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ON REAL HYPERSURFACES OF FINITE TYPE OF CP™

By A. MARTINEZ AND A. RoS

§1. Introduction.

Let M be a closed Riemannian manifold and A the Laplace-Beltrami operator
of M acting on the smooth functions C*(M). It is well known that A is an
elliptic operator with a discrete sequence of eigenvalues 0=2,<A; <2, <+ <A<
-+ 1oo, Let V, be the eigenspace corresponding to the eigenvalue 4,. Then V,
has finite dimension. Moreover the decomposition is orthogonal respect to the
inner product

(L1) (f, =] fedv

and Zk)Vk is dense in C*(M).

Let x : M—-E™ be an isometric immersion of M into the m-dimensional

Euclidean space with coordinate functions x,, that is, x=(x,, ---, xn). Then for
any /=1, ---, m, we have the decomposition
1.2) xz=§ (x)n (L%-sense).

As M is closed, V, consists of the constant functions on M and so, from (1.2)
we can write

1.3) Xi—(%)o= (x)r

1

e
LM

where ¢,= {Sup k|(x,),#0} (respectively, p;={Inf 2|(x,),#0}).
If p=Inf{p;} and ¢g=Sup{q;} using (1.3) we obtain the following spectral de-

composition (in a vector form)

(1.4) x—xo-——ké Xp

p
where x, : M—E™ are smooth for any %, ¢ is an integer or ¢g=oo, x, is a con-
stant and Ax,=2,x,. x, is called center of gravity of M.

We shall say that the immersion x is of finite type if g<oo. If not it will
be called of no finite type [5].
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ON REAL HYPERSURFACES OF FINITE TYPE OF CP™ 305

An immersion x of finite type will be called Mono-order (Bi-order, Tri-order,---)
if there exists only one (two, three,:--) of the x,’s that is (are) non null. If
p=gq, x is called of order p.

Considering the isometric immersion of the complex projective space CP™ in
an Euclidean space HM(m-1) given in [10], any submanifold of the complex
projective space is isometrically immersed in HM(m-+1). In this paper we study
the real hypersurfaces M of CP™ for which the immersion of M into HM(m-+1)
is Mono-order or Bi-order.

In §3 we classify the real hypersurfaces of CP™ for which the immersion in
HM(m+1) is Mono-order. We also give a bound of the first eigenvalue of their
spectrum.

In §4 we classify the minimal real hypersurfaces of CP™ for which the
immersion in HAM(m+1) is Bi-order. We prove a spectral inequality envolving
the first and second eigenvalues of the spectrum.

The manifolds are supposed to be connected and of real dimension =2 (if no
other thing is mentioned).

For the necessary knowledge and notations of submanifold theory see [3, 4].
For the particular case of real hypersurfaces of CP™ see also [2, 6, 11] and for
spectral geometry see [1].

§2. The complex projective space.

For details in this section see [8, 9, 10].

Let CP™ be the complex projective space obtained as a quotient space of the
unit sphere S2™*}(1)={ZeC™*!|zz*=zz'=1} by identifying z with 1z, 2C and
|A]=1. Let g be the cannonical metric on CP™, that is, the invariant metric
such that the fibration I7 : S?»*(1)»CP™ is a Riemannian submersion. It is
known that CP™ with this metric is a complex-space-form of constant holomorphic
sectional curvature 4 and its Riemannian curvature tensor is given by

2.1) R(X, Y)Z=g(Y, Z)X—g(X, 2)Y+g(JY, 2)JX

—g(UX, Z)JY+2g(X, JY)]Z
for any X, Y, Z in TCP™, _
Let HM(m)={B=gli(m, C)| B=B'} with metric

(2.2) g(A4, B):—;—trace(AB) for any A, BEHM(m).

In [10], Sakamoto proves that the map ¢ : S?™*!(1)»HM(m+1) given by
2.3 J(2)=z*z=2'z zeS*™*Y(l)

induces an immersion ¢ : CP™—HM(m+-1) satisfying

(A) ¢(CP™={BeHM(m+1)|B*=B and trace B=1}.
(B) ¢ is an equivariant full isometric imbedding into
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H Mon+1)={Be HM(m-1)|trace B=1}.

In the following (if nothing is mentioned) we shall consider CP™ identified
with ¢(CP™).
Under this identification [8, 9] the tangent and normal spaces at each point
BeCP™ are given. respectively, by
TzCPm"={XeHM(m-+1)| XB+BX=X},

TsCP"={ZeHM(m-+1)|ZB=BZ}.

(2.4)

For any @ in HM(n--1), the component of Q in TzCP™ is

(2.5) Q7=QB+BQ—2BQB=QB--BQ—4g(B, Q)B
Moreover the complex structure J induced on CP™ by ¢ is given by
(2.6) JX=+v—1(UI—-2B)X

for any XeTgCP™, [ being the identity matrix of HM(@n-+1).

We shall denote by D t~he Riemannian connection of HM(m--1), by V the one
induced on CP™ and #, V+, A and ﬁ, respectively, the second fundamental form,
the normal connection, the Weingarten endomorphism and the mean curvature
vector of CP™ in HM(@(n-1). Now, analogously as the case of holomorphic
sectional curvature 1. I8, 9] we have

@.7) X, V== XY VYX)U—2B), A, X=(XZ—ZX)I—-28),
(2.8) ﬁ3=%(1—(nz+l)B),
2.9) s(JX, JY)=6(X, 1),

for any X, 1 in 75CP™ and Z in T§CP™. From (2.9) we get
(2.10) ¥6=0,

that is, the second fundamental form of ~the immersion is parallel, where
Txa)Y, Z2)=N%s(Y, Z)—5(yY, Z)—&(Y, VxZ) for any X, Y, Z&TCP™.
From the equation of Gauss, (2.1), (2.6) and (2.7) it also follows

(2.11) g(#(X. Y, o(V, W)=2g(X, Y)g(V, W)-+g(X, V)g(¥, W)
—g(X, Wog(Y, V)+g(JX, V)g(JY, W)+g(JX, Wig(J1, V),

(2.12) g{3(X. 1), =0, gGX YY) B)=—g(X, 1,

for any X, 1, 1, U= TRCP™,
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$3. Immersions of order 4.

Let M be a connected real hypersurface of CP™. We shall denote by V the
Riemannian connection induced on M by V, by N a unit normal vector field to
M in CP™, by A, o, H, respectively, the Weingarten endomorphism, the second
fundamental form and the mean curvature vector of M/ in CP™, and by (¢, f)
the almost-contact structure on M, [117].

It is known from §2 that CP™ can be imbedded in HM(m-+1). So, any
submanifold of CP™ is isometrically immersed in HM(n--1). In particular,
x=¢ei : M—HM(m-+1) is an isometric immersion of M/ in HM(n-1). We shall
denote by H its mean curvature vector in HM(@mn 1) and by H* its component in
T*CP™, Then we obtain the following result

THEOREM 3.1. Let M be a real hypersurface of CP™ un:=2). Then M s
mimemal in some hypersphere of HM(m+1) tf and only iy \[ is locally congruent

to the geodesic hypersphere H(S’( 27n~|—2 >>< S ‘(\/ 212 )), where 11 is the
usual fibration of CP™,

Proof. 1Let us suppose that M is minimal in a hypersphere of HM(m--1) of
center (), which we can suppose diagonal (If it is not we can apply an isometry
of type B-»PBP-!, PcU(n-+1)={P=GL(m-+1, C)/PP'=I}). Thus

(3.1) Hpy=a(B—Q),
for some non-null real number a, and

741
L (my
qr .
Q= : , G, U
qr
\ (m,
\ qr /

From (2.4), B=T3CP™. Thus from (2.12), multiplving scalarly (3.1) by B,
we have

(3.2) g(B, Q)=a for any B=13/
where « is a constant, a-«—é%g.

From (3.2) @ is normal to M in HM(m--1), and so, putung g(Q, N)=2, we
have X(A)=g(Q, (X, N)) for any XeTM. Consequently. from (2.11) and (2.12),
multiplying scalarly (3.1) by (X, N), we get

3.3 X(H=0
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that is, A is constant.
From (2.5), the component of Q in TsCP™ is Q"=BQ+QB—4g(B, Q)B, then

2=gQ", Q)=g@Q", Q)=g(@B+BQ—4¢(B, Q)B, Q)
=2g(Q% B)—4g(B, Q)".

Hence
2 2
3.4) g(B, Q*)=p= A +24a -=constant
for any B M.
As g(B, I ):% for any BeCP™, M being a real hypersurface and ¢ a full

imbedding into H;M(n-+1), from (3.2) and (3.3) we get that Q, Q% and [ are
linearly dependent vectors, that is, there exist 6,, #,, 6, real number such that

(3'5) 01Q2+02Q+031:O.
Consequently
/,21
.(my
(3.6) Q= 2122 s for some A, L,=R
(my
As

Note from (3.1) that trace Q=1. Then m;A;+m.A=1.

If A,=4,, i.e. Q= -I, then from (3.1) it follows that M is minimal in

1
m1
CP™, But it is known (Theorem 2.8, of [8]) that there exist no minimal real
hypersurfaces in CP™ (m=2) which are minimal in some hypersphere of

HM(m-+1). So 1,4, and the points of M satisfy the equation
3.7) trace Q B=2a=constant for any Be M.

Let B=¢(z)=2z*z, with |z[|*=zz*=1, then (3.7) can be written in the form
(3.8 lz01%4 1211+ -+ + | 2m, |*=r=constant

with z=(zy, -+, Zn,, =+, Zm).

Consequently, from (3.8) M will be locally congruent to a hypersurface of the
type My o(r1, r2)=I(SP(V7,) X SUN7,)) with #,+r,=1, p+q=2m.

In the following we see which M, ,(r,, r,) are minimal in a hypersphere of
HM(m—+1).

From (2.3)

/

(3.9) iz, w):( lz;) 2, W)= ( z.2, iﬁ”’i) ,

l.szt | wiw,
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where (z, w)ES?(v/r;) X SUVr, ) S2™H(1).
Finally, from (3.9), the properties of A and the fact that the fibres of
II : SP(V7r) X SUN713)— M, (r1, vs) are totally geodesic it follows

M)wélzj—élrll (i—l-i)é"iwj
— 7’, 7’1 r2
(3.100 Ax=—Q@m—1)H= 5 ,
(i“i'i Wz, } A Wiw;—4r.l
"1 Ve ¥
if p, ¢>1, and
1 2m—1\_
0 ‘ Gt e
(3.11)  Ax=—Q@m—1)H= T 2‘2 : —,
(w"l— m- )Z-l/-iZO ( m) wiwj—4r2]
71 Ve v

if p=1, where x is the immersion of M, ,(r,, 7,) in HM(m+1) induced by ¢.
Thus from (3.1), (3.10) and (3.11) we can conclude that M, ,(r,, ¥,) is minimal
1

in a hypersphere of HM(m-+1) if and only if p=1, ¢g=2m—1, n:m,

_ 2m+1
" omy2
From Theorem 3.1 and the definition of Mono-order it follows

which concludes the proof.

COROLLARY 3.2. Let M be a closed real hypersurface of CP™ (m=2). Then
the isometric immersion x : M—HM(m-+1) is Mono-order if and only if M is
congruent to the geodesic hypersphere

Musn-i( gz ot )= (S (g xSV e,

The following result is known

THEOREM A [7]. Let M™ be an n-dimensional closed Riemannian manifold
and x : M®™—E™ an isometric immersion of M into the Euclidean space. Then
A volan=( IHIav,
n u

and the equality holds if and only if M is an order 1 submanifold of E™, H being
the mean curvature vector of the immersion and 2, the first spectral eigenvalue.

Using this result, (2.11) and (2.12) it follows

COROLLARY 3.3. Let M be a closed real hypersurface of CP™, Then

2m—1 4(2m?—1)
< 2 ‘/ .
1= VOI(M)SM"H" d ’

(3.12) e
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where H is the mean curvature vector of M in CP™. Moreover, the equality in
(3.12) holds if and only if M is congruent to the geodesic hypersphere

1 2m—1—1>
2m—+2° 2m-+2

Remark. From Theorem 2.8 of [8], if H=0, the equality in (3.12) never
oceurs.

M”m_l(

§4. Bi-order Immersions.

Along this segtion M will be a minimal real hypersurface of CP™ and we
shall denote by H the mean curvature vector of M in HM(m-+1). Then as M
is minimal in CP™, from (2.8) it follows

4
4.1 Hp= HB~-27—

PRrROPOSITION 4.1. Let M be a minimal real hypersurface of CP™. Then

—(I—(m+1)B)— ll -§(N, N).

4.2) AH(B):AQ»mi_ JAJN+- 8(2m+1) (I—(m+1)B)
2@mA2+10l®) . v A 2 s i
om—1 G'(N, LV)_{ 27/”_1 ? U(AEJ, ‘lbj) s
where N 1s a umt normal vector field to M in CP™ and {E,, -, Eym-1} 1S an

orthonormal basis of TM.

Proof. Let {E,, -+, Eyn-i} be an orthonormal basis in TM such that (Vz,E,)
=0 for any 7, j=1, ---, 2m—1. Then from (2.10), (2.11) and (4.1),

— . 40m-+1) 2 , 1 ~~
4.3  (dH)Ep= D — E;+ o d(AE,, N)+ o1 A nE,
. 2@m+1) 2 A #2__
— zm_l E]+ 2m-—'fro‘(AE]’ ‘\’) I 277'!_1 g(]Nr E])]IV'
Now from (4.3) and having in mind that (Vz,E;)s=0 it follows
oo = 2@m+1 . 2
AH(B)= 3} Dg, Dy, =3 Dz ("5 1" Ey— o 7 1-3(AE,, N)
2y 2<2m+1> B .
o 8UN, EIN)= D iy 2 g, BN
2 G0N jV)L—A———jAjN 2 Ksws. wE
om—1 O\JIN, JIN )= Om—1 OAaE; M)

’2—_—1‘2 i(o(E, AE)), N)— . —2—2 (Vg AE, N)
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2o
—1——2%:1‘; 0'(44E], AEJ) .

From the above expression, (2.10), (2.11) and the fact that M is minimal m
CP™, we conclude

— 82m—+1) 2(2m-+1) 2 )
N Bk et B ™ 1 Y ™ b
(4.4) AH(B) o1 (I—(m-+1)B) om—1 (N, N) T (N, N)
o2 2 2 ..
To 1 91 g T 1NN,
g JAINF 5 JAN= o E a3 (N, N)
R i(AE,, AE 2 (¥
TVZm—i‘; 0(4 g9 £ j)'— Zm_fijl 0((VE]A>E]y JV) .
From the equation of Codazzi of M in CP™ it is easy to see that
4.5) b 6((VEjA)EJ, N)=0.
J

Consequently, from (4.4) we have

_ 2m-+1
AH(B)= 2%4:1 JAJN+ —8—(2—5&}_1 2,(1 —(m--1)B)

_ 2@mA-24| g

2
1IN N BB, AE),

which concludes the proof.

LEMMA 4.2. Let M be a nunimal hypersurface of CP™. Then
. 1

i) g(B, B):—Z—:

i) g(B, Hy=—1,

iii) g(B, Aﬁ):f%nﬁ’fl,

, oo 4@mi—1)

1V> g(Hy H)‘_.(z%‘j)_z‘y
8(m-+1)(dm*—2m—1)+4] o |*—4[ AJN|*

v) g(AH, Hy= """ 1)

Proof. 1t follows easily from (2.11), (2.12) and (4.2).

DEFINITION 4.3. Let x : M"—E™ be an isometric immersion of a closed
Riemannian manifold into the Euclidean space with mean curvature vector H.
x is called of order {ky, ks}, [9], if it is of the form

(4.6) x—xozxk1+xk2

for some £k, k,.
It is easy to see that x is of order {k,, k,} if and only if
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4.7 AH=aH-+b(x—x,)

for some a, beR; [9].

Note that k,#k, if and only if x is Bi-order. Moreover a=0 if and only if
x is Mono-order.

As M cannot be Mono-order in HM(m-+1) (Theorem 2.8 of [8]) it follows
that the immersion x : M—HM(m+1) is of order {&;, k,} if and only if 4.7)
holds with a, b=0.

In the following we study the minimal real hypersurfaces of CP™ (m=2)
satisfying

*) AH(B)=aH-+b(B—Q) for any BeM
a, beR, a, b#0, Q being a constant, for which we need to prove

LEMMA 4.4. Let M™ be a complex submanifold of CP™ of complex dimension
n. If for any unit normal vector to M™ in CP™, §, the Weingarten endomorphism,
Ag, has at most four principal curvatures, which are constants on M™, then M™
has parallel second fundamental form in CP™,

Proof. Let & be a unit normal vector field to M in CP™ such that (V&)(B)
=( for some fixed point BEM, where V* is the normal connection on M.

As M is a complex submanifold, the eigenvalues of A are 4, g, —4, —p,
for some 4, p=R. Let V; and V, be the distributions of the eigenspaces of A
corresponding to the eigenvalues 1 and p respectively. If {E,, -+, Ep}, {Epsy,
-+, E,;} are local basis of orthonormal vector fields of V; and V,, respectively,
then {JE,, -+, JE,}, {JEp+1, -+, JE,} are local basis of orthonormal vector fields
of the distributions V_; and V_,, respectively.

Let XeTM and ¢, j=1, ---, p. Then as 1 is constant

0=X(g(A:E., E))=g(Vx A)E,, Ej)+8(ANxE,, E))
+8(A:E, VxE)=g(Vx A%E., E)+Ag(VxE., E))
+g(E, VxE)=g(Vx A)E., E,).
Hence, from the commutativity properties of VA and J, we have
(4.8) 8((VxA)Y, Z)=0,

for all XeTsM, Y, Ze V (BYPV_:(B).
In the same way

for all XeTsM, Y, Z€ V. (B)DV_.(B).
Finally if X, Y, Z€TgM, taking orthogonal projection on V(B)PV_;(B) and
V/BDV_u(B), from (4.8), (4.9) and Codazzi equation, we conclude the Lemma.
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THEOREM 4.5. Let M be a minimal real hypersurface of CP™ (m=2). Then
M satisfies condition (*) if and only if one of the following cases holds :

i) M is locally congruent to the geodesic hypersphere
1 2m—2
Misni g 1)

if) M is locally congruent to the hypersurface Mm,m<—;—, —;—) and 1n this case

m 1S even.
Proof. Take M verifying (*). We can suppose that Q is diagonal. Put

”
e (my
45
'qk.
- (my
dr

From (2.11), (2.12) and lemma 4.2, multiplying scalarly (*) by B, we obtain
(4.10) g(B, Q)=a,, for any Be M,
where a; is a real constant. So @ is normal to M in HM(m-1). Hence
(4.11) Xg(Q, N)=g(@Q, ¢(X, N)), for all XeTM.

From (2.11), (2.12) and (4.2), multiplying scalarly (*) by (X, N), we have

__4 .
—mg(/‘l JN, $X).

(4.12) £Q, 3(X, N)=—

Moreover, as @ is normal to M in HM(m+1), from (*) and (4.2) it is easy
to prove that AJN=pJN, for some real constant px. Hence, from (4.11), (4.12)
and by a similar reasoning to the one used in the proof of theorem 3.1, we have

(4.13) g(B, Q¥ =a,, for any BeM,
for some real constant a,, and
A
. (my
(4.1 I
2
- (my
2
where 4,, L, R, mA+myA=1.
Case i), A,=4,, i.e. Q:J—’I. Then from (*) we have

m—+1
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(4.15) Aﬁ(B)zaFI+b(B~— 7'1‘17%—1“1) for any BEM, a, bR, a, b+0.

By equaling the tangent components of (4.15) we obtain, from (4.2)
(4.16) AJN=0.

From (4.16) and using the Codazzi equation for the immersion of M in CP™
we have

(4.17) g(AgpAX, Y)=g(¢X, Y), for any X, YeTM.

On the other hand, multiplying scalarly by (X, Y) in (4.15), we get, from
(2.11),

(4.18) 4g(AX, AY)+4g(AgX, AY)
={2a@2m--1)—2m—1)b—82m-+1)(m+1} g(X, Y)
+4{2m+-2+|loll*—2a} g(X, JN)g(Y, JN),

for any X, YeTM. In particular, if XeTM and g(X, JN)=0, from (4.16) and
(4.18) we have

(4.19) A2 X—JA X=X,
where 2 is a real constant. From (4.17) and (4.19) we obtain
(4.20) AX—2A°X+X=0,

for any XeTM with g(X, JN)=0.
Consequently, from (4.16) and (4.20) we conclude that

N

4.21) A=

\ N o :0

respect to certain orthonormal basis {Xi, -+, Xn-1, JX1, -+, JXm-1, JN} of TM,
where a®+3°=1 and a’$*=1. Then if a=p, from (4.21) we have that m is

even and M is locally congruent to ;\/[m’m(—;—, %) (see [11]). If a#p, as «, f3

are constants on M and JN is principal with principal curvature 0, from Prop-
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osition 3.1 and Theorem 1 in [2], and taking into account Lemma 4.4, we see

. . . . IT
that M is locally congruent to a minimal tube of radius — on the complex

4
quadric, embedded as a complex hypersurface of CP™. But it is known that
there are not tubes of the above radius on the complex quadric. So this last
possibility cannot occurs.

Case ii) 4,#2,. As in the Theorem 3.1, it follows that M is locally con-
gruent to a hypersurface of the type M, ,(ry, 7,). From (3.10) and (3.11) we see

that the only minimal submanifold of the above type with Q= —7;1——51'], which is

i ~ is M 1 2m—2
Bi-order in HM(m-+1) is MLm_l(éﬁ—:l O e )
1 2m—2

Note that A/[l’zm—l(_é;l;:i-’ —27:14> and Af[,,,,m<%, —;—) are submanifolds of

order {1, 2} in HM(m-1). This concludes the proof.
The following result is due to B.Y. Chen and A. Ros, independently, see
[5] and [9].

THEOREM B. Let x : M*—E™ be an isometric tmimersion 0f a compact mane-
fold into the Euclidean space. Then

[, (g@H, Hy=n*,+2)g(H, H)—niid.g(x, M)AV =0
and the equality holds i1f and only if x 1s of order {1, 2}.
As an application of Theorem B, using Lemma 4.2 we obtain

COROLLARY 4.6. Let M be a compact nunmumal real hypersurface tnmersed tn
CP™. Then

Bm~+1)dm*—2m—1)—42m>—1)(A,-+ A2) -+ 2m-—1) A, A,)vol( M)
24| (AN~ lo5dV

and the equality holds 1f and only 1f M 1s either i) or ii) :n Theorem 4.5.
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