EULER CHARACTERISTICS OF SOME SIX-DIMENSIONAL RIEMANNIAN MANIFOLDS

By Shukichi Tanno

1. Introduction.

Let (M, g) be a compact and orientable Riemannian manifold of even dimension. With respect to the Euler characteristic $\chi(M)$ of M and sectional curvature of (M, g), it is an open question whether positivity of sectional curvature implies positivity of $\chi(M)$ or not. In the case of $m=\operatorname{dim} M=4$, J. Milnor (S.S. Chern [3]) proved that positivity of sectional curvature implies $\chi(M)>0$. So the question remains open for $m \geqq 6$. For simplicity, by $K(X, Y)>0$ we mean that the sectional curvature for arbitrary 2-plane $\{X, Y\}$ at an arbitrary point of M is positive. Examples of known results are as follows :
(1) If (M, g) is homogeneous and $K(X, Y)>0$, then $\chi(M)>0$ (A. Weinstein [11], p. 150).
(2) If (M, g) admits a non-trivial Killing vector field, $m=6$, and $K(X, Y)>0$, then $\chi(M)>0$ (A. Weinstein [11], p. 150).
(3) If (M, g) is isometrically immersed in E^{m+2} and $K(X, Y)>0$, then M is a homology sphere, in particular, $\chi(M)=2$ (A. Weinstein [10], D. Meyer [8]).
(4) If (M, g) is conformally flat and $K(X, Y)>0$, then $\chi(M)>0$ (S. I. Goldberg [5], p. 227).
(5) In a 6-dimensional vector space with an inner product, one can define a curvature-like tensor R so that the formal sectional curvature is positive and the formal Gauss-Bonnet integrand is negative (cf. R. Geroch [4], P. Klembeck [6], J.P. Bourguignon and H. Karcher [1]).

Assumptions in (1), (2) and (4) are not open in C^{∞}-category in the sense that if one deforms the metric g slightly in C^{3}-topology then theorems are not applicable. So extending (4) for $m=6$ we show that if the conformal curvature tensor C of $(M, g), m=6$, is not so much deviated from zero and if the Ricci curvature is not so much deviated from the average (i.e., the scalar curvature divided by 6) then $\chi(M)>0$ holds.

To state our theorem we fix notations. By R, ρ, and S we denote the Riemannian curvature tensor, the Ricci tensor, and the scalar curvature of (M, g), respectively. By $\rho_{(1)} \leqq \rho_{(2)} \leqq \cdots \leqq \rho_{(m)}$ we denote the eigenvalues of the Ricci

Received October 5, 1983.
This research was partially supported by Grant-in-Aıd for Scientific Research (No. 58340002), Ministry of Education.
tensor with respect to g. $\rho_{(i)}$'s are continuous functions on M. Next we define a function $F(\alpha, \beta)$ by

$$
\begin{equation*}
100 F(\alpha, \beta)=-540(\alpha-1) \beta^{2}+9\left(\alpha^{3}-5 \alpha^{2}+10 \alpha-6\right) \tag{1.1}
\end{equation*}
$$

and we put (for details, see §2)

$$
\begin{align*}
W(C)= & 2|\nabla C|^{2}-(16 / 3)\left|C^{*}\right|^{2}-6(R, C, C) \tag{1.2}\\
& +16(\rho ; C, C)-(9 / 5) S|C|^{2}-3(\rho ; \rho ; C) .
\end{align*}
$$

Theorem A. Assume that the scalar curvature S of a compact and orientable 6-dimensional Riemannian manifold (M, g) is positive and
(i) $\rho_{(6)} \leqq \beta S$,
(ii) $\rho_{(1)}+\rho_{(2)}>(\alpha / 5) S$,
(iii) $W(C) \leqq F(\alpha, \beta) S^{3}$
hold on M for some real numbers $\alpha \geqq 1$ and β. Then $\chi(M)>0$.
As a special case, if $\beta=1 / \sqrt{24}=0.204 \cdots$, then $F(\alpha, 1 / \sqrt{24})$ is positive for $\alpha: 1<\alpha<1.292 \cdots$. And for $\alpha=1.14, F(1.14,1 / \sqrt{24})=0.003 \cdots$. Therefore we obtain the following.

Corollary B. Assume that $S>0$ in a compact and orientable 6-dimensional Riemannian manifold (M, g) and that
(i) $\rho_{(6)} \leqq 0.204 S=1.224(S / 6)$,
(ii) $\rho_{(1)}+\rho_{(2)}>0.228 S=0.684(2 S / 6)$,
(iii) $\quad W(C) \leqq 0.003 S^{3}$.

Then $\chi(M)>0$.
If $\alpha=1$, then $F(1, \beta)=0$. Therefore we get
Corollary C. Assume that $S>0$ in a compact and orientable 6-dimensional Riemannian manifold (M, g) and
(ii) " $\quad \rho_{(1)}+\rho_{(2)}>(1 / 5) S$,
(iii)" $W(C) \leqq 0$.

Then $\chi(M)>0$.
Let $\left\{e_{i}\right\}$ be eigenvectors (at a point of M) of the Ricci tensor with respect to g corresponding to $\left\{\rho_{(i)}\right\}$. If (M, g) is conformally flat, then the sectional curvature $K\left(e_{2}, e_{j}\right)$ is given by (cf. [5], p. 229)

$$
4 K\left(e_{i}, e_{j}\right)=\rho_{(i)}+\rho_{(j)}-(1 / 5) S
$$

Hence, positivity of sectional curvature implies $\rho_{(i)}+\rho_{(j)}>(1 / 5) S$ for $m=6$. Thus, Corollary C is a generalization of (4) for $m=6$.

2. Expressions of $\chi(M)$.

In this section by (M, g) we denote a compact and orientable 6 -dimensional Riemannian manifold (except Lemma 2.1). By R, ρ, S, and C we denote the Riemannian curvature tensor, the Ricci tensor, the scalar curvature, and the Weyl conformal curvature tensor of (M, g), respectively. For tensor fields P, Q, T, U, V, and W of respective type we use the following notations:

$$
\begin{aligned}
& (P, Q)=P_{\imath j k l} Q^{\imath j k l}, \quad|P|^{2}=(P, P), \\
& (P, Q, T)=P^{\imath \jmath}{ }_{k l} Q_{r s}^{k l}{ }_{r s} T^{r s}{ }_{\imath \jmath}, \\
& (U ; Q, T)=U^{r s} Q_{r j k l} T_{s}^{j k l}, \\
& (U ; V ; T)=U^{i k} V^{j l} T_{\imath \jmath k l}, \\
& (U V W)=U_{\jmath}^{i} V_{k}^{j} W_{\imath}^{k}, \\
& (P: P: P)=P^{\imath j k l} P_{\imath}^{r}{ }_{k}^{s} P_{\jmath s l r} .
\end{aligned}
$$

Then $\chi(M)$ is given by (cf. T. Sakai [9], p. 602)

$$
\begin{align*}
384 \pi^{2} \chi(M)=\int_{M} & {\left[S^{3}-12 S|\rho|^{2}+3 S|R|^{2}+16(\rho \rho \rho)\right.} \tag{2.1}\\
& +24(\rho ; \rho ; R)-24(\rho ; R, R)+2(R, R, R)-8(R: R: R)] .
\end{align*}
$$

($R: R: R$) may be replaced by (cf. [9], p. 592)

$$
\begin{align*}
-8 \int_{M}(R: R: R)=\int_{M} & {\left[-2|\nabla R|^{2}+8|\nabla \rho|^{2}-2|\nabla S|^{2}+8(\rho \rho \rho)\right.} \tag{2.2}\\
& -8(\rho ; \rho ; R)-4(\rho ; R, R)+4(R, R, R)] .
\end{align*}
$$

The following relations are verified by direct calculations:

$$
\begin{equation*}
|C|^{2}=|R|^{2}-|\rho|^{2}+(1 / 10) S^{2} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
&(\rho ; \rho ; C)=(\rho ; \rho ; R)+(1 / 2)(\rho \rho \rho)-(11 / 20) S|\rho|^{2}+(1 / 20) S^{3} \tag{2.4}\\
&(\rho ; C, C)=(\rho ; R, R)-(\rho ; \rho ; R)-(3 / 4)(\rho \rho \rho)+(3 / 8) S|\rho|^{2}-(1 / 40) S^{3}, \tag{2.5}\\
&(R, C, C)=(R, R, R)-2(\rho ; R, R)+(1 / 5) S|R|^{2}+(1 / 2)(\rho ; \rho ; R) \tag{2.6}\\
&+(1 / 2)(\rho \rho \rho)-(1 / 5) S|\rho|^{2}+(1 / 100) S^{3} \tag{2.7}
\end{align*}
$$

$$
\begin{equation*}
|\nabla R|^{2}=|\nabla C|^{2}+|\nabla \rho|^{2}-(1 / 10)|\nabla S|^{2} . \tag{2.8}
\end{equation*}
$$

We define C^{*} by

$$
C^{*}{ }_{j k l}=\nabla_{s} C_{j k l}^{s}
$$

Lemma 2.1. On a compact and orientable m-dimesional Riemannian manifold, the following relation holds:

$$
\begin{align*}
\left((m-2)^{2} / 2(m-3)^{2}\right) \int_{M}\left|C^{*}\right|^{2}= & \int_{M}\left[|\nabla \rho|^{2}+(\rho \rho \rho)\right. \tag{2.10}\\
& \left.\quad-(\rho ; \rho ; R)-(m / 4(m-1))|\nabla S|^{2}\right]
\end{align*}
$$

Proof. The next relation is a classical one:

$$
\begin{equation*}
-((m-2) /(m-3)) \nabla^{l} C_{\imath j k l}=\nabla_{i} \rho_{j k}-\nabla_{j} \rho_{i k}-(1 / 2(m-1))\left(\nabla_{\imath} S g_{j k}-\nabla_{\jmath} S g_{i k}\right) \tag{2.11}
\end{equation*}
$$

Transvecting the last equation with $\nabla^{i} \rho^{j k}$ and integrating the result, we get

$$
\begin{align*}
-\left((m-2)_{i}^{\prime}(m-3)\right) \int_{M}\left[\nabla^{l} C_{\imath j k l} \nabla^{i} \rho^{j k}\right]=\int_{M} & {\left[|\nabla \rho|^{2}+(\rho \rho \rho)\right.} \tag{2.12}\\
& \left.-(\rho ; \rho ; R)-(m / 4(m-1))|\nabla S|^{2}\right]
\end{align*}
$$

where we have applied the Green-Stokes' theorem and the Ricci identity for $\nabla \nabla \rho$. On the other hand we get

$$
\begin{aligned}
2 \nabla^{l} C_{\imath \jmath k l} \nabla^{i} \rho^{\jmath k} & =\nabla^{l} C_{\imath j k l}\left(\nabla^{i} \rho^{j k}-\nabla^{\jmath} \rho^{i k}\right) \\
& =-((m-2) /(m-3)) \nabla^{l} C_{\imath j k l} \nabla_{s} C^{\imath j k s}
\end{aligned}
$$

where we have used (2.11). From the last equation and (2.12) we get (2.10).
Now we return to the case of $m=6$.
Lemma 2.2.

$$
\begin{array}{r}
-8 \int_{M}(R: R: R)=\int_{M}\left[-2|\nabla C|^{2}+(16 / 3)\left|C^{*}\right|^{2}+4(R, C, C)+4(\rho ; C, C)\right. \tag{2.13}\\
\left.-(4 / 5) S|C|^{2}+3(\rho \rho \rho)-(3 / 2) S|\rho|^{2}+(7 / 50) S^{3}\right]
\end{array}
$$

Proof. By (2.10) with $m=6$ we get

$$
\begin{equation*}
\left.(8 / 9) \int_{M} C^{*}\right|^{2}=\int_{M}\left[|\nabla \rho|^{2}+(\rho \rho \rho)-(\rho ; \rho ; R)-(6 / 20)|\nabla S|^{2}\right] \tag{2.14}
\end{equation*}
$$

By (2.2) $\sim(2.8)$, and (2.14), we get (2.13).
Now we get the following.

$$
\begin{align*}
& 384 \pi^{2} \%(M)=\int_{M}[-8(C: C: C)+2(R, C, C)-8(\rho ; C, C) \tag{2.15}\\
&+(7 / 5) S|C|^{2}+3(\rho ; \rho ; C) \\
&\left.+(3 / 2)(\rho \rho \rho)-(27 / 20) S|\rho|^{2}+(21 / 100) S^{3}\right] \\
&= \int_{M}\left[-2|\nabla C|^{2}+(16 / 3)\left|C^{*}\right|^{2}+6(R, C, C)\right. \tag{2.16}
\end{align*}
$$

$$
\begin{aligned}
& -16(\rho ; C, C)+(9 / 5) S|C|^{2}+3(\rho ; \rho ; C) \\
& \left.+(3 / 2)(\rho \rho \rho)-(27 / 20) S|\rho|^{2}+(21 / 100) S^{3}\right] .
\end{aligned}
$$

(2.15) follows from (2.1) and (2.3)~(2.7). (2.16) follows from (2.7), (2.13) and (2.15).
(2.15) is purely algebraic. However, the term $(C: C: C)$ is not so familiar. (2.16) is what we removed ($C: C: C$) from (2.15) by using classical quantities.

3. Proof of Theorem A.

As before $\rho_{(1)} \leqq \rho_{(2)} \leqq \cdots \leqq \rho_{(6)}$ denote the eigenvalues of the Ricci tensor with respect to g.

Lemma 3.1.

$$
\begin{align*}
& 4^{-3} \sum_{(i \cdots b)}\left[\rho_{(i)}+\rho_{(j)}-(\alpha / 5) S\right]\left[\rho_{(k)}+\rho_{(l)}-(\alpha / 5) S\right]\left[\rho_{(a)} \div \rho_{(b)}-(\alpha / 5) S\right] \tag{3.1}\\
& \quad=(3 / 2)(\rho \rho \rho)-(9 / 20)(5-2 \alpha) S|\rho|^{2}+(3 / 100)\left(25-30 \alpha \div 15 \alpha^{2}-3 \alpha^{3}\right) S^{3}
\end{align*}
$$

where $\sum_{(i \ldots b)}$ denotes the summation over all permutations (i, j, k, l, a, b) of (1, 2, 3, 4, 5, 6).

Proof. First we notice that

$$
\begin{gathered}
(\rho \rho \rho)=\sum_{i} \rho_{(i)}^{3}, \\
S|\rho|^{2}=\sum_{i} \rho_{(i)}^{3}+\sum_{(i \neq j)} \rho_{(i)}^{2} \rho_{(j)}, \\
S^{3}=\sum_{i} \rho_{(i)}^{3}+3 \sum_{(i \neq j)} \rho_{(i)}^{2} \rho_{(j)}+6 \sum_{(i<j<k)} \rho_{(i)} \rho_{(j)} \rho_{(k)}
\end{gathered}
$$

Next we expand the left hand side of (3.1). Then we get (3.1).
Proof of Theorem $A . \quad \rho_{(6)} \leqq \beta S$ implies $|\rho|^{2} \leqq 6 \beta^{2} S^{2}$. For simplicity we denote the left hand side of (3.1) by $Z(\alpha)$. Then we obtain the following.

$$
\begin{aligned}
& (3 / 2)(\rho \rho \rho)-(27 / 20) S|\rho|^{2}+(21 / 100) S^{3} \\
& \quad=Z(\alpha)-(9 / 10)(\alpha-1) S|\rho|^{2}+(9 / 100)\left(\alpha^{3}-5 \alpha^{2}-10 \alpha-6\right) S^{3} \\
& \geqq Z(\alpha)+F(\alpha, \beta) S^{3} .
\end{aligned}
$$

The assumption (ii) of Theorem A implies $Z(\alpha)>0$. Therefore, by (iii) and (2.16) we get $\chi(M)>0$.

Remark. The assumption (iii) ((iii)', (iii)", resp.) in Theorem A (Corollaries, resp.) may be replaced by
(iii)*

$$
W^{*}(C) \leqq F(\alpha, \beta) S^{3}
$$

where

$$
W^{*}(C)=8(C: C: C)-2(R, C, C)+8(\rho ; C, C)-(7 / 5) S|C|^{2}-3(\rho ; \rho ; C) .
$$

Remark. In Corollary C, if we replace (ii)' by

$$
\rho_{(1)}+\rho_{(2)} \geqq(1 / 5) S,
$$

then the conclusion is $\chi(M) \geqq 0$.

References

[1] J. P. Bourguignon and H. Karcher, Curvature operators: Pinching estimates and geometric examples, Ann. Sci. Ecole Norm. Sup., 11 (1978), 71-92.
[2] J. P. Bourguignon et A. Polombo, Intégrands des nombres caractéristiques et courbure: rien ne va plus dès la dimension 6, J. Diff. Geom., 16 (1981), 537-550.
[3] S.S. Chern, On the curvature and characteristic classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 117-126.
[4] R. Geroch, Positive sectional curvature does not imply positive Gauss-Bonnet integrand, Proc. Amer. Math. Soc., 54 (1976), 267-270.
[5] S. I. Goldberg, On conformally flat spaces with definite Ricci curvature, Kōdai Math. Sem. Rep., 21 (1969), 226-232.
[6] P. Klembeck, On Geroch's counterexample to the algebraic Hopf conjecture, Proc. Amer. Math. Soc., 59 (1976), 334-336.
[7] S. Kobayashi, Fixed points of isometries, Nagoya Math. J., 13 (1958), 63-69.
[8] D. Meyer, Sur les variétés riemanniennes à opérateurs de courbure positif, C.R. Acad. Sci. Paris, 272 (1971), 482-485.
[9] T. Sakai, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., 23 (1971), 589-603.
[10] A. Weinstein, Positively curved n-manifolds in R^{n+2}, J. Diff. Geom., 4 (1970), 1-4.
[11] A. Weinstein, A fixed point theorem for positively curved manifolds, J. Math. Mech., 18 (1968), 149-153.

