left(\sqrt{r_{1}}\right) \times S^{q}\left(\sqrt{r_{2}}\right)\right)$ with $r_{1}+r_{2}=1, p+q=2 m$.

In the following we see which $M_{p, q}\left(r_{1}, r_{2}\right)$ are minimal in a hypersphere of $H M(m+1)$.

From (2.3)

$$
\tilde{\dot{\phi}}(z, w)=\binom{z^{*}}{w^{*}}(z, w)=\left(\begin{array}{c|c}
\bar{z}_{2} z_{j} & \bar{z}_{i} w_{j} \tag{3.9}\\
\hline \bar{w}_{j} z_{i} & \bar{w}_{i} w_{j}
\end{array}\right),
$$

where $(z, w) \in S^{p}\left(\sqrt{r_{1}}\right) \times S^{q}\left(\sqrt{r_{2}}\right) \subset S^{2 m+1}(1)$.
Finally, from (3.9), the properties of Δ and the fact that the fibres of $\Pi: S^{p}\left(\sqrt{r_{1}}\right) \times S^{q}\left(\sqrt{r_{2}}\right) \rightarrow M_{p, q}\left(r_{1}, r_{2}\right)$ are totally geodesic it follows

$$
\Delta x=-(2 m-1) \bar{H}=\left(\begin{array}{c|c}
\frac{2(p+1)}{r_{1}} \bar{z}_{\imath} z_{j}-4 r_{1} I & \left(\frac{p}{r_{1}}+\frac{q}{r_{2}}\right) \bar{z}_{i} w_{j} \tag{3.10}\\
\hline\left(\frac{p}{r_{1}}+\frac{q}{r_{2}}\right) \bar{w}_{j} z_{2} & \frac{2(q+1)}{r_{2}} \bar{w}_{i} w_{j}-4 r_{2} I
\end{array}\right),
$$

if $p, q>1$, and

$$
\Delta x=-(2 m-1) \bar{H}=\left(\begin{array}{c|c}
0 & \left(\frac{1}{r_{1}}+\frac{2 m-1}{r_{2}}\right) \bar{z}_{0} w_{\imath} \tag{3.11}\\
\hline\left(\frac{1}{r_{1}}+\frac{2 m-1}{r_{2}}\right) \bar{w}_{i} z_{0} & \frac{2(2 m)}{r_{2}} \bar{w}_{i} w_{j}-4 r_{2} I
\end{array}\right),
$$

if $p=1$, where x is the immersion of $M_{p, q}\left(r_{1}, r_{2}\right)$ in $H M(m+1)$ induced by ψ.
Thus from (3.1), (3.10) and (3.11) we can conclude that $M_{p, q}\left(r_{1}, r_{2}\right)$ is minimal in a hypersphere of $H M(m+1)$ if and only if $p=1, q=2 m-1, r_{1}=\frac{1}{2(m+1)}$, $r_{2}=\frac{2 m+1}{2 m+2}$, which concludes the proof.

From Theorem 3.1 and the definition of Mono-order it follows
Corollary 3.2. Let M be a closed real hypersurface of $C P^{m}(m \geqq 2)$. Then the isometric immersion $x: M \rightarrow H M(m+1)$ is Mono-order if and only if M is congruent to the geodesic hypersphere

$$
M_{1,2 m-1}\left(\frac{1}{2 m+2}, \frac{2 m+1}{2 m+2}\right)=\Pi\left(S^{1}\left(\sqrt{\frac{1}{2 m+2}}\right) \times S^{2 m-1}\left(\sqrt{\frac{2 m+1}{2 m+2}}\right) .\right.
$$

The following result is known
Theorem A [7]. Let M^{n} be an n-dimensional closed Riemannian manifold and $x: M^{n} \rightarrow E^{m}$ an isometric immersion of M into the Euclidean space. Then

$$
\frac{\lambda_{1}}{n} \operatorname{vol}(M) \leqq \int_{M}\|H\|^{2} d V
$$

and the equality holds if and only if M is an order 1 submanifold of E^{m}, H being the mean curvature vector of the immersion and λ_{1} the first spectral eigenvalue.

Using this result, (2.11) and (2.12) it follows
Corollary 3.3. Let M be a closed real hypersurface of $C P^{m}$. Then

$$
\begin{equation*}
\lambda_{1} \leqq \frac{2 m-1}{\operatorname{vol}(M)} \int_{M}\|H\|^{2} d V+\frac{4\left(2 m^{2}-1\right)}{2 m-1} \tag{3.12}
\end{equation*}
$$

where H is the mean curvature vector of M in $C P^{m}$. Moreover, the equality in (3.12) holds if and only if M is congruent to the geodesic hypersphere

$$
M_{1,2 m-1}\left(\frac{1}{2 m+2}, \frac{2 m+1}{2 m+2}\right) .
$$

Remark. From Theorem 2.8 of [8], if $H=0$, the equality in (3.12) never occurs.

§4. Bi-order Immersions.

Along this section M will be a minimal real hypersurface of $C P^{m}$ and we shall denote by \bar{H} the mean curvature vector of M in $H M(m+1)$. Then as M is minimal in $C P^{m}$, from (2.8) it follows

$$
\begin{equation*}
\bar{H}_{B}=H_{B}^{\perp}=\frac{4}{2 m-1}(I-(m+1) B)-\frac{1}{2 m-1} \tilde{\sigma}(N, N) \tag{4.1}
\end{equation*}
$$

Proposition 4.1. Let M be a minimal real hypersurface of $C P^{m}$. Then

$$
\begin{align*}
\Delta \bar{H}(B)= & \frac{4}{2 m-1} J A J N+\frac{8(2 m+1)}{2 m-1}(I-(m+1) B) \tag{4.2}\\
& -\frac{2\left(2 m+2+\|\sigma\|^{2}\right)}{2 m-1} \tilde{\sigma}(N, N)+\frac{2}{2 m-1} \sum_{\jmath} \tilde{\sigma}\left(A E_{\jmath}, A E_{j}\right)
\end{align*}
$$

where N is a unit normal vector field to $M i n C P^{m}$ and $\left\{E_{1}, \cdots, E_{2 m-1}\right\}$ is an orthonormal basis of TM.

Proof. Let $\left\{E_{1}, \cdots, E_{2 m-1}\right\}$ be an orthonormal basis in $T M$ such that $\left(\nabla_{E_{2}} E_{\jmath}\right)_{B}$ $=0$ for any $i, \jmath=1, \cdots, 2 m-1$. Then from (2.10), (2.11) and (4.1),

$$
\begin{align*}
(d \bar{H})\left(E_{j}\right) & =-\frac{4(m+1)}{2 m-1} E_{j}+\frac{2}{2 m-1} \tilde{\sigma}\left(A E_{\jmath}, N\right)+\frac{1}{2 m-1} \tilde{A}_{\tilde{\sigma}(N, N)} E_{\jmath} \tag{4.3}\\
& =-\frac{2(2 m+1)}{2 m-1} E_{j}+\frac{2}{2 m-1} \tilde{\sigma}\left(A E_{\jmath}, N\right)+\frac{2}{2 m-1} g\left(J N, E_{j}\right) J N
\end{align*}
$$

Now from (4.3) and having in mind that $\left(\nabla_{E_{i}} E_{j}\right)_{B}=0$ it follows

$$
\begin{aligned}
\Delta \bar{H}(B)= & -\sum_{\jmath} D_{E_{j}} D_{E_{j}} \bar{H}=\sum_{\jmath} D_{E_{j}}\left(\frac{2(2 m+1)}{2 m-1} E_{j}-\frac{2}{2 m-1}-\tilde{\sigma}\left(A E_{\jmath}, N\right)\right. \\
& \left.-\frac{2}{2 m-1} g\left(J N, E_{j}\right) J N\right)=\frac{2(2 m+1)}{2 m-1} \bar{H}+\frac{2}{2 m-1} \sum_{j} g\left(\phi A E_{\jmath}, E_{j}\right) J N \\
& -\frac{2}{2 m-1} \tilde{\sigma}(J N, J N)+\frac{2}{2 m-1} J A J N+\frac{2}{2 m-1} \tilde{A}_{\tilde{\sigma}\left(A E_{j}, N\right)} E_{j} \\
& -\frac{2}{2 m-1} \sum_{\jmath} \tilde{\sigma}\left(\sigma\left(E_{\jmath}, A E_{j}\right), N\right)-\frac{2}{2 m-1} \sum_{j} \tilde{\sigma}\left(\left(\bar{\nabla}_{E_{j}} A\right) E_{\jmath}, N\right)
\end{aligned}
$$

$$
+\frac{2}{2 m-1} \sum_{\jmath} \tilde{\sigma}\left(A E_{\jmath}, A E_{\jmath}\right) .
$$

From the above expression, (2.10), (2.11) and the fact that M is minimal in $C P^{m}$, we conclude

$$
\begin{align*}
\Delta \bar{H}(B) & =\frac{8(2 m+1)}{2 m-1}(I-(m+1) B)-\frac{2(2 m+1)}{2 m-1} \tilde{\boldsymbol{\sigma}}(N, N)-\frac{2}{2 m-1} \tilde{\boldsymbol{\sigma}}(N, N) \tag{4.4}\\
& +\frac{2}{2 m-1} J A J N+\frac{2}{2 m-1} J A J N-\frac{2}{2 m-1}\|\sigma\|^{2} \tilde{\boldsymbol{\sigma}}(N, N) \\
& +\frac{2}{2 m-1} \sum_{\jmath} \tilde{\boldsymbol{\sigma}}\left(A E_{\jmath}, A E_{j}\right)-\frac{2}{2 m-1} \sum_{\jmath} \tilde{\boldsymbol{\sigma}}\left(\left(\bar{\nabla}_{E_{j}} A\right) E_{\jmath}, N\right) .
\end{align*}
$$

From the equation of Codazzi of M in $C P^{m}$ it is easy to see that

$$
\begin{equation*}
\sum_{\jmath} \tilde{\boldsymbol{\sigma}}\left(\left(\bar{\nabla}_{E_{j}} A\right) E_{\jmath}, N\right)=0 . \tag{4.5}
\end{equation*}
$$

Consequently, from (4.4) we have

$$
\begin{aligned}
\Delta \bar{H}(B)= & \frac{4}{2 m-1} J A J N+\frac{8(2 m+1)}{2 m-1}(I--(m+1) B) \\
& -\frac{2\left(2 m+2+\|\sigma\|^{2}\right)}{2 m-1} \tilde{\sigma}(N, N)+\frac{2}{2 m-1}-\sum_{j} \tilde{\sigma}\left(A E_{\jmath}, A E_{j}\right),
\end{aligned}
$$

which concludes the proof.
Lemma 4.2. Let M be a minimal hypersurface of $C P^{m}$. Then
i) $g(B, B)=\frac{1}{2}$:
ii) $g(B, \bar{H})=-1$,
iii) $g(B, \Delta \bar{H})=\frac{4\left(1-2 m^{2}\right)}{2 m-1}$,
iv) $g(\bar{H}, \bar{H})=\frac{4\left(2 m^{2}-1\right)}{(2 m-1)^{2}}$,
v) $g(\Delta \bar{H}, \bar{H})=\frac{8(m+1)\left(4 m^{2}-2 m-1\right)+4\|\sigma\|^{2}-4\|A J N\|^{2}}{(2 m-1)^{2}}$.

Proof. It follows easily from (2.11), (2.12) and (4.2).
Definition 4.3. Let $x: M^{n} \rightarrow E^{m}$ be an isometric immersion of a closed Riemannian manifold into the Euclidean space with mean curvature vector H. x is called of order $\left\{k_{1}, k_{2}\right\}$, [9], if it is of the form

$$
\begin{equation*}
x-x_{0}=x_{k_{1}}+x_{k_{2}} \tag{4.6}
\end{equation*}
$$

for some k_{1}, k_{2}.
It is easy to see that x is of order $\left\{k_{1}, k_{2}\right\}$ if and only if

$$
\begin{equation*}
\Delta H=a H+b\left(x-x_{0}\right) \tag{4.7}
\end{equation*}
$$

for some $a, b \in R$; [9].
Note that $k_{1} \neq k_{2}$ if and only if x is Bi -order. Moreover $a=0$ if and only if x is Mono-order.

As M cannot be Mono-order in $H M(m+1)$ (Theorem 2.8 of [8]) it follows that the immersion $x: M \rightarrow H M(m+1)$ is of order $\left\{k_{1}, k_{2}\right\}$ if and only if (4.7) holds with $a, b \neq 0$.

In the following we study the minimal real hypersurfaces of $C P^{m}(m \geqq 2)$ satisfying

$$
\begin{equation*}
\Delta \bar{H}(B)=a \bar{H}+b(B-Q) \quad \text { for any } \quad B \in M \tag{*}
\end{equation*}
$$

$a, b \in R, a, b \neq 0, Q$ being a constant, for which we need to prove
Lemma 4.4. Let M^{n} be a complex submanifold of $C P^{m}$ of complex dimension n. If for any unit normal vector to M^{n} in $C P^{m}, \xi$, the Weingarten endomorphism, A_{ξ}, has at most four principal curvatures, which are constants on M^{n}, then M^{n} has parallel second fundamental form in $C P^{m}$.

Proof. Let ξ be a unit normal vector field to M in $C P^{m}$ such that $\left(\nabla^{\wedge} \xi\right)(B)$ $=0$ for some fixed point $B \in M$, where ∇^{\perp} is the normal connection on M.

As M is a complex submanifold, the eigenvalues of A_{ξ} are $\lambda, \mu,-\lambda,-\mu$, for some $\lambda, \mu \in R$. Let V_{λ} and V_{μ} be the distributions of the eigenspaces of A_{ξ} corresponding to the eigenvalues λ and μ respectively. If $\left\{E_{1}, \cdots, E_{p}\right\},\left\{E_{p+1}\right.$, $\left.\cdots, E_{n}\right\}$ are local basis of orthonormal vector fields of V_{λ} and V_{μ}, respectively, then $\left\{J E_{1}, \cdots, J E_{p}\right\},\left\{J E_{p+1}, \cdots, J E_{n}\right\}$ are local basis of orthonormal vector fields of the distributions $V_{-\lambda}$ and $V_{-\mu}$, respectively.

Let $X \in T M$ and $i, j=1, \cdots, p$. Then as λ is constant

$$
\begin{aligned}
0= & X\left(g\left(A_{\xi} E_{\imath}, E_{j}\right)\right)=g\left(\left(\bar{\nabla}_{X} A\right)_{\xi} E_{\imath}, E_{j}\right)+g\left(A_{\xi} \nabla_{X} E_{\imath}, E_{j}\right) \\
& +g\left(A_{\xi} E_{\imath}, \nabla_{X} E_{j}\right)=g\left(\left(\bar{\nabla}_{X} A\right)_{\xi} E_{\imath}, E_{j}\right)+\lambda\left(g\left(\nabla_{X} E_{\imath}, E_{j}\right)\right. \\
& \left.+g\left(E_{\imath}, \nabla_{X} E_{j}\right)\right)=g\left(\left(\bar{\nabla}_{X} A\right)_{\xi} E_{\imath}, E_{j}\right) .
\end{aligned}
$$

Hence, from the commutativity properties of $\bar{\nabla} A$ and J, we have

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} A\right)_{\xi} Y, Z\right)=0 \tag{4.8}
\end{equation*}
$$

for all $X \in T_{B} M, \quad Y, Z \in V_{\lambda}(B) \oplus V_{-\lambda}(B)$.
In the same way

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{X} A\right)_{\xi} Y, Z\right)=0 \tag{4.9}
\end{equation*}
$$

for all $X \in T_{B} M, Y, Z \in V_{\mu}(B) \oplus V_{-\mu}(B)$.
Finally if $X, Y, Z \in T_{B} M$, taking orthogonal projection on $V_{\lambda}(B) \oplus V_{-\lambda}(B)$ and $V_{\mu}(B) \oplus V_{-\mu}(B)$, from (4.8), (4.9) and Codazzi equation, we conclude the Lemma.

TheOrem 4.5. Let M be a minimal real hypersurface of $C P^{m}(m \geqq 2)$. Then M satisfies condition (*) if and only if one of the following cases holds:
i) M is locally congruent to the geodesic hypersphere

$$
M_{1,2 m-1}\left(\frac{1}{2 m-1}, \frac{2 m-2}{2 m-1}\right) .
$$

ii) $\quad M$ is locally congruent to the hypersurface $M_{m, m}\left(\frac{1}{2}, \frac{1}{2}\right)$ and in thes case m is even.

Proof. Take M verifying (*). We can suppose that Q is diagonal. Put

$$
Q=\left(\begin{array}{ccccc}
q_{1} & & & & \\
& \ddots & \left(m_{1}\right. & & \\
& & q_{1} & & \\
\\
& & \ddots & & \\
& & & q_{k} & \\
& & & \ddots & \left(m_{k}\right) \\
& & & q_{k}
\end{array}\right)
$$

From (2.11), (2.12) and lemma 4.2, multiplying scalarly (*) by B, we obtain

$$
\begin{equation*}
g(B, Q)=a_{1}, \quad \text { for any } \quad B \in M \tag{4.10}
\end{equation*}
$$

where a_{1} is a real constant. So Q is normal to M in $H M(m+1)$. Hence

$$
\begin{equation*}
X g(Q, N)=g(Q, \tilde{\sigma}(X, N)), \quad \text { for all } \quad X \in T M . \tag{4.11}
\end{equation*}
$$

From (2.11), (2.12) and (4.2), multiplying scalarly (*) by $\tilde{\sigma}(X, N)$, we have

$$
\begin{equation*}
g(Q, \tilde{\sigma}(X, N))=\frac{-4}{b(2 m-1)} g\left(A^{2} J N, \phi X\right) . \tag{4.12}
\end{equation*}
$$

Moreover, as Q is normal to M in $H M(m+1)$, from $\left(^{*}\right)$ and (4.2) it is easy to prove that $A J N=\mu J N$, for some real constant μ. Hence, from (4.11), (4.12) and by a similar reasoning to the one used in the proof of theorem 3.1, we have

$$
\begin{equation*}
g\left(B, Q^{2}\right)=a_{2}, \quad \text { for any } \quad B \in M \tag{4.13}
\end{equation*}
$$

for some real constant a_{2}, and

$$
Q=\left(\begin{array}{lllll}
\lambda_{1} & & & \tag{4.14}\\
& \ddots & \left(m_{1}\right. & & \\
& & \lambda_{1} & & \\
& & \lambda_{2} & \\
& & & \ddots & \\
& & & \lambda_{2}
\end{array}\right),
$$

where $\lambda_{1}, \lambda_{2} \in R, m_{1} \lambda_{1}+m_{2} \lambda_{2}=1$.
Case i), $\lambda_{1}=\lambda_{2}$, i.e. $Q=\frac{1}{m+1} I$. Then from (*) we have

$$
\begin{equation*}
\Delta \bar{H}(B)=a \bar{H}+b\left(B-\frac{1}{m+1} I\right) \quad \text { for any } B \in M, a, b \in R, a, b \neq 0 \tag{4.15}
\end{equation*}
$$

By equaling the tangent components of (4.15) we obtain, from (4.2)

$$
\begin{equation*}
A J N=0 . \tag{4.16}
\end{equation*}
$$

From (4.16) and using the Codazzi equation for the immersion of M in $C P^{m}$ we have

$$
\begin{equation*}
g(A \phi A X, Y)=g(\phi X, Y), \quad \text { for any } \quad X, Y \in T M \tag{4.17}
\end{equation*}
$$

On the other hand, multiplying scalarly by $\tilde{\boldsymbol{\sigma}}(X, Y)$ in (4.15), we get, from (2.11),

$$
\begin{align*}
& 4 g(A X, A Y)+4 g(A \phi X, A \phi Y) \tag{4.18}\\
& =\{2 a(2 m \div 1)-(2 m-1) b-8(2 m+1)(m+1)\} g(X, Y) \\
& \quad+4\left\{2 m+2 \div\|\sigma\|^{2}-2 a\right\} g(X, J N) g(Y, J N),
\end{align*}
$$

for any $X, Y \in T M$. In particular, if $X \in T M$ and $g(X, J N)=0$, from (4.16) and (4.18) we have

$$
\begin{equation*}
A^{2} X-J A^{2} J X=\lambda X \tag{4.19}
\end{equation*}
$$

where λ is a real constant. From (4.17) and (4.19) we obtain

$$
\begin{equation*}
A^{4} X-\lambda A^{2} X+X=0 \tag{4.20}
\end{equation*}
$$

for any $X \in T M$ with $g(X, J N)=0$.
Consequently, from (4.16) and (4.20) we conclude that

respect to certain orthonormal basis $\left\{X_{1}, \cdots, X_{m-1}, J X_{1}, \cdots, J X_{m-1}, J N\right\}$ of $T M$, where $\alpha^{2}+\beta^{2}=\lambda$ and $\alpha^{2} \beta^{2}=1$. Then if $\alpha=\beta$, from (4.21) we have that m is even and M is locally congruent to $M_{m, m}\left(\frac{1}{2}, \frac{1}{2}\right)$ (see [11]). If $\alpha \neq \beta$, as α, β are constants on M and $J N$ is principal with principal curvature 0 , from Prop-
osition 3.1 and Theorem 1 in [2], and taking into account Lemma 4.4, we see that M is locally congruent to a minimal tube of radius $\frac{\Pi}{4}$ on the complex quadric, embedded as a complex hypersurface of $C P^{m}$. But it is known that there are not tubes of the above radius on the complex quadric. So this last possibility cannot occurs.

Case ii) $\lambda_{1} \neq \lambda_{2}$. As in the Theorem 3.1, it follows that M is locally congruent to a hypersurface of the type $M_{p, q}\left(r_{1}, r_{2}\right)$. From (3.10) and (3.11) we see that the only minimal submanifold of the above type with $Q \neq \frac{1}{m+1} I$, which is Bi-order in $H M(m+1)$ is $M_{1,2 m-1}\left(\frac{1}{2 m-1}, \frac{2 m-2}{2 m-1}\right)$.

Note that $M_{1,2 m-1}\left(\frac{1}{2 m-1}, \frac{2 m-2}{2 m-1}\right)$ and $M_{m, m}\left(\frac{1}{2}, \frac{1}{2}\right)$ are submanifolds of order $\{1,2\}$ in $H M(m+1)$. This concludes the proof.

The following result is due to B.Y. Chen and A. Ros, independently, see [5] and [9].

ThEOREM B. Let $x: M^{n} \rightarrow E^{n}$ be an isometric immersion of a compact mantfold into the Euclidean space. Then

$$
\int_{M}\left(n^{2} g(\Delta H, H)-n^{2}\left(\lambda_{1}+\lambda_{2}\right) g(H, H)-n \lambda_{1} \lambda_{2} g(x, H)\right) d V \geqq 0
$$

and the equality holds if and only if x is of order $\{1,2\}$.
As an application of Theorem B, using Lemma 4.2 we obtain
Corollary 4.6. Let M be a compact minimal real hypersurface immersed in $C P^{m}$. Then

$$
\begin{aligned}
& \left(8(m+1)\left(4 m^{2}-2 m-1\right)-4\left(2 m m^{2}-1\right)\left(\lambda_{1}+\lambda_{2}\right)+(2 m-1) \lambda_{1} \lambda_{2}\right) \operatorname{vol}(. I) \\
& \quad \geqq 4 \int_{M}\left(\|A J N\|^{2}-\|\sigma\|^{2}\right) d V
\end{aligned}
$$

and the equality holds if and only if M is either i) or ii) in Theorem 4.5.

References

[1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété Riemannene, Lecture Notes in Math. No. 194, Springer Verlag. Berlin 1971.
[2" T.E. Cecil and P.I. Ryan. Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 193, No. 2 (1982) 481-499.
[3] B. Y. Chen. Geometry of Submanifolds, M. Dekker, New-York, 1973.
[4] B. Y. Chen. Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
[5] B. Y. Chen. On the total curvature of immersed manifolds, VI; Submanifolds of finite Type and their applications, Bull. Math. Acad. Sinica, 11, No. 3, (1983) 309-328.
[6] M. Kon. Pseudo-Einstein real hypersurfaces in complex-space-forms, J. Differential Geometry, 14 (1979), 339-354.
[7] R.C. Reilly. On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comm. Math. Helv. 52 (1977), 525-533.
[8] A. Ros. Spectral geometry of CR-minımal submanifolds in the complex projective space, Kodai Math. J., 6 (1983), 88-99.
[9] A. Ros. On spectral geometry of Kaehler submanifolds, To appear in J. Math. Soc. Japan.
[10] K. Sakamoto. Planar geodesic immersions, Tohoku Math. J., 29 (1977), 25-56.
[11] R. Takagi. Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan, 27, No. 4 (1975), 507-516.

Departamento de Geometria y Topologia
Facultad de Ciencias
Universidad de Granada
Granada (Spain)

