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Introduction.

Let # * ( Z Zp) be the ordinary mod p cohomology for odd prime and let
BP*(X) be the Brown-Peterson cohomology theory with BP*=Zip)\j>lr v2, •••]•
The spectrum V(n) is defined by H*(V(n); Zp) = ΛtQ0, •••, 0 J [ 8 ] where Qτ is
the Milnor operation and V{n) is also defined by BP*(V(n)) = BP*/(p, vlf •••, vn)
[6]. To consider the equivalence of the above two definitions was the begining
of this paper.

We note a relation between the Q r act ion and i^-torsion, which is an im-
mediate consequence from the Sullivan's bordism theory of manifolds with
singularities.

L E M M A 2.1. Let Xj<=BP*{X) and ΣVJXJ=0 moάll where /«=(/>, υu •••).
Then there is y^H*(X; Zp) such that Qj{y)—i{xj) where i is the inclusion map
(Thorn map) i : BP^HZP.

The Brown-Peterson cohomology is studied by many authors, especially the
Adams spectral sequence for BP*(SN) is well researched. However, known exam-
ples of non free BP*-modu\e BP*(X) are not so many. Using above lemma,
we consider the way to calculate BP*(X) when the Steenrod algebra structure
of H*(X; Zp) is known, and we give examples of the 5P*-module BP*(X).

In section 1 using Sullivan's original definition of the bordism theory with
(cone type) singularities, we treat the Quillen's geometric approach to the cobor-
dism theory. In §2 main lemmas are shown. We recall some important facts
about the Atiyah-Hirzebruch spectral sequence and we define an invariant
which is convenient to use. Some examples are discussed in § 3. The spectrum
V(n) and Lens spaces are first treated. We next study about finite //-spaces
and Eilenberg-Maclane space K(Z, 3), in particular, j3P*-module structures of
even dimensional indecomposed elements are discussed.

The author thanks to W. S. Wilson who suggested the proof of Theorem 3.4.2.
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§ 1. Cobordism theory with singularities.

We first recall the definition of manifolds with singularities due to Baas [1].
Let S n =(Pi, •••, Pn) be a sequence of closed manifolds. We say Z is an Sn-
manifold if its boundary is decomposed as products of Plf namely, there are
m a n i f o l d s d x Z , d ( l J i . . . , l s ) Z , Z ( i u •••, i s ) , f o r ( i u •••, i s ) a ( l , •••, n), a n d n a t u r a l
isomorphisms

0) 8Z = \jdzZ

We next define an Sn-manifold (S^-manifold with cones) by the quotient
space of Z collapsing the Prίactors, i.e.,

(2) Z=Z/(w, a)~{w, b) where (w, a), (w, b)<=d{il,...,l8)Z

and wfΞZdu •••, ιg), a, b^Pτix -xPls.

Sullivan originally defined an S^-manifold as the manifold such that each point
of its boundaries has a neighbourhood factored coneCPM* •• *P l s ) . We show
these two definition are equivalent.

Consider the tubular neighbourhoods of 9 ( l j..> s )Z,

(Nei. in 3 Z ) s Z ( l , •••, s)xP1X---xPsxAs-1,

(Nei. in Z) = Z(1, •••, s)xP1x---xPsxAs

where we identify 9(1>...>S)Z = Z(1, •••, s ) x P 1 x xi : >

s x(center of Δs-i) and As-λ

incluses the s-f-l-th face of As. Take the boundary of Nei. in Z (the link complex)

L£ = Z(1, •••, s ) x P 1 x x P s x ( A s - Δ s _ 1 ) .

Since (As—As-i)=As-!, if we take the quotient (2), then

Lk^Z(l, •••, s ) x P 1 X xP sxΔ s_ 1/(w;, --pi, •••, σ)~(w, --pi, —, σ), < 7 G Δ M

s Z ( l , •••, s ) x P 1 * - * P , .
Since boundary 3 ( l j... ) S )Z collapses to Z(l, •••, s),. . (Nei. in Z) collapses to

(3) ( N e Γ z ) = Z(l, •••, s ) x ( c o n e Λ * *P s )

Hence the definition (2) is the Sullivan one. Moreover we note Z is also defined by

(4) Z=2uΣj(i)xZ(i)vΣj(i, j)xZ{ι, jyu-'Vj(ι, •••, n)xZ(l, •••, n)

where /(I, •••, 5)
=cone(/(2, - , s)xP1\J- \J]{-- , t, .~)xPt\j..>vja, - , s-l)xΛ)

and cone P=PxI/Px{l} and 9(1...,,,Z={0} x Z ( l , •••, s).
Hereafter let denote 9 ( i > . . . j S ) Z=Z(l , •••, s).
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DEFINITION 1.2. Let X be an (open or closed) manifold and Z be an Sn-
manifold. A map / : Z->X is a complex oriented of dimension q if / is factored
such that

(1) i is an embedding with normal bundles viγ..ls having compatible stable
complex structure on each (dir..ls)Z—d(dUr..ls)Z)),

(2) p is a projection,
(3) if se(9 ( l l , . . i t ί ) £-3(3 ( l l , . . , l f ) Z), then

(dimZ at z)—(dimX at f(z))=q—(dim Ptll hdim/^+s).

DEFINITION 1.3. Let / : Z~>X be a complex oriented map and g : Y-+X be
a map. Define the modified pull back YXχZ->Y as follows.

For ease of arguments, assume n = l, i.e., the SΊ-case. Let Z—Z\J cone
Λ X Z(l). Take g' X /'(I) transversal to the diagonal AdXx X. Then (g' X / ' ( l ) ) " ^
=7XjrZ(l) is a manifold and (5> /x//(l) porj)"1Δ=Y'xJrZ(l)xconePi where proj:
Z(l)xcone P1->Z(1) is the projection. Let / " : Zw3Z(l)x/->X be a map so
that / " = / on Z and / " is the homotopy between / and / ' on Z(l)x/. Taking
g'Xf" for g'xf" transversal to Δ, we can define

When n>\, we can also define the modified pull back by descending induc-
tion on sequences (ilf •••, /,) in (3).

DEFINITION 1.4. Let ft: Z%-*X, ι — \, 0 be complex oriented maps. Then
they are cobordant if there is a proper complex oriented map b: W->XxR such
that ει: X~+XxR, εi(x)—{x, i) is transversal to b, and the pull back of εt is
isomorphic to flm

THEOREM 1.5. For a manifold X, the set of cobordism classes of proper
complex oriented map of dimension —q is MU(Sn)

q{X), Here MU(Sn)*(X) is the
cobordism theory with singularities and without cone due to Baas [1], [9].

DEFINITION 1.6. (Gysin homomorphism) A proper complex oriented map
g: X->Y of dimension d induces a map

g* : MU(Sn)*(X) — * MU(Sn)*-d(Y)

which sends f : Z-+X into gf : Z -> Y.

DEFINITION 1.7. (Contravariant map) Let g:Y->X be a map of manifolds,
and let / : Z -> X be a proper complex oriented map. Then g induces a map

g* : MU(Sn)*(X) —> MU(Sn)*(Y)

which sends / : Z —• X into the modified pull back Yx'xZ-*Y.
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THEOREM 1.8. (Sullivan's exact sequence) There is an MU*-module exact
sequence

MU(Sn)*(X) ^^-^ MU(Sπ)*(X)

MU(Sn, Pn+ύ*(X)

where i is the natural inclusion map and δ(A, f) = (dn+1A, /) .

COROLLARY 1.9. // Sn is a regular sequence in Mm, then MU(Sn)*(S°)

In particular MU(xt\iΦp3-l)*(X)lp) = BP*(X) and MU(p, xu »')*(X)9*H*
(X;ZP). Identifyning xpx-1=vi, we denote MU(Snxιy ••• \iΦpι—ϊ)*(X){p) by
BP(Sn)*(X). Recall the notations BP(p, vu - , vn-1) = P{n)f BP{py •••, vn-u

and v

Define an operation QPi by QPi(ZA, / ] ) = [ 3 i Λ / | M ] = [^W, /(/)]. Then
it is easily seen QPiQp:) — — QpjQpv Hereafter we fix the generators vn such
that the Chern number cApn-1(vn) = p mod p2, namely, the Milnor manifolds.

THEOREM 1.10. In H*(X; Zp) = BP(p, vlf -~)*(X), the operation QH is the
Milnor operation Qt, (Q0=the Bockstein operation and Qι=&pl~1Qι-i-Qι-1&

pl~1)[9J.

The cohomology operations in MU*(—) are M£/*-generated by the Landweber-
Novikov operation sa. The operation sa is defined also in MU(In)*(—), In —
(p, vu •••, ̂ τi-i)[9]. We here define it from geometric viewpoints, as follows.

Given [_A, /]GMf/(/ n )*(I), we will define s α [Λ / ] . First suppose dA=
diA, i.e., dA—A(i)XVi. Let τ^A: dA —>BU be the map which represents the
tangent bundle of dA. Since

ι* and τfA(ca)= Σ f
a = a' +a"

the definition of sa in MU*(—) theory follows

SaίdA,df3= Σ sa.A(i)-sa.(v%).
a = a' +a"

Here sa'(vι)^It = (p, •••, ̂ t -i) and we can write

s « [ 3 Λ 3 / ] = Σ Sa'AW'-Eba-jV, (1).

Let [M, ^]GMί/*(^4) be a manifold which represents τ$(cα). Then there
is a manifold PΓ so that

hand side of (1)).

Therefore we can define sa[A, / ] by
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gf:M\JW\J Σ (sa.(A(i))xba. ,)xconev,—>A\jA(i)x coney,—>X.
dM a',]

The fact that if baΊ is also in Iι-ι then ίv f i 7 =0 in MU(In)* implies that sa [A, / ]
is welldeίined.

The case dA—\JdiA is also proved by descending induction on sequences
ft, .. .,ί,) in (3).

The cohomology operations in M£/(/J-theory is known

Therefore we can minic the arguments in Quillen's paper [5]. In particular we
can prove

THEOREM 1.11. Let X be a finite complex. Then MU(In)*(X) (resp. P(n)*(X))
is generated as a MU (I n)*-module iresp. P(n)*-module) by elements of non negative
degree.

§ 2. Main lemmas.

In the previous section we noted the geometric mean of the Milnor opera-
tion Qι.

L E M M A 2.1. Let XJ<BBP*{X) and ΣvjXj—0 moάll where Ioo=(p, vlt •••)-
Then there is y<^H*(X; Zp) such that Qjy=i(xj) where i is the natural inclusion
map i: BP-+HZP.

Proof. Think of x3 as an singular manifold. Since ΣvjXj—0 mod/4 there
is a manifold y' whose boundary is

dyf—\/Vj{xj\/Wj) where w3—0

Let y — f be the /oo-manifold constructed from yf attaching cones

f = y; VJ (coneyJ)X(XJVWj) and dJy
/=(xJ\/wj).

By

Think of H*(X; Zp) as BP(U)*{X) and we have

where V : BP(»>, ϋ,, •• )*(^)= :^(n)*(A r)->//*(Z; Zp). q.e.d.

We next recall the Atiyah-Hirzebruch spectral sequence. Given multiplicative
spectrum A, let denote by AE? *(X) the Atiyah-Hirzebruch spectral sequence
which converges to A*(X),

AEf*=H*(X; A*)z>A*(X).

The following lemma is well known [9],
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L E M M A 2.2. The first non zero differential of the spectral sequence F ( 7 i ) £ ? ' *

(and k(n)E*'*) is d2pn-1=vnQn.

COROLLARY 2.3. In the spectral sequence pa)Ep*=Bpι-,z)E?'*y if drx — 0

for r<2pn—l then d2pn-i(x)=vnQn(x) mod(/>, •••, vn-Ύ).

Proof. The natural inclusion map i: P(l)-*P(n) and Lemma 2.2 follow the

corollary. q. e. d.

Recall that an ideal / in BP* is invariant if θ(l)dl for all operations 0 e

BP*(BP).

L E M M A 2.4. Let xlf •••, xs^P{ι)E
lrQ. Then the mod annihilator AM(xj)=

x!=0 mod(x 2, •••, xs) in ££•*} is invariant.

Proof. This AM(xx) is indeed the mod(x 2, •••, xs) annihilator ideal in P(l)*

(Xt+1/Xt-r~2). Hence this is an invariant ideal. q.e.d.

We now consider relations between the Atiyah-Hirzebruch spectral sequence

and the Sullivan exact sequence.

LEMMA 2.5. Let wx=0 in P(Ϊ)*(X) for OΦw^PQ)*, and leti(x) = x'Φθ in

H*(X Zp). From the Sullivan exact sequence, there is y in BP(p, w)*{X) such

that δy = x. Then dry'—λwxr in p (1)JE*'* where 0φλ^Zp, i{y) — yf and r— \ w \ + 1 .

Proof. Since P(1)*(X)=BP*(X; ZP)^BP*(XΛS°VJve
λ), we consider this

lemma in BPEr(XA S°KJpe
1). Take the normal cells decomposition of XΛS°'^Jpe

1,

i.e.,

pe
1), k=άimZp{Hn(Yβ0; Z)).

Put Yin-x^^Yn-JYn-r^-coneiS^VJpe71-1)^ where 71=1^1 and cone

(Sn~2\Jpe
n~1)x> is the cone of the Moore space which represents x/ in H*(Yπ,; Z).

Since 33; = ̂ ' = 0 in 5P*(F(n-x / ) ) where yϊΞBP(w)*(Y{n-x')), y is also in

BP*(Y(n — xf)) and y' is a permanent cycle in £ P £ * *(r(n-x / )) , i.e., dry'=0.

On the other hand put

T h e n δy = χφθ a n d y' is not a p e r m a n e n t cycle in j B P E * * ( F ( n — 1 + x')). H e n c e

dry'=λwx'.
Therefore dτy'—λwxr in β/>jE* *(F n - 1 /F n - r .- 2 ). By the construction of the

spectral sequence we have the lemma. q.e.d.

The following corollary is an analogous result of Lemma 2.1.

COROLLARY 2.6. Let (wu •••, ws)=Js, \wι\<\wι+1\ be a regular sequence in

P ( l ) * . Let bjt=P(l)*(X) and Qφi{b3) in H*(X; Zp). Suppose there is a relation

in P(1)*(X) such that
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wιbι

Jrw2b2-\- •

Then there is y^F(i)Ef* such that drt{y)—λtwti{bt) in BPίP,jt.ί)Erty

for lgf^s.

Proof. Using the argument similar to the proof of Lemma 2.1, we can
construct a /^-manifold y such that

djy — Wjbjy i.e., d3y=b3.

Since Wjbj=0 and δ3y—bj in BP(p, Js— {wj})*(X), it follows from Lemma 2.5
that

drjiy^λjwjbj in BP(p,Js-{wj\)E*:*.

That BP(Jό)*^BP(p, JS—{WJ})* for *<\wj+ι\ implies the lemma. q.e.d.

For the preceding of this paper, we define an index which is convenient to
use. If x 6 P ( I ; Zp) is in the image of i: P(n)*(X)-+H*(X; Zp), then x can
be represented by a manifold with singularities of type (p, vu •••, vn-.i).

Define t(x)—n if x is in Image i: P(w)*(X)->//*(Z; Z p ) and is not in Image
i\P(n-l)*{X)-+H*{X\ Zp).

From the facts that Qj=iδJ9 ira=c(&a)i, and P(n)*(P(n))^P(n)*(g)BP*(BP)

<g)Λ[_Q0, -•-, Qn-il, we can easy see the following;

=0 f o r a l l m ^ n .(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

t(x)=n

QnXΦO

t{x)=n

t(Qnχ)^t

t{Sax)^t

implies Q

implies t(

implies ί((

t(xy)£max(t(x), t{y)).

Given / :X-*Y,

Question 2.7. Assume ί(6i)^l(, ί (W^l) and there is a unique z in H*(X; Zp)
such that QiZ=&iC respectively v*fti=0 in P ( ι ) £ * * for all ^ < J and Q.z^bi). Then
are there &; in BP*(X; Zp) such that

Qjz=i(b'3) and

§ 3. Examples

3.1. The spectrum
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THEOREM 3.1.1. (Larry Smith) Given a finite complex X, then H*(X; Zp)
- , QrJ if and only if BP*{X) = BP*/{p, vu - , vn).

Proof. Assume H*(X; ZP)=AIQO, •••, Qn~]. Using Corollary 2.3, it is in-
ductively proved that

P U ) £ ? P ? = (ΛK?O, O.+i, •- , Qn~]®BP*/{p, υu •••, vs))Qλ - Qs.

Hence we have P(l)*{X)^BP*/(p, - , vn)®A[_QQ~] and BP*(X) = BP*/(p, •••, vn).
Conversely let BP*(X)^BP*/(p, •••, vn). From Lemma 2.1, there are yr^

H*(X;ZP) with Qr;yr=ι;rx where x is the £P*-module generator of BP*(X).
From Lemma 2.5, dsyr=vrx in PCD^? 1 *. The £P*-module generated by yn m
Ezpn-! is a BP*/(p, •••, vn_!)-free module, indeed, if d2prc_i is not monic then
the £P*-module generator of kerd2pn-i is of the second degree>—2^ n +l and
this contradicts to that the generator is not a permanent cycle. Hence we can
take yn,n-i in H*(X;ZP) such that Qn-iyn,n-i=yn.

Continuing this argument, there is z such that Qo ••• Qnz=x. Let H*(X; Zp)
= Λ[_Qo, •••, Qn^z+B. Each element in B is not a permanent cycle in P(1)E* *.
Let w; be a highest dimensional non zero element in B. Then dw=vnQll-~ Qlsz
and this follows the contradiction. Therefore B—0. q. e.d.

Remark. Theorem 3.11 is also proved more easily by using the Sullivan
exact sequence.

We show that all regular invariant ideals containing p appear as annihilator
ideals of some elements in BP*(X).

EXAMPLE 3.1.2. Let Jn — {p, au •••, an) be a regular invariant ideal of £ P * .
Let BP{]n) be the spectrum of the bordism theory with the coefficient BP*/Jn.
The spectrum is inductively defined by the coίibering

BP{Jχ) ^ ^ BP{Jχ) — > BP{Jι+1).

Using the fact af+1=aι+1 modjτ, we can see (reference [9]) such as the case

Jn^In + l^ip, •" Vn)

BP*{BP) and
*

* Θ BP{M)*{BP{Jn))=P{M) Θ
BP*

for sufficient large M, e.g., M>\an\.
Let BP(Jn)

N be an TV-dimensional skeleton of BP(Jn)(, note that BP(Jn)
N

is equivalent to a finite complex, because p^Jn) The highest degree of the
nonzero differential of the spectral sequence PωE* *(BP(Jn)) is | α n | + l . Hence
we have

where A is the #P*-module generated by generators>TV-| an\ — 2.
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3.2. Lens space.
Let X be a finite complex with Hodd(X; Z)=0. Then the spectral sequence

BpE*>*(X) collapses.

THEOREM 3.2.1. Let L be a 2m+l-dimensιonal generalized Lens space L(p,
Qi, '" , Qm). Then there is a BP*-algebra isomorphism

BP*[x^/(xm+1, f(x))

where f(x)=pxJ

Γa1x
2+ •••, and apn-1=vn mod(p, •••, vn-^.

Proof. The cohomology ring is well known

Since Hodd(L Z)=0, there is a jBP*-module isomorphism

From Lemma 2.1 and Qna — xpTl, we have

1x
2+ -" =f(x)=0 in BP*(L) and apn^1=vn

q.e.d.

Remark. From the Gysin exact sequence, it is well known when L — L
(p, 1, •••, 1), the polynomial f{x) is the £-th product [/>] of the formal group law.

3.3. Finite ^-spaces

Suppose that W is a 1-connected (mod p) finite //-space. Let Q be the Z p -
module of indecomposed elements in H*(W Zp). The Kane's binary theorem
[4] is stated as follows.

(1) Q^=d^pS'1Q2n-P8-1 = Q8Q
2n'P8+1 for s^O

(2) if Q2nΦθ then n = (pk+1~l)/(p-l)-pι for l^l^k.

Moreover for a^Q2n

(3) ap=0 if /=/>* in (1),

ap2=0 otherwise.

Let denote by (yk, •••, ̂ i) the system of generators such that

(4) \yι\=(Pk+1-D/(ρ-l)-ρι

(5) &pil-"yι=yι-i.

Question 3.3.1. Is it true that t(yk)=O for all k and

v Λ ^ί+i^Λ=0 mod^ in BP*(W)

where /(^D^^z, i(y'h)=yκ?
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Remark 3.3.2. (1) Harper constructed [3] an //-space for each odd prime
p such as

H*(W; Zp)=Λ(xB, x2p

Then by the arguments similar to [10],

BP*(W) = BP*{1, ys, ya)®BP*{yb, yc

®BP*/(p, vί)ίx2p+2']/(x2p+2)\

where a=2p2+2p+2, b=a-3, c=2p2+L
(2) The cohomology ring of the exceptional Lid group E8 for p=3 is

i / * ( £ 8 ; Z 3 ) = Z3[x8, χ20~]/(xl χlo)®Λ

where A is the external product of odd dimensional generators. The BP*~
module structure of BP*(E8) is known [11]. It holds that i(#8)=0 and hence

It is unknown whether there exists an //-space such that k^3 in the binary
theorem (2).

3.4. Eilenberg-MacLane space K(Z, 3).

The mod p cohomology of K(Z, 3) is known

H*(K(Z, 3);Zp)^Zp\:δ&τ, δ&p$τ, ~^®Λ[τy &τ, •••].

F o r s impl ic i ty of n o t a t i o n s , let d e n o t e 5 > p r ι ~ 1 £ P r = c 7 l , δcn—bn. T h e n \cn\ —

LEMMA 3.4.1. In H*(K(Z, 3); Zp), the Miίnor operations act
(1) Qmτ=bm (2) QMbn=0
(3) Qmcn=Qncm=ψn-m)pm for n>m>0 and Qmcm=0.

Proof. The cohomology ring H*(K; Zp) is a Hopf algebra and, cn, bn are
primitive elements. By the definition, we have (1) and Qocn—bn. We show

-'cn-JMQm-iCn-ir, indeed,

=(Qm-iCm-i)p(, since \Qm-iCm-i\=2(pn-1+pm-i)).

Hence inductively we have QmCn—ibζ-^y.
Since Qm is a derivation, Qm(bn) is also primitive. Hence Qm(bn) is an

indecomposed element or its p-th power. By dimensional reason, we have (2).
q. e.d.

THEOREM 3.4.2. There exist b^BP*{K(Z, 3)) such that i(bj)=bj and υyb[ +
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To prove this theorem we recall the Wilson's theorem. Let BP(n} = BP
(vn+u •••), namely,

T H E O R E M 3.4.3. (Wilson [13]) For k^2(pn-\- ••• +ρ+l),

i: BPk(X) — > BP(n}k(X) is epic.

Proof of Theorem 3.4.2. Since b1=Qoc1'=Q1τf

6 1eImage(5P<l>*(ί(Z, 3)) — ^ H*(K(Z, 3), Z p )).

Moreover if iψ'{)=b1 then ^ ' = 0 . By Wilson's theorem, |&ί/|=2(/>+l) implies

b'{eilmage(BP*(K(Z, 3)) — > BP<1)*(K(Z, 3)).

Therefore ί(W=0 and let *(&ί)=&i.
From Sullivan's exact sequence, there is b'l such that

vyb^-vφ'l in BP<2>*(Z).

Moreover from Lemma 2.1, i(b%)=b2. By also Wilson's theorem, |6?| <2(/>2-h/?-f 1)
implies

b'l<= Image(BP*(K(Z, 3)) — > BP<2>*(X)).

Take ί?2 such as iφ£=b". Continuing this argument. We have the theorem.
q.e. d.

THEOREM 3.4.4. Let the filtration F j S=Ker(F(l)*(Z)~>P(l)*(Z' s)). Then there
is a Pi\Y-module isomorphism

P{l)*(K(Z, 3))/F8p.+ίsP(l)*[fr1, bt,

where D is the ideal of elements of degree^2pSJr2 in Zp[bu b2, b{] and R is the
ideal generated by the following five relations

(1) ^1^1+^2^2+^3^3=0 mod 1\

(2) vvb2-\-v2b
VJvv%b\^^0 mod/f—{vi}2

(3) v2b
p+1J{-v3έ>!^i—0 mod I\

(4) v2b
p

1~
1b2-\-v3(bp

ί

2—bp

1~
1b3)=0 mod I\

Proof. We compute the Atiyah-Hirzebruch spectral sequence

rL2 — ri^\t\\Δ, o), r{L) ) V r\l) \i\\Δ9 όj).

The first non zero differential is d2v-1-=^v1®Q1 and Qλ acts such as
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τ—>blt d—>0, c2—>b\, cs—>bp

2,

Hence we have

E a c h e l e m e n t x of k i | < | * | < | f > 2 | or | c i | + | c 2 | < \x\< \bp

2\ is ^ - t o r s i o n in
E2p, S ince K(1)*(K(Z, ))=*0, v}&8e=Imd r a n d w e h a v e

Since d9{c2—b\"1τ)=Q for s^2(/> —l)/>+l, we also have

d2(p-i)

H e n c e if s^2p*+2, t h e n

, ft,, « ® ΛCcA, cφr^/iv^A, vM, v\b%).

It is easily seen v?x=0 for | Ci | +1 c21 < | x \ < | v21 +1 c21. The next non zero
differential is d2p2+i=v2

<S)Q2. The operation Q2 acts
( i ) Ci^-^vφ^1; both sides are P(l)*/z;1-free,
(ii) c2—bp

1~
1τ->—v2b

p

1~
1b2; the left side is P(l)*-free and the other is vΓ

torsion,
(iii) C1(c2-bp

1-
1τ)-±v2(bp

1(c2-bp

1-
1τ)+c1b

p

1~
1b2); both sides are P(l)M-free.

Therefore if s^

bu b2, W ® {1, v,®{c2-bTh

(viblf v\b2i vM+\ vφT'b^ (vlf V2)(bp

1(c2-bpr1τ)+c1b
p

1-
1b2))

We will see odd dimensional elements are not permanent. Since ϋΓ(l)*
(K(Z, 3)) = 0, vlbs^lmάr. The P(l)*-free generator of dimension< |6 3 | is only
one and

Since d2p3+i=vΆ(^Qsmoά(vl9 v2), we have

H e n c e f o r s ^ p

Es'*p2=Pa)*ίbi, b2y bd/fabu vpA, vM+1, v2b\-χb2) vpΐ+ιbz).

By Lemma 2.1 and Lemma 2.2, we have the relation, for example, the
derivations drc1=vpιb2, Q2Ci=bp

1, Qsc1^=bp

2 imply relation (2). q.e.d,.
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