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ON REAL HYPERSURFACES OF FINITE TYPE OF CPm

BY A. MARTINEZ AND A. Ros

§ 1. Introduction.

Let M be a closed Riemannian manifold and Δ the Laplace-Beltrami operator
of M acting on the smooth functions C°°(M). It is well known that Δ is an
elliptic operator with a discrete sequence of eigenvalues Q=λo<λ1<λ2< '<λk<
••• |oo. Let Vk be the eigenspace corresponding to the eigenvalue λk. Then Vk

has finite dimension. Moreover the decomposition is orthogonal respect to the
inner product

(1.1) (f,g)=\/gdV

and ΣV* is dense in C'iM).

Let x : M->Em be an isometric immersion of M into the ra-dimensional
Euclidean space with coordinate functions xt, that is, x—(xlf •••, xm). Then for
any i—1, •••, m, we have the decomposition

(1.2) * ι = Σ ( * * ) * (ZΛsense).

As M is closed, VQ consists of the constant functions on Mand so, from (1.2)
we can write

(1.3) *i-U»)o= Σ (*»)*

where qt={S\ipk\(xt)kΦθ} (respectively, p%= {Inf k\(xι)kΦθ}).
If ρ=lnf{pi} and q=Sup{qt} using (1.3) we obtain the following spectral de-

X X

composition (in a vector form)

q
n ^\ χ χ __ yΛ χ

where xk : M->Em are smooth for any k, q is an integer or q=°o, x0 is a con-
stant and Axk—λkxk. x0 is called center of gravity of M.

We shall say that the immersion x is of finite type if g<oo. If not it will
be called of no finite type [5].
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An immersion x of finite type will be called Mono-order (Bi-order, Tri-order,--)
if there exists only one (two, three, •••) of the xk's that is (are) non null. If
p—qf x is called of order p.

Considering the isometric immersion of the complex projective space CPm in
an Euclidean space HM(m+l) given in [10], any submanifold of the complex
projective space is isometrically immersed in HM(m+l). In this paper we study
the real hypersurfaces M of CPm for which the immersion of M into HM(m+ΐ)
is Mono-order or Bi-order.

In §3 we classify the real hypersurfaces of CPm for which the immersion in
HM(m+l) is Mono-order. We also give a bound of the first eigenvalue of their
spectrum.

In §4 we classify the minimal real hypersurfaces of CPm for which the
immersion in HM(m+ϊ) is Bi-order. We prove a spectral inequality envolving
the first and second eigenvalues of the spectrum.

The manifolds are supposed to be connected and of real dimension ^ 2 (if no
other thing is mentioned).

For the necessary knowledge and notations of submanifold theory see [3, 4].
For the particular case of real hypersurfaces of CPm see also [2, 6, 11] and for
spectral geometry see [1].

§ 2. The complex projective space.

For details in this section see [8, 9, 10].
Let CPm be the complex projective space obtained as a quotient space of the

unit sphere S 2 m + 1 ( l )= {Z^Cm+1\zz*=zzt=l} by identifying z with λz, λ<=C and
|>l |=l. Let g be the cannonical metric on CPm, that is, the invariant metric
such that the fibration Π : S 2 m + 1(l)->CPm is a Riemannian submersion. It is
known that CPm with this metric is a complex-space-form of constant holomorphic
sectional curvature 4 and its Riemannian curvature tensor is given by

(2.1) R{X, Y)Z=g(Y, Z)X-g{X, Z)Y+g{JY, Z)JX

-gUX, Z)JY+2g{X, JY)JZ

for any X, Y, Z in TCPm.
Let HM(m)={BeEgl(m, C)\B = Bt} with metric

(2.2) g{A9 B)=^-trace(ΛB) for any AyB^HM{m).
Δ

In [10], Sakamoto proves that the map ψ : S2m+1(l)->//M(ra+l) given by

(2.3) ψ(z)=z*z=zιz zeS 2 m + 1 ( l )

induces an immersion ψ : CPm->//M(ra+l) satisfying

(A) ψ(CPm)={BϊΞHM{m+l)\B2=B and trace 5=1} .
(B) ψ is an equivariant full isometric imbedding into
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HMm-i-D= {£e J/M(m+1) I trace 73=1}.

In the following (if nothing is mentioned) we shall consider CPm identified
with φ{CPm).

Under this identification [8, 9] the tangent and normal spaces at each point
B^CPm are given, respectively, by

TBCPm= {X<=HM(m+D I XB+BX^X),
(2.4)

TCP {Z

For any Q in HMίjn — l), the component of Q in TBCPm is

(2.5) Qτ=QB+BQ-2BQB=QB+BQ~4g(B, Q)B

Moreover the complex structure / induced on CPm by ψ is given by

(2.6) JX=-y/^Λ{I

for any X^TBCPm, I being the identity matrix of HM(m+l).
We shall denote by D the Riemannian connection of HM(m+l), by V the one

induced on CPm and σy 7
1 , A and //, respectively, the second fundamental form,

the normal connection, the Weingarten endomorphism and the mean curvature
vector of CPm in HM(m+ϊ). Now, analogously as the case of holomorphic
sectional curvature 1. [8, 9] we have

(2.7) σ(λ\ Γ^< ΛΎ-f- YX)(I-2B), AZX=(XZ-ZX)(I-2B),

(2.8) #* (

(2.9) σ(JX,JY) = σ(X, Y),

for any Z, Γ in ΓBCP?;ί and Z in T^CP711. From (2.9) we get

(2.10) 7 d = 0 ,

that is, the second fundamental form of the immersion is parallel, where
tfxσ)(Y, Z)=^iar(F, Z)-aφΣY, Z)-σ(Y, 1XZ) for any X, Y, Z<=TCPm.

From the equation of Gauss, (2.1), (2.6) and (2.7) it also follows

(2.11) g(σ(X, Y), σ(V, W))=2g(X, Y)g(V, W)+g(X, V)g{Y, W)

^g(X, W)g(Y, V)+g(JX, V)g(JY, W)+g(JX, W)g(JY, F),

(2.12) g(σ(X, }'), 7)=0, g(σ(X, Y), B) = -g(X, Y),

for any X, Y, Γ, W-ιT3CPnί.
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§ 3. Immersions of order k.

Let M be a connected real hypersurface of CPm. We shall denote by 7 the
Riemannian connection induced on M by 7, by N a unit normal vector field to
M in CPm, by A, σ, H, respectively, the Weingarten endomorphism, the second
fundamental form and the mean curvature vector of M in CPm, and by (φ, f)
the almost-contact structure on M, [11].

It is known from §2 that CPm can be imbedded in Hλίim-rl). So, any
submanifold of CPm is isometrically immersed in HM{m+l). In particular,
x=zφoi : M->HM(m+ϊ) is an isometric immersion of M in HM(m~-l). We shall
denote by H its mean curvature vector in HMiini-l) and by H1 its component in
ΎLCPm. Then we obtain the following result

THEOREM 3.1. Let M be a real hypersurface of CP"L \m^2). Then M is
minimal in some hyper sphere of HM(m+l) if and only ifM is locally congruent

to the geodesic hyper sphere Π(sιU-^ o~)xS2m~1(y oΏl^o)\ w h e r e Π i s t h e

usual fibration of CPm.

Proof. Let us suppose that M is minimal in a hyper sphere of i/Λ/(m+l) of
center Q, which we can suppose diagonal (If it is not we can apply an isometry
of type B^PBP-\ P^U{mJ

Γl) ^{P^GL{m+l, O/PP'^I}). Thus

(3.1)

for some non-null real number

\
\

HB=c

a, and

.(mi

Qr

ι(B-

Xmr

Qr ι

From (2.4), B^TDCPvl. Thus from (2.12), multiplying scalarly (3.1) by B,
we have

(3.2) g(B, Q)^a for any BZΞM

where a is a constant, a—--^—.

From (3.2) Q is normal to M in HM(m+l), and so, putting g(Q, N)—λ, we
have X(λ)=g(Qf σ(X, N)) for any X<=TM. Consequently, from (2.11) and (2.12),
multiplying scalarly (3.1) by σ(X, N), we get

(3.3) X(λ)^0
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that is, λ is constant.
From (2.5), the component of Q in TBCPm is Qτ=BQ+QB-4g(B, Q)B, then

λ^g(Q\ Qτ)=g(Qτ, Q)=g(QB+BQ-4g(B, Q)B, Q)

\ B)-4g(B, Q)\

Hence

(3.4) g(B, Q2)^β=- 2 -^constant

for any B^M.

As g{B, 1) — -^ for any B^CPm, M being a real hypersurf ace and ψ a full

imbedding into HιM{m+l), from (3.2) and (3.3) we get that Q, Q2 and / are
linearly dependent vectors, that is, there exist θly θ2, θz real number such that

(3.5) θ&z+

Consequently

(3.6) Q=

\

for some λlf

Note from (3.1) that trace Q=l. Then m1λ1+?n2λ2^=l.

If Λ=^2, i.e. 0 = — ~ - j I, then from (3.1) it follows that M is minimal in

CPm. But it is known (Theorem 2.8, of [8]) that there exist no minimal real
hypersurf aces in CPm (m^2) which are minimal in some hyper sphere of
HM(m+l). So λxφλ2 and the points of M satisfy the equation

(3.7) trace Q£=2α=constant for any

Let B~φ(z)~z*z, with \zψ—zz*=-\, then (3.7) can be written in the form

(3.8) k o i 2 + k i Γ + •• + k m J 2 = r ^constant

w i t h z = ( z 0 , •••, z m v •••, z m ) .

Consequently, from (3.8) M will be locally congruent to a hyper surf ace of the

type Mv,q{rly r2)^Π(Sp(Vn)xSq(Vr^)) with n + r 2 = l , p+q=2m.
In the following we see which MPtQ(rlf r2) are minimal in a hypersphere of

HM{m+l).
From (2.3)

(3.9) ώfe tt ) = ( \ \ z , w)
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where (z, w)^Sp(Vr1)xSq(Vr2)dS2m+1(l).

Finally, from (3.9), the properties of Δ and the fact that the fibres of

Π : Sp(Vrϊ)xS9(Vrϊ)-+Mp,q(r1, r2) are totally geodesic it follows

(3.10) Δx=-(2m-l)//=

if p, q>\, and

(3.11) Δ*=-(2m-l)J7=

ZtZi — 4

2(g+ϊ) _
W

/ 1 , 2m-l\_
. I - \WiZ0

w i Γ2 /

2 m - l \ ,
JZ0W%

2(2m) _
W

if p—l, where x is the immersion of Mp>q(rly r2) in HM(m+ϊ) induced by φ.
Thus from (3.1), (3.10) and (3.11) we can conclude that Mp>q(rlf r2) is minimal

in a hypersphere of HM(m+ϊ) if and only if p=l, q—2m—l, fi — ir, ~vr>

r*—-^—7-^-y which concludes the proof.
Zm-f-Δ

From Theorem 3.1 and the definition of Mono-order it follows

COROLLARY 3.2. Let M be a closed real hypersurface of CPm (ra^2). Then
the isometric immersion x : M—>HM(m+l) is Mono-order if and only if M is
congruent to the geodesic hypersphere

M
2 m + 2 > 2m+2

The following result is known

THEOREM A [7]. Let Mn be an n-dimensional closed Riemannian manifold
and x : Mn-+Em an isometric immersion of M into the Euclidean space. Then

and the equality holds if and only if M is an order 1 submanifold of Em, H being
the mean curvature vector of the immersion and λx the first spectral eigenvalue.

Using this result, (2.11) and (2.12) it follows

COROLLARY 3.3. Let M be a closed real hypersurface of CPm. Then

(312) λ < 2 m ~ 1 ί \\m*dv\ 4 ( 2 m 2 ~ υ
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where H is the mean curvature vector of M in CPm. Moreover, the equality in
(3.12) holds if and only if M is congruent to the geodesic hypersphere

ι 2 m Λ
Remark. From Theorem 2.8 of [8], if H-0, the equality in (3.12) never

occurs.

§4. Bi-order Immersions.

Along this section M will be a minimal real hypersurface of CPm and we
shall denote by H the mean curvature vector of M in HM(m+ϊ). Then as M
is minimal in CPm, from (2.8) it follows

(4.1) HB=HJi= 2-^~-(I-(m+l)B)~ ^—a^N, N).

PROPOSITION 4.1. Let M be a minimal real hypersurface of CPm. Then

(4.2) AH(B) = -2r£ZγJAJN+ ^ ^ - ( / - ( m +

2

where N is a unit normal vector field to M in CPm and {Elf •••, E2m-X} is an
orthonormal basis of TM.

Proof. Let {Elf •••, J52m-i} be an orthonormal basis in TM such that (VEIEJ)B
- 0 for any /, j = l, •••, 2m-1. Then from (2.10), (2.11) and (4.1),

(4.3)

Now from (4.3) and having in mind that (?JEiEj)B=-ΰ it follows

= Γ ? d{σ{E}> AEi)' N)~ 2nhτ¥ 9^*iA)E» N)
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From the above expression, (2.10), (2.11) and the fact that M is minimal m
CPm, we conclude

(44)

έ τ ? *« )̂E,, N).
From the equation of Codazzi of M in CPm it is easy to see that

(4.5) Έd{{ϊEjA)E3, Λ0=0.

Consequently, from (4.4) we have

which concludes the proof.

LEMMA 4.2. Let M be a minimal hypersurface of CPm. Then

ii) g(B, B) = -l,

iϋ)

iv)
' (2m-iy '

v) g(AHyH)=S{m^

Proof, it follows easily from (2.11), (2.12) and (4.2).

DEFINITION 4.3. Let x : Mn-*Em be an isometric immersion of a closed
Riemannian manifold into the Euclidean space with mean curvature vector H.
x is called of order {klf k2], [9], if it is of the form

(4.6) x—xQ~xkl+Xk2

for some klf k2.
It is easy to see that x is of order {k1} k2] if and only if
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(4.7) AH=aH+b(x-x0)

for some a, b^R; [9].
Note that kχφk2 if and only if x is Bi-order. Moreover a=0 if and only if

x is Mono-order.
As M cannot be Mono-order in HM{m+l) (Theorem 2.8 of [8]) it follows

that the immersion x : M->//M(m+l) is of order {kly k2} if and only if (4.7)
holds with a, bΦO.

In the following we study the minimal real hypersurfaces of CPm (m^2)
satisfying

(*) AH(B)=aΠ+b(B-Q) for any BΪΞM

a, b^R, a, bΦQ, Q being a constant, for which we need to prove

LEMMA 4.4. Let Mn be a complex submanifold of CPm of complex dimension
n. If for any unit normal vector to Mn in CPm, ξ, the Weingarten endomorphism,
Λξ, has at most four principal curvatures, which are constants on Mn, then Mn

has parallel second fundamental form in CPm.

Proof. Let ξ be a unit normal vector field to M in CPm such that C
—0 for some fixed point B<^M> where V1 is the normal connection on M.

As M i s a complex submanifold, the eigenvalues of Aξ are λ, μ, —λ, —μ,
for some λ, μ<^R. Let Vλ and Vμ be the distributions of the eigenspaces of Aξ

corresponding to the eigenvalues λ and μ respectively. If {Elf •••, Ep}, {Ep+1,
• , En} are local basis of orthonormal vector fields of Vχ and Vμ, respectively,
then {JElf •••, JEP], {JEP+1, •••, JEn) are local basis of orthonormal vector fields
of the distributions V-λ and V-μ, respectively.

Let X^TM and i, j=l, •••, p. Then as λ is constant

0=X(g(ΛξEl} Ej))=

+g(AξEt, VχEj)=g(&χA)ξEt, Ej)+λ(g?7xEι, Ej)

+g(Ely 1xEj))^g((^xA)ξEly Ej).

Hence, from the commutativity properties of 7^4 and /, we have

(4.8) g(CVzA)ξY,Z)=0,

for all XΪΞTBM, Y, ZtΞVλ{B)®V-x(B).

In the same way

(4.9) g«yxA)ξY,Z)=0,

for all X(ΞTBM, Yy Z^Vμ{B)®V-μ{B).

Finally if X, Yy ZEΞTBM, taking orthogonal projection on Vλ(B)®V~χ(B) and
Vμ{B)@V-μ(B), from (4.8), (4.9) and Codazzi equation, we conclude the Lemma.
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THEOREM 4.5. Let M be a minimal real hypersurface of CPm (w^!
M satisfies condition (*) if and only if one of the following cases holds:

i) M is locally congruent to the geodesic hyper sphere

1

313

Then

M 1 ) 2

2m-2\
2m-1\2m-l ' 2m-ir

ii) M is locally congruent to the hypersurface Mm,m(—, —j and in this case

m is even.

Proof. Take M verifying (*). We can suppose that Q is diagonal. Put

Q=

\

Qi

\ qk I

From (2.11), (2.12) and lemma 4.2, multiplying scalarly (*) by B, we obtain

(4.10) g(B,Q)=alf for any 5 E M ,

where ax is a real constant. So Q is normal to M in HM{m+l). Hence

(4.11) Xg(Q, N)=g(Q, σ(X, N)), for all X^TM.

From (2.11), (2.12) and (4.2), multiplying scalarly (*) by σ(X, N), we have

(4.12) g(Q, σ(X, N)) =
- 4

b(2m-l)
, φX).

Moreover, as Q is normal to M in HM(m+l), from (*) and (4.2) it is easy
to prove that AJN—μJN, for some real constant μ. Hence, from (4.11), (4.12)
and by a similar reasoning to the one used in the proof of theorem 3.1, we have

(4.13) g(B,Q2)=a2, for any

for some real constant a2, and

(4.14)

where λlf ', m1λ1+m2λ2=l.
1

Case i), λ1—λ2y i.e. Q= —I. Then from (*) we have



314

(4.15) AH(B)=aH+b(B-

A. MARTINEZ AND A. ROS

f o r > a>

By equaling the tangent components of (4.15) we obtain, from (4.2)

(4.16) ΆJN=0.

From (4.16) and using the Codazzi equation for the immersion of M in CPr

we have

(4.17) [AφAX, Y)=g(φX, Y), for any X, Y^TM.

On the other hand, multiplying scalarly by σ(X, Y) in (4.15), we get, from
(2.11),

*g(AX, AY)+4g(AφX, AφY)

, Y)

(4.18)

+4{2ro-f 2-τ\\σ\\2-2a}g{X, JN)g{Y, JN),

for any X, Γ G T Λ / . In particular, if X^TM and g(X, JN)=0, from (4.16) and
(4.18) we have

(4.19) A2X-JA2JX=λX,

where λ is a real constant. From (4.17) and (4.19) we obtain

(4.20) ALX-λA2X+X=0,

for any X^TM with g(X, JN)=Q.
Consequently, from (4.16) and (4.20) we conclude that

a '

(4.21) 1 , —a

—a
-β

7
respect to certain orthonormal basis {Xlf •••, Xm-i> JXi, "', JXm-u JN} of TM,
where a2+βz=λ and a2β2=l. Then if a—β, from (4.21) we have that m is

even and M is locally congruent to Mm>m(γ, -=•) (see [11]). If aφβ, as α, β

are constants on M and /Λτ is principal with principal curvature 0, from Prop-
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osition 3.1 and Theorem 1 in [2], and taking into account Lemma 4.4, we see

that M is locally congruent to a minimal tube of radius — on the complex

quadric, embedded as a complex hypersurface of CPm. But it is known that
there are not tubes of the above radius on the complex quadric. So this last
possibility cannot occurs.

Case ii) λxφλ2. As in the Theorem 3.1, it follows that M is locally con-
gruent to a hypersurface of the type Mp>q(rly r2). From (3.10) and (3.11) we see

that the only minimal submanifold of the above type with QΦ —----/, which is
-i 99 Ml ~T~ 1

Bi-order in HM(m+l) is ^ ^

Note that Mltim^-^—^p -—-~--j and M7 r t,m(— —} are submanifolds of

order {1, 2} in HM(?n+l). This concludes the proof.
The following result is due to B.Y. Chen and A. Ros, independently, see

[5] and [9].

THEOREM B. Let x :Mn->Em be an isometric immersion of a compact mani-
fold into the Euclidean space. Then

( (n*g(AH, H)~n\λ^λύg{H, H)-nλ^g{x, H))dV^0
J M

and the equality holds if and only if x is of order {1, 2}.

As an application of Theorem B; using Lemma 4.2 we obtain

COROLLARY 4.6. Let M be a compact minimal real hypersurface immersed in
CPm. Then

^ 4 ( (\\AJN\\*-\\σ\\*)dV

and the equality holds if and only if M is either i) or ii) in Theorem 4.5.
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