ON REAL HYPERSURFACES OF FINITE TYPE OF *CP*^{*m*}

BY A. MARTINEZ AND A. ROS

§1. Introduction.

Let M be a closed Riemannian manifold and Δ the Laplace-Beltrami operator of M acting on the smooth functions $C^{\infty}(M)$. It is well known that Δ is an elliptic operator with a discrete sequence of eigenvalues $0=\lambda_0<\lambda_1<\lambda_2<\cdots<\lambda_k<$ $\cdots\uparrow\infty$. Let V_k be the eigenspace corresponding to the eigenvalue λ_k . Then V_k has finite dimension. Moreover the decomposition is orthogonal respect to the inner product

$$(1.1) (f, g) = \int_{\mathcal{M}} fg dV$$

and $\sum_{k} V_{k}$ is dense in $C^{\infty}(M)$.

Let $x: M \to E^m$ be an isometric immersion of M into the *m*-dimensional Euclidean space with coordinate functions x_i , that is, $x=(x_1, \dots, x_m)$. Then for any $i=1, \dots, m$, we have the decomposition

(1.2)
$$x_i = \sum_k (x_i)_k \qquad (L^2 \text{-sense}).$$

As M is closed, V_0 consists of the constant functions on M and so, from (1.2) we can write

(1.3)
$$x_i - (x_i)_0 = \sum_{k=p_i}^{q_i} (x_i)_k$$

where $q_i = \{ \sup k | (x_i)_k \neq 0 \}$ (respectively, $p_i = \{ \inf k | (x_i)_k \neq 0 \} \}$).

If $p = \lim_{i} \{p_i\}$ and $q = \sup_{i} \{q_i\}$ using (1.3) we obtain the following spectral decomposition (in a vector form)

$$(1.4) x-x_0 = \sum_{k=p}^{q} x_k$$

where $x_k : M \to E^m$ are smooth for any k, q is an integer or $q = \infty$, x_0 is a constant and $\Delta x_k = \lambda_k x_k$. x_0 is called center of gravity of M.

We shall say that the immersion x is of *finite type* if $q < \infty$. If not it will be called of *no finite type* [5].

Received December 2, 1983.

An immersion x of finite type will be called *Mono-order* (*Bi-order*, *Tri-order*,...) if there exists only one (two, three,...) of the x_k 's that is (are) non null. If p=q, x is called of *order* p.

Considering the isometric immersion of the complex projective space CP^m in an Euclidean space HM(m+1) given in [10], any submanifold of the complex projective space is isometrically immersed in HM(m+1). In this paper we study the real hypersurfaces M of CP^m for which the immersion of M into HM(m+1)is Mono-order or Bi-order.

In §3 we classify the real hypersurfaces of CP^{m} for which the immersion in HM(m+1) is Mono-order. We also give a bound of the first eigenvalue of their spectrum.

In §4 we classify the minimal real hypersurfaces of CP^m for which the immersion in HM(m+1) is Bi-order. We prove a spectral inequality envolving the first and second eigenvalues of the spectrum.

The manifolds are supposed to be connected and of real dimension ≥ 2 (if no other thing is mentioned).

For the necessary knowledge and notations of submanifold theory see [3, 4]. For the particular case of real hypersurfaces of CP^m see also [2, 6, 11] and for spectral geometry see [1].

§2. The complex projective space.

For details in this section see [8, 9, 10].

Let CP^m be the complex projective space obtained as a quotient space of the unit sphere $S^{2m+1}(1) = \{Z \in C^{m+1} | zz^* = z\overline{z}^t = 1\}$ by identifying z with λz , $\lambda \in C$ and $|\lambda| = 1$. Let g be the cannonical metric on CP^m , that is, the invariant metric such that the fibration $\Pi : S^{2m+1}(1) \rightarrow CP^m$ is a Riemannian submersion. It is known that CP^m with this metric is a complex-space-form of constant holomorphic sectional curvature 4 and its Riemannian curvature tensor is given by

(2.1)
$$\overline{R}(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX$$
$$-g(JX, Z)JY + 2g(X, JY)JZ$$

for any X, Y, Z in TCP^{m} .

Let $HM(m) = \{B \in gl(m, C) | \overline{B} = B^t\}$ with metric

(2.2)
$$g(A, B) = \frac{1}{2} \operatorname{trace}(AB)$$
 for any $A, B \in HM(m)$.

In [10], Sakamoto proves that the map $\tilde{\psi}$: $S^{2m+1}(1) \rightarrow HM(m+1)$ given by

(2.3)
$$\widetilde{\psi}(z) = z^* z = \overline{z}^t z \qquad z \in S^{2m+1}(1)$$

induces an immersion $\psi : CP^m \rightarrow HM(m+1)$ satisfying

- (A) $\psi(CP^{m}) = \{B \in HM(m+1) | B^{2} = B \text{ and trace } B = 1\}.$
- (B) ϕ is an equivariant full isometric imbedding into

A. MARTINEZ AND A. ROS

$$H_1M(m+1) = \{B \in HM(m+1) | \text{trace } B = 1\}$$
.

In the following (if nothing is mentioned) we shall consider CP^{m} identified with $\phi(CP^{m})$.

Under this identification [8, 9] the tangent and normal spaces at each point $B \in CP^m$ are given, respectively, by

(2.4)
$$T_{B}CP^{m} = \{X \in HM(m+1) \mid XB + BX = X\}, \\ T_{B}CP^{m} = \{Z \in HM(m+1) \mid ZB = BZ\}.$$

For any Q in HM(m+1), the component of Q in T_BCP^m is

$$(2.5) Q^{\intercal} = QB + BQ - 2BQB = QB + BQ - 4g(B, Q)B$$

Moreover the complex structure J induced on CP^m by ψ is given by

$$JX = \sqrt{-1}(I - 2B)X$$

for any $X \in T_B CP^m$, I being the identity matrix of HM(m+1).

We shall denote by D the Riemannian connection of HM(m+1), by $\tilde{\forall}$ the one induced on CP^m and $\tilde{\sigma}$, $\tilde{\forall}^{\perp}$, \tilde{A} and \tilde{H} , respectively, the second fundamental form, the normal connection, the Weingarten endomorphism and the mean curvature vector of CP^m in HM(m+1). Now, analogously as the case of holomorphic sectional curvature 1. [8, 9] we have

(2.7)
$$\tilde{\sigma}(X, Y) = XY + YX(I-2B), \quad \tilde{A}_Z X = (XZ - ZX)(I-2B),$$

(2.8)
$$\widetilde{H}_B = \frac{2}{m} (I - (m+1)B),$$

(2.9)
$$\tilde{\sigma}(JX, JY) = \tilde{\sigma}(X, Y),$$

for any X, Y in $T_B CP^m$ and Z in $T_B^{\perp} CP^m$. From (2.9) we get

$$(2.10) \qquad \qquad \overline{\nabla}\tilde{\sigma} = 0 \,,$$

that is, the second fundamental form of the immersion is parallel, where $(\overline{\nabla}_X \tilde{\sigma})(Y, Z) = \widetilde{\nabla}_X^{\perp} \tilde{\sigma}(Y, Z) - \tilde{\sigma}(\widetilde{\nabla}_X Y, Z) - \tilde{\sigma}(Y, \widetilde{\nabla}_X Z)$ for any $X, Y, Z \in TCP^m$. From the equation of Gauss, (2.1), (2.6) and (2.7) it also follows

(2.11)
$$g(\tilde{\sigma}(X, Y), \tilde{\sigma}(V, W)) = 2g(X, Y)g(V, W) + g(X, V)g(Y, W) + g(X, W)g(Y, V) + g(JX, V)g(JY, W) + g(JX, W)g(JY, V),$$

(2.12)
$$g(\tilde{\sigma}(X, Y), I) = 0, \quad g(\tilde{\sigma}(X, Y), B) = -g(X, Y),$$

for any X, Y, V, $W = T_B CP^m$.

\S 3. Immersions of order k.

Let M be a connected real hypersurface of CP^m . We shall denote by ∇ the Riemannian connection induced on M by $\tilde{\nabla}$, by N a unit normal vector field to M in CP^m , by A, σ , H, respectively, the Weingarten endomorphism, the second fundamental form and the mean curvature vector of M in CP^m , and by (ϕ, f) the almost-contact structure on M, [11].

It is known from §2 that CP^m can be imbedded in HM(m+1). So, any submanifold of CP^m is isometrically immersed in HM(m+1). In particular, $x=\phi \circ i : M \to HM(m+1)$ is an isometric immersion of M in HM(m+1). We shall denote by \overline{H} its mean curvature vector in HM(m+1) and by \overline{H}^{\perp} its component in $T^{\perp}CP^m$. Then we obtain the following result

THEOREM 3.1. Let M be a real hypersurface of CP^m ($m \ge 2$). Then M is minimal in some hypersphere of HM(m+1) if and only if M is locally congruent to the geodesic hypersphere $II\left(S^1\left(\sqrt{\frac{1}{2m+2}}\right) \times S^{2m-1}\left(\sqrt{\frac{2m+1}{2m+2}}\right)\right)$, where II is the usual fibration of CP^m .

Proof. Let us suppose that M is minimal in a hypersphere of HM(m+1) of center Q, which we can suppose diagonal (If it is not we can apply an isometry of type $B \rightarrow PBP^{-1}$, $P \in U(m+1) = \{P \in GL(m+1, C)/P\bar{P}^t = I\}$). Thus

$$(3.1) \qquad \qquad \overline{H}_B = a(B-Q),$$

for some non-null real number a, and

$$Q = \begin{pmatrix} q_{1} & & & \\ & q_{1} & & \\ & & q_{r} & \\ & & & .(m_{r}) \\ & & & & q_{r} \end{pmatrix}, \qquad q_{i} \neq q_{j} \quad (i \neq j)$$

From (2.4), $B \in T_{\bar{B}} CP^{m}$. Thus from (2.12), multiplying scalarly (3.1) by B, we have

(3.2)
$$g(B, Q) = \alpha$$
 for any $B \in M$

where α is a constant, $\alpha = \frac{2+a}{2a}$.

From (3.2) Q is normal to M in HM(m+1), and so, putting $g(Q, N) = \lambda$, we have $X(\lambda) = g(Q, \tilde{\sigma}(X, N))$ for any $X \in TM$. Consequently, from (2.11) and (2.12), multiplying scalarly (3.1) by $\tilde{\sigma}(X, N)$, we get

$$(3.3) X(\lambda) = 0$$

that is, λ is constant.

From (2.5), the component of Q in $T_B CP^m$ is $Q^{\dagger} = BQ + QB - 4g(B, Q)B$, then

$$\lambda^2 = g(Q^{\mathsf{T}}, Q^{\mathsf{T}}) = g(Q^{\mathsf{T}}, Q) = g(QB + BQ - 4g(B, Q)B, Q)$$

=2g(Q², B)-4g(B, Q)².

Hence

(3.4)
$$g(B, Q^2) = \beta = \frac{\lambda^2 + 4\alpha^2}{2} = \text{constant}$$

for any $B \in M$.

As $g(B, I) = \frac{1}{2}$ for any $B \in CP^m$, M being a real hypersurface and ψ a full imbedding into $H_1M(m+1)$, from (3.2) and (3.3) we get that Q, Q^2 and I are linearly dependent vectors, that is, there exist $\theta_1, \theta_2, \theta_3$ real number such that

$$\theta_1 Q^2 + \theta_2 Q + \theta_3 I = 0.$$

Consequently

(3.6)
$$Q = \begin{pmatrix} \lambda_1 & & \\ & \ddots & (m_1 & \\ & & \lambda_1 & \\ & & \lambda_2 & \\ & & \ddots & (m_2 \\ & & & \lambda_2 \end{pmatrix}, \quad \text{for some } \lambda_1, \ \lambda_2 \in R$$

Note from (3.1) that trace Q=1. Then $m_1\lambda_1+m_2\lambda_2=1$.

If $\lambda_1 = \lambda_2$, i.e. $Q = \frac{1}{m+1} I$, then from (3.1) it follows that M is minimal in CP^m . But it is known (Theorem 2.8, of [8]) that there exist no minimal real hypersurfaces in CP^m ($m \ge 2$) which are minimal in some hypersphere of HM(m+1). So $\lambda_1 \neq \lambda_2$ and the points of M satisfy the equation

(3.7) trace
$$QB=2\alpha=$$
constant for any $B\in M$.

Let $B=\phi(z)=z^*z$, with $||z||^2=zz^*=1$, then (3.7) can be written in the form

$$(3.8) |z_0|^2 + |z_1|^2 + \dots + |z_{m_1}|^2 = r = \text{constant}$$

with $z = (z_0, \dots, z_{m_1}, \dots, z_m)$.

Consequently, from (3.8) M will be locally congruent to a hypersurface of the type $M_{p,q}(r_1, r_2) = \Pi(S^p(\sqrt{r_1}) \times S^q(\sqrt{r_2}))$ with $r_1 + r_2 = 1$, p+q=2m.

In the following we see which $M_{p,q}(r_1, r_2)$ are minimal in a hypersphere of HM(m+1).

From (2.3)

(3.9)
$$\tilde{\varphi}(z, w) = \begin{pmatrix} z^* \\ w^* \end{pmatrix} (z, w) = \begin{pmatrix} \overline{z}_i z_j & \overline{z}_i w_j \\ \overline{w}_j z_i & \overline{w}_i w_j \end{pmatrix},$$

where $(z, w) \in S^p(\sqrt{r_1}) \times S^q(\sqrt{r_2}) \subset S^{2m+1}(1)$.

Finally, from (3.9), the properties of Δ and the fact that the fibres of Π : $S^p(\sqrt{r_1}) \times S^q(\sqrt{r_2}) \rightarrow M_{p,q}(r_1, r_2)$ are totally geodesic it follows

(3.10)
$$\Delta x = -(2m-1)\overline{H} = \begin{pmatrix} \frac{2(p+1)}{r_1} \overline{z}_i z_j - 4r_1 I & \left(\frac{p}{r_1} + \frac{q}{r_2}\right) \overline{z}_i w_j \\ \hline \left(\frac{p}{r_1} + \frac{q}{r_2}\right) \overline{w}_j z_i & \frac{2(q+1)}{r_2} \overline{w}_i w_j - 4r_2 I \end{pmatrix}$$

if p, q > 1, and

(3.11)
$$\Delta x = -(2m-1)\overline{H} = \left(\begin{array}{c|c} 0 & \left(\frac{1}{r_1} + \frac{2m-1}{r_2}\right)\overline{z}_0 w_i \\ \hline \left(\frac{1}{r_1} + \frac{2m-1}{r_2}\right)\overline{w}_i z_0 & \frac{2(2m)}{r_2}\overline{w}_i w_j - 4r_2 I \end{array} \right)$$

if p=1, where x is the immersion of $M_{p,q}(r_1, r_2)$ in HM(m+1) induced by ϕ . Thus from (3.1), (3.10) and (3.11) we can conclude that $M_{p,q}(r_1, r_2)$ is minimal in a hypersphere of HM(m+1) if and only if p=1, q=2m-1, $r_1=\frac{1}{2(m+1)}$, $r_2=\frac{2m+1}{2m+2}$, which concludes the proof.

From Theorem 3.1 and the definition of Mono-order it follows

COROLLARY 3.2. Let M be a closed real hypersurface of CP^{m} $(m \ge 2)$. Then the isometric immersion $x : M \rightarrow HM(m+1)$ is Mono-order if and only if M is congruent to the geodesic hypersphere

$$M_{1,2m-1}\left(\frac{1}{2m+2},\frac{2m+1}{2m+2}\right) = \Pi\left(S^{1}\left(\sqrt{\frac{1}{2m+2}}\right) \times S^{2m-1}\left(\sqrt{\frac{2m+1}{2m+2}}\right).$$

The following result is known

THEOREM A [7]. Let M^n be an n-dimensional closed Riemannian manifold and $x : M^n \rightarrow E^m$ an isometric immersion of M into the Euclidean space. Then

$$\frac{\lambda_1}{n} \operatorname{vol}(M) \leq \int_{\mathcal{M}} ||H||^2 dV,$$

and the equality holds if and only if M is an order 1 submanifold of E^m , H being the mean curvature vector of the immersion and λ_1 the first spectral eigenvalue.

Using this result, (2.11) and (2.12) it follows

COROLLARY 3.3. Let M be a closed real hypersurface of CP^{m} . Then

(3.12)
$$\lambda_1 \leq \frac{2m-1}{\operatorname{vol}(M)} \int_M \|H\|^2 dV + \frac{4(2m^2-1)}{2m-1},$$

where H is the mean curvature vector of M in CP^{m} . Moreover, the equality in (3.12) holds if and only if M is congruent to the geodesic hypersphere

$$M_{1,2m-1}\left(\frac{1}{2m+2},\frac{2m+1}{2m+2}\right).$$

Remark. From Theorem 2.8 of [8], if H=0, the equality in (3.12) never occurs.

§4. Bi-order Immersions.

Along this section M will be a minimal real hypersurface of CP^m and we shall denote by \overline{H} the mean curvature vector of M in HM(m+1). Then as M is minimal in CP^m , from (2.8) it follows

(4.1)
$$\overline{H}_{B} = H_{B}^{\perp} = \frac{4}{2m-1} (I - (m+1)B) - \frac{1}{2m-1} \tilde{\sigma}(N, N)$$

PROPOSITION 4.1. Let M be a minimal real hypersurface of CP^{m} . Then

(4.2)
$$\Delta \overline{H}(B) = -\frac{4}{2m-1} JAJN + \frac{8(2m+1)}{2m-1} (I - (m+1)B) \\ - \frac{2(2m+2+\|\sigma\|^2)}{2m-1} \tilde{\sigma}(N, N) + \frac{2}{2m-1} \sum_{j} \tilde{\sigma}(AE_j, AE_j),$$

where N is a unit normal vector field to M in CP^m and $\{E_1, \dots, E_{2m-1}\}$ is an orthonormal basis of TM.

Proof. Let $\{E_1, \dots, E_{2m-1}\}$ be an orthonormal basis in TM such that $(\nabla_{E_i}E_j)_B = 0$ for any $i, j=1, \dots, 2m-1$. Then from (2.10), (2.11) and (4.1),

(4.3)
$$(d\overline{H})(E_j) = -\frac{4(m+1)}{2m-1}E_j + \frac{2}{2m-1}\tilde{\sigma}(AE_j, N) + \frac{1}{2m-1}\tilde{A}_{\tilde{\sigma}(N,N)}E_j$$
$$= -\frac{2(2m+1)}{2m-1}E_j + \frac{2}{2m-1}\tilde{\sigma}(AE_j, N) + \frac{2}{2m-1}g(JN, E_j)JN$$

Now from (4.3) and having in mind that $(\nabla_{E_i}E_j)_B=0$ it follows

$$\begin{split} \Delta \overline{H}(B) &= -\sum_{j} D_{E_{j}} D_{E_{j}} \overline{H} = \sum_{j} D_{E_{j}} \Big(\frac{2(2m+1)}{2m-1} E_{j} - \frac{2}{2m-1} \tilde{\sigma}(AE_{j}, N) \\ &- \frac{2}{2m-1} g(JN, E_{j}) JN \Big) = \frac{2(2m+1)}{2m-1} \overline{H} + \frac{2}{2m-1} \sum_{j} g(\phi AE_{j}, E_{j}) JN \\ &- \frac{2}{2m-1} \tilde{\sigma}(JN, JN) + \frac{2}{2m-1} JAJN + \frac{2}{2m-1} \widetilde{A}_{\tilde{\sigma}(AE_{j}, N)} E_{j} \\ &- \frac{2}{2m-1} \sum_{j} \tilde{\sigma}(\sigma(E_{j}, AE_{j}), N) - \frac{2}{2m-1} \sum_{j} \tilde{\sigma}((\overline{\nabla}_{E_{j}}A)E_{j}, N) \end{split}$$

ON REAL HYPERSURFACES OF FINITE TYPE OF CP^m

$$+\frac{2}{2m-1}\sum_{j}\tilde{\sigma}(AE_{j}, AE_{j}).$$

From the above expression, (2.10), (2.11) and the fact that M is minimal in CP^{m} , we conclude

$$(4.4) \qquad \Delta \overline{H}(B) = \frac{8(2m+1)}{2m-1} (I - (m+1)B) - \frac{2(2m+1)}{2m-1} \tilde{\sigma}(N, N) - \frac{2}{2m-1} \tilde{\sigma}(N, N) + \frac{2}{2m-1} JAJN + \frac{2}{2m-1} JAJN - \frac{2}{2m-1} \|\sigma\|^2 \tilde{\sigma}(N, N) + \frac{2}{2m-1} \sum_{j} \tilde{\sigma}(AE_j, AE_j) - \frac{2}{2m-1} \sum_{j} \tilde{\sigma}((\overline{\nabla}_{E_j}A)E_j, N) .$$

From the equation of Codazzi of M in CP^m it is easy to see that (4.5) $\sum_{j} \tilde{\sigma}((\overline{\nabla}_{E_j}A)E_j, N)=0.$

Consequently, from (4.4) we have

$$\Delta \overline{H}(B) = \frac{4}{2m-1} JAJN + \frac{8(2m+1)}{2m-1} (I - (m+1)B) - \frac{2(2m+2+\|\sigma\|^2)}{2m-1} \tilde{\sigma}(N, N) + \frac{2}{2m-1} \sum_{j} \tilde{\sigma}(AE_{j}, AE_{j}),$$

which concludes the proof.

LEMMA 4.2. Let M be a minimal hypersurface of
$$CP^{m}$$
. Then
i) $g(B, B) = \frac{1}{2}$:
ii) $g(B, \overline{H}) = -1$,
iii) $g(B, \Delta \overline{H}) = \frac{4(1-2m^2)}{2m-1}$,
iv) $g(\overline{H}, \overline{H}) = \frac{4(2m^2-1)}{(2m-1)^2}$,
v) $g(\Delta \overline{H}, \overline{H}) = \frac{8(m+1)(4m^2-2m-1)+4\|\sigma\|^2-4\|AJN\|^2}{(2m-1)^2}$.

Proof. It follows easily from (2.11), (2.12) and (4.2).

DEFINITION 4.3. Let $x: M^n \to E^m$ be an isometric immersion of a closed Riemannian manifold into the Euclidean space with mean curvature vector H. x is called of *order* $\{k_1, k_2\}$, [9], if it is of the form

$$(4.6) x - x_0 = x_{k_1} + x_{k_2}$$

for some k_1, k_2 .

It is easy to see that x is of order $\{k_1, k_2\}$ if and only if

$$\Delta H = aH + b(x - x_0)$$

for some $a, b \in R$; [9].

Note that $k_1 \neq k_2$ if and only if x is Bi-order. Moreover a=0 if and only if x is Mono-order.

As M cannot be Mono-order in HM(m+1) (Theorem 2.8 of [8]) it follows that the immersion $x : M \rightarrow HM(m+1)$ is of order $\{k_1, k_2\}$ if and only if (4.7) holds with $a, b \neq 0$.

In the following we study the minimal real hypersurfaces of CP^{m} $(m \ge 2)$ satisfying

(*)
$$\Delta \overline{H}(B) = a\overline{H} + b(B-Q)$$
 for any $B \in M$

a, $b \in R$, a, $b \neq 0$, Q being a constant, for which we need to prove

LEMMA 4.4. Let M^n be a complex submanifold of CP^m of complex dimension *n*. If for any unit normal vector to M^n in CP^m , ξ , the Weingarten endomorphism, A_{ξ} , has at most four principal curvatures, which are constants on M^n , then M^n has parallel second fundamental form in CP^m .

Proof. Let ξ be a unit normal vector field to M in CP^m such that $(\nabla^{\perp}\xi)(B) = 0$ for some fixed point $B \in M$, where ∇^{\perp} is the normal connection on M.

As M is a complex submanifold, the eigenvalues of A_{ξ} are λ , μ , $-\lambda$, $-\mu$, for some λ , $\mu \in R$. Let V_{λ} and V_{μ} be the distributions of the eigenspaces of A_{ξ} corresponding to the eigenvalues λ and μ respectively. If $\{E_1, \dots, E_p\}$, $\{E_{p+1}, \dots, E_n\}$ are local basis of orthonormal vector fields of V_{λ} and V_{μ} , respectively, then $\{JE_1, \dots, JE_p\}$, $\{JE_{p+1}, \dots, JE_n\}$ are local basis of orthonormal vector fields of the distributions $V_{-\lambda}$ and $V_{-\mu}$, respectively.

Let $X \in TM$ and $i, j=1, \dots, p$. Then as λ is constant

$$0 = X(g(A_{\xi}E_{\iota}, E_{j})) = g((\overline{\nabla}_{X}A)_{\xi}E_{\iota}, E_{j}) + g(A_{\xi}\nabla_{X}E_{\iota}, E_{j})$$
$$+ g(A_{\xi}E_{\iota}, \nabla_{X}E_{j}) = g((\overline{\nabla}_{X}A)_{\xi}E_{\iota}, E_{j}) + \lambda(g(\nabla_{X}E_{\iota}, E_{j})$$
$$+ g(E_{\iota}, \nabla_{X}E_{j})) = g((\overline{\nabla}_{X}A)_{\xi}E_{\iota}, E_{j}) .$$

Hence, from the commutativity properties of $\overline{\nabla}A$ and J, we have

 $(4.8) g((\overline{\nabla}_X A)_{\xi} Y, Z) = 0,$

for all $X \in T_B M$, $Y, Z \in V_{\lambda}(B) \oplus V_{-\lambda}(B)$. In the same way

(4.9)
$$g((\overline{\nabla}_X A)_{\xi} Y, Z) = 0,$$

for all $X \in T_B M$, $Y, Z \in V_{\mu}(B) \oplus V_{-\mu}(B)$.

Finally if X, Y, $Z \in T_B M$, taking orthogonal projection on $V_{\lambda}(B) \oplus V_{-\lambda}(B)$ and $V_{\mu}(B) \oplus V_{-\mu}(B)$, from (4.8), (4.9) and Codazzi equation, we conclude the Lemma.

THEOREM 4.5. Let M be a minimal real hypersurface of CP^m $(m \ge 2)$. Then M satisfies condition (*) if and only if one of the following cases holds:

i) M is locally congruent to the geodesic hypersphere

$$M_{1,2m-1}\left(\frac{1}{2m-1},\frac{2m-2}{2m-1}\right).$$

ii) M is locally congruent to the hypersurface $M_{m,m}\left(\frac{1}{2}, \frac{1}{2}\right)$ and in this case m is even.

Proof. Take M verifying (*). We can suppose that Q is diagonal. Put

From (2.11), (2.12) and lemma 4.2, multiplying scalarly (*) by B, we obtain

$$(4.10) g(B, Q) = a_1, for any B \in M,$$

where a_1 is a real constant. So Q is normal to M in HM(m+1). Hence

(4.11)
$$Xg(Q, N) = g(Q, \tilde{\sigma}(X, N)), \text{ for all } X \in TM.$$

From (2.11), (2.12) and (4.2), multiplying scalarly (*) by $\tilde{\sigma}(X, N)$, we have

(4.12)
$$g(Q, \ \tilde{\sigma}(X, N)) = \frac{-4}{b(2m-1)} g(A^2 J N, \ \phi X) \,.$$

Moreover, as Q is normal to M in HM(m+1), from (*) and (4.2) it is easy to prove that $AJN=\mu JN$, for some real constant μ . Hence, from (4.11), (4.12) and by a similar reasoning to the one used in the proof of theorem 3.1, we have

$$(4.13) g(B, Q^2) = a_2, for any B \in M,$$

for some real constant a_2 , and

(4.14)
$$Q = \begin{pmatrix} \lambda_1 & & \\ & \ddots & (m_1 & \\ & \lambda_1 & \\ & & \lambda_2 & \\ & & \ddots & (m_2) \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_2 \end{pmatrix},$$

where λ_1 , $\lambda_2 \in R$, $m_1\lambda_1 + m_2\lambda_2 = 1$.

Case i), $\lambda_1 = \lambda_2$, i.e. $Q = \frac{1}{m+1}I$. Then from (*) we have

A. MARTINEZ AND A. ROS

(4.15)
$$\Delta \overline{H}(B) = a\overline{H} + b\left(B - \frac{1}{m+1}I\right)$$
 for any $B \in M$, $a, b \in R$, $a, b \neq 0$.

By equaling the tangent components of (4.15) we obtain, from (4.2)

From (4.16) and using the Codazzi equation for the immersion of M in $\mathbb{CP}^{\,m}$ we have

(4.17)
$$g(A\phi AX, Y) = g(\phi X, Y)$$
, for any $X, Y \in TM$.

On the other hand, multiplying scalarly by $\tilde{\sigma}(X, Y)$ in (4.15), we get, from (2.11),

$$(4.18) \qquad 4g(AX, AY) + 4g(A\phi X, A\phi Y) \\ = \{2a(2m+1) - (2m-1)b - 8(2m+1)(m+1)\}g(X, Y) \\ + 4\{2m+2+\|\sigma\|^2 - 2a\}g(X, JN)g(Y, JN),$$

for any X, $Y \in TM$. In particular, if $X \in TM$ and g(X, JN)=0, from (4.16) and (4.18) we have

where λ is a real constant. From (4.17) and (4.19) we obtain

for any $X \in TM$ with g(X, JN)=0. Consequently, from (4.16) and (4.20) we conclude that

respect to certain orthonormal basis $\{X_1, \dots, X_{m-1}, JX_1, \dots, JX_{m-1}, JN\}$ of TM, where $\alpha^2 + \beta^2 = \lambda$ and $\alpha^2 \beta^2 = 1$. Then if $\alpha = \beta$, from (4.21) we have that m is even and M is locally congruent to $M_{m,m}\left(\frac{1}{2}, \frac{1}{2}\right)$ (see [11]). If $\alpha \neq \beta$, as α, β are constants on M and JN is principal with principal curvature 0, from Prop-

osition 3.1 and Theorem 1 in [2], and taking into account Lemma 4.4, we see that M is locally congruent to a minimal tube of radius $\frac{\Pi}{4}$ on the complex quadric, embedded as a complex hypersurface of CP^{m} . But it is known that there are not tubes of the above radius on the complex quadric. So this last possibility cannot occurs.

Case ii) $\lambda_1 \neq \lambda_2$. As in the Theorem 3.1, it follows that M is locally congruent to a hypersurface of the type $M_{p,q}(r_1, r_2)$. From (3.10) and (3.11) we see that the only minimal submanifold of the above type with $Q \neq \frac{1}{m+1}I$, which is Bi-order in HM(m+1) is $M_{1,2m-1}\left(\frac{1}{2m-1}, \frac{2m-2}{2m-1}\right)$.

Note that $M_{1,2m-1}\left(\frac{1}{2m-1}, \frac{2m-2}{2m-1}\right)$ and $M_{m,m}\left(\frac{1}{2}, \frac{1}{2}\right)$ are submanifolds of order $\{1, 2\}$ in HM(m+1). This concludes the proof.

The following result is due to B.Y. Chen and A. Ros, independently, see [5] and [9].

THEOREM B. Let $x : M^n \rightarrow E^m$ be an isometric immersion of a compact manifold into the Euclidean space. Then

$$\int_{M} (n^2 g(\Delta H, H) - n^2 (\lambda_1 + \lambda_2) g(H, H) - n \lambda_1 \lambda_2 g(x, H)) dV \ge 0$$

and the equality holds if and only if x is of order $\{1, 2\}$.

As an application of Theorem B, using Lemma 4.2 we obtain

COROLLARY 4.6. Let M be a compact minimal real hypersurface immersed in CP^{m} . Then

$$\begin{aligned} &(8(m+1)(4m^2-2m-1)-4(2m^2-1)(\lambda_1+\lambda_2)+(2m-1)\lambda_1\lambda_2)\mathrm{vol}(M)\\ &\geq &4\!\!\int_{M}(\|AJN\|^2-\|\sigma\|^2)dV \end{aligned}$$

and the equality holds if and only if M is either i) or ii) in Theorem 4.5.

References

- [1] M. BERGER, P. GAUDUCHON AND E. MAZET, Le spectre d'une variété Riemanniene, Lecture Notes in Math. No. 194, Springer Verlag. Berlin 1971.
- [2] T.E. CECIL AND P.I. RYAN. Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 193, No. 2 (1982) 481-499.
- [3] B.Y. CHEN. Geometry of Submanifolds, M. Dekker, New-York, 1973.
- [4] B.Y. CHEN. Geometry of submanifolds and its applications, Science University of Tokyo, 1981.

A. MARTINEZ AND A. ROS

- [5] B.Y. CHEN. On the total curvature of immersed manifolds, VI; Submanifolds of finite Type and their applications, Bull. Math. Acad. Sinica, 11, No. 3, (1983) 309-328.
- [6] M. Kon. Pseudo-Einstein real hypersurfaces in complex-space-forms, J. Differential Geometry, 14 (1979), 339-354.
- [7] R.C. REILLY. On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comm. Math. Helv. 52 (1977), 525-533.
- [8] A. Ros. Spectral geometry of CR-minimal submanifolds in the complex projective space, Kodai Math. J., 6 (1983), 88-99.
- [9] A. Ros. On spectral geometry of Kaehler submanifolds, To appear in J. Math. Soc. Japan.
- [10] K. SAKAMOTO. Planar geodesic immersions, Tohoku Math. J., 29 (1977), 25-56.
- [11] R. TAKAGI. Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan, 27, No. 4 (1975), 507-516.

Departamento de Geometria y Topologia Facultad de Ciencias Universidad de Granada Granada (Spain)