ON RELATIONS BETWEEN BROWN-PETERSON COHOMOLOGY AND THE ORDINARY MOD p COHOMOLOGY THEORY

Dedicated to Professor Nobuo Shimada on his 60-th birthday

By Nobuaki Yagita

Introduction.

Let $H^{*}\left(X ; Z_{p}\right)$ be the ordinary $\bmod p$ cohomology for odd prime and let $B P^{*}(X)$ be the Brown-Peterson cohomology theory with $B P^{*}=Z_{(p)}\left[v_{1}, v_{2}, \cdots\right]$. The spectrum $V(n)$ is defined by $H^{*}\left(V(n) ; Z_{p}\right) \cong \wedge\left[Q_{0}, \cdots, Q_{n}\right][8]$ where Q_{2} is the Milnor operation and $V(n)$ is also defined by $B P^{*}(V(n)) \cong B P^{*} /\left(p, v_{1}, \cdots, v_{n}\right)$ [6]. To consider the equivalence of the above two definitions was the begining of this paper.

We note a relation between the Q_{i}-action and v_{i}-torsion, which is an immediate consequence from the Sullivan's bordism theory of manifolds with singularities.

Lemma 2.1. Let $x_{j} \in B P^{*}(X)$ and $\sum v_{j} x_{j}=0 \bmod I_{\infty}^{2}$ where $I_{\infty}=\left(p, v_{1}, \cdots\right)$. Then there is $y \in H^{*}\left(X ; Z_{p}\right)$ such that $Q,(y)=i\left(x_{j}\right)$ where 2 is the inclusion map (Thom map) $i: B P \rightarrow H Z_{p}$.

The Brown-Peterson cohomology is studied by many authors, especially the Adams spectral sequence for $B P^{*}\left(S^{N}\right)$ is well researched. However, known examples of non free $B P^{*}$-module $B P^{*}(X)$ are not so many. Using above lemma, we consider the way to calculate $B P^{*}(X)$ when the Steenrod algebra structure of $H^{*}\left(X ; Z_{p}\right)$ is known, and we give examples of the $B P^{*}$-module $B P^{*}(X)$.

In section 1 using Sullivan's original definition of the bordism theory with (cone type) singularities, we treat the Quillen's geometric approach to the cobordism theory. In $\S 2$ main lemmas are shown. We recall some important facts about the Atiyah-Hirzebruch spectral sequence and we define an invariant which is convenient to use. Some examples are discussed in $\S 3$. The spectrum $V(n)$ and Lens spaces are first treated. We next study about finite H-spaces and Eilenberg-Maclane space $K(Z, 3)$, in particular, $B P^{*}$-module structures of even dimensional indecomposed elements are discussed.

The author thanks to W.S. Wilson who suggested the proof of Theorem 3.4.2.

§1. Cobordism theory with singularities.

We first recall the definition of manifolds with singularities due to Baas [1]. Let $S_{n}=\left(P_{1}, \cdots, P_{n}\right)$ be a sequence of closed manifolds. We say Z is an $S_{n^{-}}$ manifold if its boundary is decomposed as products of P_{2}, namely, there are manifolds $\partial_{\imath} Z, \partial_{\left(\imath_{1}, \cdots, i_{s}\right.} Z, Z\left(i_{1}, \cdots, i_{s}\right)$, for $\left(i_{1}, \cdots, i_{s}\right) \subset(1, \cdots, n)$, and natural isomorphisms

$$
\begin{align*}
& \partial Z \cong \cup \partial_{\imath} Z \tag{1}\\
& \partial_{\imath_{1}} Z \cap \cdots \cap \partial_{\imath_{s}} Z=\partial_{\left(\imath_{1}, \cdots, \imath_{s}\right)} Z \cong Z\left(\imath_{1}, \cdots, \imath_{s}\right) \times P_{\imath_{1}} \times \cdots \times P_{\imath_{s}} .
\end{align*}
$$

We next define an \hat{S}_{n}-manifold (S_{n}-manifold with cones) by the quotient space of Z collapsing the P_{i}-factors, i.e.,

$$
\begin{align*}
\hat{Z}= & Z /(w, a) \sim(w, b) \text { where }(w, a),(w, b) \in \partial_{\left(i_{1}, \cdots, \imath_{s}\right)} Z \tag{2}\\
& \text { and } w \in Z\left(i_{1}, \cdots, \imath_{s}\right), a, b \in P_{\imath_{1}} \times \cdots \times P_{\imath_{s}} .
\end{align*}
$$

Sullivan originally defined an \hat{S}_{n}-manifold as the manifold such that each point of its boundaries has a neighbourhood factored cone $\left(P_{\imath_{1}} * \cdots * P_{\imath_{s}}\right)$. We show these two definition are equivalent.

Consider the tubular neighbourhoods of $\partial_{(1, \ldots, s)} Z$,
(Nei. in $\partial Z) \cong Z(1, \cdots, s) \times P_{1} \times \cdots \times P_{s} \times \Delta_{s-1}$,
$($ Nei. in $Z) \cong Z(1, \cdots, s) \times P_{1} \times \cdots \times P_{s} \times \Delta_{s}$
where we identify $\partial_{(1, \cdots, s)} Z=Z(1, \cdots, s) \times P_{1} \times \cdots \times P_{s} \times\left(\right.$ center of $\left.\Delta_{s-1}\right)$ and Δ_{s-1} incluses the $s+1$-th face of Δ_{s}. Take the boundary of Nei. in Z (the link complex)

$$
L k \cong Z(1, \cdots, s) \times P_{1} \times \cdots \times P_{s} \times\left(\dot{\Delta}_{s}-\dot{\Delta}_{s-1}\right) .
$$

Since $\left(\dot{\Delta}_{s}-\dot{\Delta}_{s-1}\right) \cong \Delta_{s-1}$, if we take the quotient (2), then

$$
\begin{aligned}
\widehat{L k} & \cong Z(1, \cdots, s) \times P_{1} \times \cdots \times P_{s} \times \Delta_{s-1} /\left(w, \cdots p_{i}, \cdots, \sigma\right) \sim\left(w, \cdots p_{i}^{\prime}, \cdots, \sigma\right), \sigma \in \dot{\Delta}_{s-1} \\
& \cong Z(1, \cdots, s) \times P_{1} * \cdots * P_{s} .
\end{aligned}
$$

Since boundary $\partial_{(1, \cdots, s)} Z$ collapses to $Z(1, \cdots, s)$, (Nei. in Z) collapses to

$$
\begin{equation*}
(\widehat{\text { Nei. } Z} Z) \cong Z(1, \cdots, s) \times\left(\text { cone } P_{1} * \cdots * P_{s}\right) \tag{3}
\end{equation*}
$$

Hence the definition (2) is the Sullivan one. Moreover we note \hat{Z} is also defined by

$$
\begin{equation*}
\hat{Z}=\hat{Z} \cup \Sigma J(i) \times Z(i) \cup \Sigma j(i, j) \times Z(\imath, j) \cup \cdots \cup J(2, \cdots, n) \times Z(1, \cdots, n) \tag{4}
\end{equation*}
$$

where $J(1, \cdots, s)=\operatorname{cone}\left(P_{1} * \cdots * P_{s}\right)$

$$
=\operatorname{cone}\left(J(2, \cdots, s) \times P_{1} \cup \cdots \cup J(\cdots, \hat{t}, \cdots) \times P_{t} \cup \cdots \cup J(1, \cdots, s-1) \times P_{s}\right)
$$

and cone $P=P \times I / P \times\{1\}$ and $\partial_{(1, \ldots, s)} Z=\{0\} \times Z(1, \cdots, s)$.
Hereafter let denote $\partial_{(i, \ldots, s)} \hat{Z}=\hat{Z}(1, \cdots, s)$.

Definition 1.2. Let X be an (open or closed) manifold and \hat{Z} be an $\hat{S}_{n^{-}}$ manifold. A map $f: Z \rightarrow X$ is a complex oriented of dimension q if f is factored such that

$$
f: \hat{Z} \xrightarrow{i} X \times R^{N} \xrightarrow{p} X
$$

(1) i is an embedding with normal bundles $\nu_{i_{1} \cdots l_{s}}$ having compatible stable complex structure on each $\left(\partial_{i_{1} \cdots \imath_{s}}\right) \hat{Z}-\partial\left(\partial_{\left(i_{1} \cdots \imath_{s}\right)} Z\right)$),
(2) p is a projection,
(3) if $z \in\left(\partial_{\left(i_{1}, \cdots, \imath_{s}\right)} \hat{Z}-\partial\left(\partial_{\left(i_{1}, \ldots, \imath_{s}\right)} Z\right)\right.$, then $(\operatorname{dim} Z$ at $z)-(\operatorname{dim} X$ at $f(z))=q-\left(\operatorname{dim} P_{\imath_{1}}+\cdots+\operatorname{dim} P_{\imath_{s}}+s\right)$.

DEFINITION 1.3. Let $f: \hat{Z} \rightarrow X$ be a complex oriented map and $g: Y \rightarrow X$ be a map. Define the modified pull back $Y \times^{\prime}{ }_{X} Z \rightarrow Y$ as follows.

For ease of arguments, assume $n=1$, i.e., the S_{1}-case. Let $\hat{Z}=Z \cup$ cone $P_{1} \times Z(1)$. Take $g^{\prime} \times f^{\prime}(1)$ transversal to the diagonal $\Delta \subset X \times X$. Then $\left(g^{\prime} \times f^{\prime}(1)\right)^{-1} \Delta$ $=Y \times{ }_{X} Z(1)$ is a manifold and $\left(g^{\prime} \times f^{\prime}(1) \cdot \text { porj }\right)^{-1} \Delta=Y \times_{X} Z(1) \times$ cone P_{1} where proj: $Z(1) \times$ cone $P_{1} \rightarrow Z(1)$ is the projection. Let $f^{\prime \prime}: Z \cup \partial Z(1) \times I \rightarrow X$ be a map so that $f^{\prime \prime}=f$ on Z and $f^{\prime \prime}$ is the homotopy between f and f^{\prime} on $Z(1) \times I$. Taking $g^{\prime} \times f^{\prime \prime \prime}$ for $g^{\prime} \times f^{\prime \prime}$ transversal to Δ, we can define

$$
\left(g^{\prime} \times\left(f^{\prime \prime \prime} \cup f^{\prime}(1) \cdot \operatorname{proj}\right)\right)^{-1}=Y \times_{x}^{\prime} Z
$$

When $n>1$, we can also define the modified pull back by descending induction on sequences $\left(i_{1}, \cdots, i_{s}\right)$ in (3).

DEFINITION 1.4. Let $f_{\imath}: Z_{\imath} \rightarrow X, \imath=1,0$ be complex oriented maps. Then they are cobordant if there is a proper complex oriented map $b: W \rightarrow X \times R$ such that $\varepsilon_{\imath}: X \rightarrow X \times R, \varepsilon_{i}(x)=(x, i)$ is transversal to b, and the pull back of ε_{2} is isomorphic to f_{2}.

THEOREM 1.5. For a manifold X, the set of cobordism classes of proper complex oriented map of dimension - q is $M U\left(S_{n}\right)^{q}(X)$, Here $M U\left(S_{n}\right)^{*}(X)$ is the cobordism theory with singularities and without cone due to Baas [1], [9].

Definition 1.6. (Gysin homomorphism) A proper complex oriented map $g: \hat{X} \rightarrow Y$ of dimension d induces a map

$$
g_{*}: M U\left(S_{n}\right)^{*}(\hat{X}) \longrightarrow M U\left(S_{n}\right)^{*-d}(Y)
$$

which sends $f: \hat{Z} \rightarrow \hat{X}$ into $g f: \hat{Z} \rightarrow Y$.
Definition 1.7. (Contravariant map) Let $g: Y \rightarrow X$ be a map of manifolds, and let $f: \hat{Z} \rightarrow X$ be a proper complex oriented map. Then g induces a map

$$
g^{*}: M U\left(S_{n}\right)^{*}(X) \longrightarrow M U\left(S_{n}\right)^{*}(Y)
$$

which sends $f: \hat{Z} \rightarrow X$ into the modified pull back $Y \times_{X}^{\prime} \hat{Z} \rightarrow Y$.

Theorem 1.8. (Sullivan's exact sequence) There is an MU*-module exact sequence

where 2 is the natural inclusion map and $\delta(\hat{A}, f)=\left(\partial_{n+1} \hat{A}, f\right)$.
Corollary 1.9. If S_{n} is a regular sequence in $M U^{*}$, then $\operatorname{MU}\left(S_{n}\right)^{*}\left(S^{0}\right)$ $\cong M U^{*} /\left(S_{n}\right)$.

In particular $M U\left(x_{2} \mid i \neq p^{j}-1\right)^{*}(X)_{(p)} \cong B P^{*}(X)$ and $M U\left(p, x_{1}, \cdots\right)^{*}(X) \cong H^{*}$ $\left(X ; Z_{p}\right)$. Identifyning $x_{p^{2-1}}=v_{i}$, we denote $M U\left(S_{n} x_{2}, \cdots \mid i \neq p^{2}-1\right)^{*}(X)_{(p)}$ by $B P\left(S_{n}\right)^{*}(X)$. Recall the notations $B P\left(p, v_{1}, \cdots, v_{n-1}\right)=P(n), B P\left(p, \cdots, v_{n-1}\right.$, $\left.v_{n+1}, \cdots\right)=k(n)$ and $v_{n}^{-1} k(n)=K(n)$.

Define an operation $Q_{P_{i}}$ by $Q_{P_{i}}([\hat{A}, f])=\left[\partial_{i} \hat{A}, f \mid \partial_{i} \hat{A}\right]=[\hat{A}(i), f(i)]$. Then it is easily seen $Q_{P_{i}} Q_{P_{j}}=-Q_{P_{j}} Q_{P_{2}}$. Hereafter we fix the generators v_{n} such that the Chern number $c \Delta_{p^{n-1}}\left(v_{n}\right)=p \bmod p^{2}$, namely, the Milnor manifolds.

THEOREM 1.10. In $H^{*}\left(X ; Z_{p}\right) \cong B P\left(p, v_{1}, \cdots\right)^{*}(X)$, the operation $Q_{v_{i}}$ is the Milnor operation $Q_{\imath},\left(Q_{0}=\right.$ the Bockstein operation and $\left.Q_{\imath}=\mathscr{P}^{p^{2-1}} Q_{\imath-1}-Q_{\imath-1} \mathscr{P}^{p^{2-1}}\right)[9]$.

The cohomology operations in $M U^{*}(-)$ are $M U^{*}$-generated by the LandweberNovikov operation s_{α}. The operation s_{α} is defined also in $\operatorname{MU}\left(I_{n}\right) *(-), I_{n}=$ ($\left.p, v_{1}, \cdots, v_{n-1}\right)[9]$. We here define it from geometric viewpoints, as follows.

Given $[\hat{A}, f] \in M U\left(I_{n}\right)^{*}(X)$, we will define $s_{\alpha}[\hat{A}, f]$. First suppose $\partial \hat{A}=$ $\partial_{i} \hat{A}$, i. e., $\partial \hat{A}=A(i) \times v_{i}$. Let $\tau_{\partial A}: \partial A \rightarrow B U$ be the map which represents the tangent bundle of ∂A. Since

$$
\tau_{\partial A}^{*} \cong\left(\tau_{A(i)} \times \tau_{v_{i}}\right)^{*} \quad \text { and } \quad \tau_{\partial A}^{*}\left(c_{\alpha}\right)=\sum_{\alpha=\alpha^{\prime}+\alpha^{\prime}} \tau_{A(i)}^{*} c_{\alpha^{\prime}} \tau_{v_{i}}^{*} c_{\alpha^{\prime}},
$$

the definition of s_{α} in $M U^{*}(-)$ theory follows

$$
s_{\alpha}[\partial A, \partial f]=\sum_{\alpha=\alpha^{\prime}+\alpha^{\prime}} s_{\alpha^{\prime}} A(i) \cdot s_{\alpha^{\prime}}\left(v_{\imath}\right)
$$

Here $s_{\alpha} \cdot\left(v_{\imath}\right) \in I_{\imath}=\left(p, \cdots, v_{i-1}\right)$ and we can write

$$
s_{\alpha}[\partial A, \partial f]=\sum_{\alpha=\alpha^{\prime}+\alpha^{*}} s_{\alpha^{\prime}} A(i) \cdot \sum_{\jmath<i} b_{\alpha^{*}}{ }^{\prime} v_{\jmath}(1) .
$$

Let $[M, g] \in M U^{*}(A)$ be a manifold which represents $\tau_{A}^{*}\left(c_{\alpha}\right)$. Then there is a manifold W so that

$$
\partial W=\partial M \vee(\text { right hand side of }(1)) .
$$

Therefore we can define $s_{\alpha}[A, f]$ by

$$
g f: M \bigcup_{\partial M} W \cup \sum_{\alpha^{\prime}, j}\left(s_{\alpha^{\prime}}(A(i)) \times b_{\alpha^{*}, \jmath}\right) \times \text { conev }_{\jmath} \longrightarrow A \cup A(i) \times \text { conev }_{\jmath} \longrightarrow X
$$

The fact that if $b_{\alpha^{* j} j}$ is also in $I_{\imath-1}$ then $b_{\alpha^{*}, j}=0$ in $M U\left(I_{n}\right)^{*}$ implies that $s_{\alpha}[A, f]$ is welldefined.

The case $\partial A=\cup \partial_{i} A$ is also proved by descending induction on sequences (i_{1}, \cdots, i_{s}) in (3).

The cohomology operations in $\operatorname{MU}\left(I_{n}\right)$-theory is known

$$
M U\left(I_{n}\right)_{*}\left(M U\left(I_{n}\right)\right) \cong M U^{*} / I_{n} \otimes M U^{*}(M U) \otimes \Lambda\left[Q_{p}, \cdots, Q_{v_{n-1}}\right]
$$

Therefore we can minic the arguments in Quillen's paper [5]. In particular we can prove

Theorem 1.11. Let X be a finite complex. Then $M U\left(I_{n}\right)^{*}(X)\left(\right.$ resp. $\left.P(n)^{*}(X)\right)$ is generated as a MU($\left.I_{n}\right)^{*}$-module (resp. $P(n)^{*}$-module) by elements of non negative degree.

§ 2. Main lemmas.

In the previous section we noted the geometric mean of the Milnor operation Q_{2}.

Lemma 2.1. Let $x_{j} \in B P^{*}(X)$ and $\Sigma v_{\jmath} x_{\jmath}=0 \bmod I_{\infty}^{2}$ where $I_{\infty}=\left(p, v_{1}, \cdots\right)$. Then there is $y \in H^{*}\left(X ; Z_{p}\right)$ such that $Q, y=i\left(x_{j}\right)$ where i is the natural inclusion map $i: B P \rightarrow H Z_{p}$.

Proof. Think of x, as an singular manifold. Since $\Sigma v_{\jmath} x_{\jmath}=0 \bmod I_{\infty}^{2}$, there is a manifold y^{\prime} whose boundary is

$$
\partial y^{\prime}=\vee v_{j}\left(x, \vee w_{j}\right) \text { where } w_{j}=0 \bmod I_{\infty} .
$$

Let $y=\hat{y}^{\prime}$ be the I_{∞}-manifold constructed from y^{\prime} attaching cones

$$
\hat{y}^{\prime}=y^{\prime} \bigcup_{\partial y^{\prime}}\left(\operatorname{conev}_{\jmath}\right) \times\left(x_{\jmath} \vee w_{\jmath}\right) \text { and } \partial_{\jmath} \hat{y}^{\prime}=\left(x_{\jmath} \vee w_{j}\right) .
$$

Think of $H^{*}\left(X ; Z_{p}\right)$ as $B P\left(I_{\infty}\right)^{*}(X)$ and we have

$$
i^{\prime} \partial_{\jmath} \hat{y}^{\prime}=Q_{\jmath} \hat{y}^{\prime}=i\left(x_{\jmath} \vee w_{\jmath}\right)=i\left(x_{j}\right),
$$

where $i^{\prime}: B P\left(\cdots, \hat{v}_{j}, \cdots\right)^{*}(X)=k(n)^{*}(X) \rightarrow H^{*}\left(X ; Z_{p}\right)$.
q.e.d.

We next recall the Atiyah-Hirzebruch spectral sequence. Given multiplicative spectrum A, let denote by ${ }_{A} E_{r}^{* * *}(X)$ the Atiyah-Hirzebruch spectral sequence which converges to $A^{*}(X)$,

$$
{ }_{A} E_{2}^{*}, * \cong H^{*}\left(X ; A^{*}\right) \Rightarrow A^{*}(X) .
$$

The following lemma is well known [9],

Lemma 2.2. The first non zero differentral of the spectral sequence ${ }_{P(n)} E_{r}^{*, *}$ (and ${ }_{k(n)} E_{r}^{*, *}$) is $d_{2 p n-1}=v_{n} Q_{n}$.

Corollary 2.3. In the spectral sequence ${ }_{P(1)} E_{r}^{*, *}=_{B P(-, z)} E_{r}^{*, *}$, if $d_{r} x=0$ for $r<2 p^{n}-1$ then $d_{2 p n-1}(x)=v_{n} Q_{n}(x) \bmod \left(p, \cdots, v_{n-1}\right)$.

Proof. The natural inclusion map $\imath: P(1) \rightarrow P(n)$ and Lemma 2.2 follow the corollary. q.e.d.

Recall that an ideal I in $B P^{*}$ is invariant if $\theta(I) \subset I$ for all operations $\theta \in$ $B P^{*}(B P)$.

Lemma 2.4. Let $x_{1}, \cdots, x_{s} \in P_{P(1)} E_{r}^{t, 0}$. Then the mod annihilator $A M\left(x_{1}\right)=$ $\left\{a \in P(1)^{*} \mid a x_{1}=0 \bmod \left(x_{2}, \cdots, x_{s}\right)\right.$ in $\left.E_{r}^{t, *}\right\}$ is invariant.

Proof. This $A M\left(x_{1}\right)$ is indeed the $\bmod \left(x_{2}, \cdots, x_{s}\right)$ annihilator ideal in $P(1)^{*}$ (X^{t+1} / X^{t-r-2}). Hence this is an invariant ideal. q.e.d.

We now consider relations between the Atiyah-Hirzebruch spectral sequence and the Sullivan exact sequence.

Lemma 2.5. Let $w x=0$ in $P(1)^{*}(X)$ for $0 \neq w \in P(1)^{*}$, and let $i(x)=x^{\prime} \neq 0$ in $H^{*}\left(X ; Z_{p}\right)$. From the Sullivan exact sequence, there is y in $B P(p, w)^{*}(X)$ such that $\delta y=x$. Then $d_{r} y^{\prime}=\lambda w x^{\prime}$ in ${ }_{P(1)} E_{r}^{*, *}$ where $0 \neq \lambda \in Z_{p}, i(y)=y^{\prime}$ and $r=|w|+1$.

Proof. Since $P(1)^{*}(X)=B P^{*}\left(X ; Z_{p}\right) \cong B P^{*}\left(X \wedge S^{0} \cup_{p} e^{1}\right)$, we consider this lemma in ${ }_{B P} E_{r}\left(X \wedge S^{0} \cup_{p} e^{1}\right)$. Take the normal cells decomposition of $X \wedge S^{0} \cup_{p} e^{1}$, i.e.,

$$
\begin{aligned}
& *=Y_{0} \subset \cdots \subset Y_{\infty} \cong X \wedge S^{0} \cup_{p} e^{1}, \\
& Y_{n}=Y_{n-1} \cup_{f} \operatorname{cone}\left(\bigvee_{k} S^{n} \cup_{p} e^{1}\right), \quad k=\operatorname{dim}_{Z_{p}}\left(H_{n}\left(Y_{\infty} ; Z\right)\right) .
\end{aligned}
$$

Put $Y\left(n-x^{\prime}\right)=Y_{n-1} / Y_{n-r-2}-\operatorname{cone}\left(S^{n-2} \cup_{p} e^{n-1}\right)_{x^{\prime}}$ where $n=\left|x^{\prime}\right|$ and cone $\left(S^{n-2} \cup_{p} e^{n-1}\right)_{x^{\prime}}$ is the cone of the Moore space which represents x^{\prime} in $H^{*}\left(Y_{\infty} ; Z\right)$. Since $\delta y=x^{\prime}=0$ in $B P^{*}\left(Y\left(n-x^{\prime}\right)\right)$ where $y \in B P(w)^{*}\left(Y\left(n-x^{\prime}\right)\right), y$ is also in $B P^{*}\left(Y\left(n-x^{\prime}\right)\right)$ and y^{\prime} is a permanent cycle in ${ }_{B P} E^{*, *}\left(Y\left(n-x^{\prime}\right)\right)$, i. e., $d_{r} y^{\prime}=0$.

On the other hand put

$$
Y\left(n-1+x^{\prime}\right)=Y_{n-2} / Y_{n-r-2} \cup \operatorname{cone}\left(S^{n-2} \cup_{p} e^{n-1}\right)_{x^{\prime}} .
$$

Then $\delta y=x \neq 0$ and y^{\prime} is not a permanent cycle in ${ }_{B P} E^{*, *}\left(Y\left(n-1+x^{\prime}\right)\right)$. Hence $d_{r} y^{\prime}=\lambda w x^{\prime}$.

Therefore $d_{r} y^{\prime}=\lambda w x^{\prime}$ in ${ }_{B P} E^{*, *\left(Y_{n-1} / Y_{n-r-2}\right) \text {. By the construction of the }}$ spectral sequence we have the lemma.
q.e.d.

The following corollary is an analogous result of Lemma 2.1.
Corollary 2.6. Let $\left(w_{1}, \cdots, w_{s}\right)=J_{s},\left|w_{\imath}\right|<\left|w_{\imath+1}\right|$ be a regular sequence in $P(1)^{*}$. Let $b_{j} \in P(1)^{*}(X)$ and $0 \neq i\left(b_{j}\right)$ in $H^{*}\left(X ; Z_{p}\right)$. Suppose there is a relation in $P(1)^{*}(X)$ such that

$$
w_{1} b_{1}+w_{2} b_{2}+\cdots+w_{s} b_{s}=0
$$

Then there is $y \in_{F(1)} E_{2}^{*} *$ such that $d_{r_{t}}(y)=\lambda_{t} w_{t} i\left(b_{t}\right)$ in ${ }_{B P\left(p, J_{t-1}\right)} E_{r_{t}}, 0 \neq \lambda_{t} \in Z$, for $1 \leqq t \leqq s$.

Proof. Using the argument similar to the proof of Lemma 2.1, we can construct a \hat{J}_{s}-manifold \hat{y} such that

$$
\partial_{j} y=w_{j} b_{j}, \quad \text { i.e., } \quad \partial_{j} \hat{y}=b_{j} .
$$

Since $w_{j} b_{\jmath}=0$ and $\delta_{j} y=b_{j}$ in $B P\left(p, J_{s}-\left\{w_{j}\right\}\right)^{*}(X)$, it follows from Lemma 2.5 that

$$
d_{r_{j}}(y)=\lambda_{j} w_{j} b_{j} \text { in } B P\left(p, J_{s}-\left\{w_{j}\right\}\right) E_{r_{j}}^{* *} .
$$

That $B P\left(J_{j}\right)^{*} \cong B P\left(p, J_{s}-\left\{w_{j}\right\}\right)^{*}$ for $*<\left|w_{j+1}\right|$ implies the lemma. q.e.d.
For the preceding of this paper, we define an index which is convenient to use. If $x \in H^{*}\left(X ; Z_{p}\right)$ is in the image of $i: P(n)^{*}(X) \rightarrow H^{*}\left(X ; Z_{p}\right)$, then x can be represented by a manifold with singularities of type ($p, v_{1}, \cdots, v_{n-1}$).

Define $t(x)=n$ if x is in Image $i: P(n)^{*}(X) \rightarrow H^{*}\left(X ; Z_{p}\right)$ and is not in Image $i: P(n-1)^{*}(X) \rightarrow H^{*}\left(X ; Z_{p}\right)$.

From the facts that $Q_{J}=i \delta_{\jmath}, i r_{\alpha}=c\left(\mathscr{P}^{\alpha}\right) i$, and $P(n) *(P(n)) \cong P(n)^{*} \bigotimes_{B P \cdot} B P^{*}(B P)$ $\otimes \Lambda\left[Q_{0}, \cdots, Q_{n-1}\right]$, we can easy see the following;

$$
\begin{align*}
& t(x)=n \quad \text { implies } \quad Q_{m} x=0 \quad \text { for all } m \geqq n . \tag{2.1}\\
& Q_{n} x \neq 0 \quad \text { implies } \quad t(x) \geqq n+1 . \tag{2.2}\\
& t(x)=n \quad \text { implies } \quad t\left(Q_{n-t} x\right) \leqq n-1 . \tag{2.3}\\
& t\left(Q_{n} x\right) \leqq t(x) . \tag{2.4}\\
& t\left(\mathcal{P}^{\alpha} x\right) \leqq t(x) . \tag{2.5}\\
& t(x y) \leqq \max (t(x), t(y)) . \tag{2.6}\\
& \text { Given } \quad f: X \rightarrow Y, \quad t\left(f^{*} x\right) \leqq t(x) . \tag{2.7}
\end{align*}
$$

Question 2.7. Assume $t\left(b_{1}\right) \leqq 1\left(, t\left(b_{i}\right) \leqq 1\right)$ and there is a unique z in $H^{*}\left(X ; Z_{p}\right)$ such that $Q_{1} z=b_{1}\left(\right.$, respectively $v_{k} b_{i}=0$ in ${ }_{P(1)} E^{*, *}$ for all $k<\imath$ and $\left.Q_{\imath} z=b_{i}\right)$. Then are there b_{j}^{\prime} in $B P^{*}\left(X ; Z_{p}\right)$ such that

$$
Q_{j} z=i\left(b_{j}^{\prime}\right) \quad \text { and } \quad \Sigma v_{j} b_{j}^{\prime}=0
$$

§ 3. Examples

3.1. The spectrum $V(n)$.

Theorem 3.1.1. (Larry Smith) Given a finate complex X, then $H^{*}\left(X ; Z_{p}\right)$ $\cong \Lambda\left[Q_{0}, \cdots, Q_{n}\right]$ if and only if $B P^{*}(X) \cong B P^{*} /\left(p, v_{1}, \cdots, v_{n}\right)$.

Proof. Assume $H^{*}\left(X ; Z_{p}\right) \cong \Delta\left[Q_{0}, \cdots, Q_{n}\right]$. Using Corollary 2.3, it is inductively proved that

$$
P_{(1)} E_{2 p}^{* * *} \cong\left(\Lambda\left[Q_{0}, Q_{s+1}, \cdots, Q_{n}\right] \otimes B P^{*} /\left(p, v_{1}, \cdots, v_{s}\right)\right) Q_{1} \cdots Q_{s}
$$

Hence we have $P(1)^{*}(X) \cong B P^{*} /\left(p, \cdots, v_{n}\right) \otimes \Lambda\left[Q_{0}\right]$ and $B P^{*}(X) \cong B P^{*} /\left(p, \cdots, v_{n}\right)$.
Conversely let $B P^{*}(X) \cong B P^{*} /\left(p, \cdots, v_{n}\right)$. From Lemma 2.1, there are $y_{r} \in$ $H^{*}\left(X ; Z_{p}\right)$ with $Q_{r} y_{r}=v_{r} x$ where x is the $B P^{*}$-module generator of $B P^{*}(X)$. From Lemma 2.5, $d_{s} y_{r}=v_{r} x$ in ${ }_{P(1)} E_{s}^{*, *}$. The $B P^{*}$-module generated by y_{n} in $E_{2 p^{n-1}}$ is a $B P^{*} /\left(p, \cdots, v_{n-1}\right)$-free module, indeed, if $d_{2 p n_{-1}}$ is not monic then the $B P^{*}$-module generator of $\operatorname{kerd}_{2 p^{n-1}}$ is of the second degree $>-2 p^{n}+1$ and this contradicts to that the generator is not a permanent cycle. Hence we can take $y_{n, n-1}$ in $H^{*}\left(X ; Z_{p}\right)$ such that $Q_{n-1} y_{n, n-1}=y_{n}$.

Continuing this argument, there is z such that $Q_{0} \cdots Q_{n} z=x$. Let $H^{*}\left(X ; Z_{p}\right)$ $\cong \Lambda\left[Q_{0}, \cdots, Q_{n}\right] z+B$. Each element in B is not a permanent cycle in ${ }_{P(1)} E^{*, *}$. Let w be a highest dimensional non zero element in B. Then $d w=v_{n} Q_{\imath_{1}} \cdots Q_{\imath_{s}} \bar{z}$ and this follows the contradiction. Therefore $B=0$. q.e.d.

Remark. Theorem 3.11 is also proved more easily by using the Sullivan exact sequence.

We show that all regular invariant ideals containing p appear as annihilator ideals of some elements in $B P^{*}(X)$.

Example 3.1.2. Let $J_{n}=\left(p, a_{1}, \cdots, a_{n}\right)$ be a regular invariant ideal of $B P^{*}$. Let $B P\left(J_{n}\right)$ be the spectrum of the bordism theory with the coefficient $B P^{*} / J_{n}$. The spectrum is inductively defined by the cofibering

$$
B P\left(J_{2}\right) \xrightarrow{a_{2+1}} B P\left(J_{2}\right) \longrightarrow B P\left(J_{2+1}\right) .
$$

Using the fact $a_{\imath+1}^{*}=a_{\imath+1} \bmod J_{\imath}$, we can see (reference [9]) such as the case $J_{n}=I_{n+1}=\left(p, \cdots v_{n}\right)$

$$
\begin{aligned}
& B P^{*}\left(B P\left(J_{n}\right)\right) \cong B P^{*} / J_{n} \otimes_{B P^{*}} B P^{*}(B P) \text { and } \\
& P(M)^{*}\left(B P\left(J_{n}\right)\right) \cong P(M)_{B P *}^{*} B P^{*}(B P) \otimes \Lambda\left[\bar{Q}_{0}, \cdots, \bar{Q}_{n}\right]
\end{aligned}
$$

for sufficient large M, e.g., $M>\left|a_{n}\right|$.
Let $B P\left(J_{n}\right)^{N}$ be an N-dimensional skeleton of $B P\left(J_{n}\right)\left(\right.$, note that $B P\left(J_{n}\right)^{N}$ is equivalent to a finite complex, because $p \in J_{n}$). The highest degree of the nonzero differential of the spectral sequence ${ }_{P(1)} E^{*, *}\left(B P\left(J_{n}\right)\right)$ is $\left|a_{n}\right|+1$. Hence we have

$$
B P^{*}\left(B P\left(J_{n}\right)^{N}\right) \cong B P^{*} / J_{n} \otimes_{B P *} B P^{*}\left(B P^{N-\left|a_{n}\right|-2}\right) \oplus A
$$

where A is the $B P^{*}$-module generated by generators $>N-\left|a_{n}\right|-2$.

3.2. Lens space.

Let X be a finite complex with $H^{\text {odd }}(X ; Z)=0$. Then the spectral sequence ${ }_{B P} E^{*, *}(X)$ collapses.

Theorem 3.2.1. Let L be a $2 m+1$-dimensional generalized Lens space $L(p$, $\left.q_{1}, \cdots, q_{m}\right)$. Then there is a BP*-algebra isomorphism

$$
B P^{*}(L) \cong B P *[x] /\left(x^{m+1}, f(x)\right)
$$

where $f(x)=p x+a_{1} x^{2}+\cdots$, and $a_{p^{n-1}}=v_{n} \bmod \left(p, \cdots, v_{n-1}\right)$.
Proof. The cohomology ring is well known

$$
H^{*}\left(L ; Z_{p}\right) \cong Z_{p}[x] /\left(x^{m+1}\right) \otimes \Lambda(\alpha), \quad Q_{0} \alpha=x
$$

Since $H^{\text {odd }}(L ; Z)=0$, there is a $B P^{*}$-module isomorphism

$$
{ }_{B P} E_{\infty}^{* *} \cong B P^{*}[x] /\left(p, x^{m+1}\right) .
$$

From Lemma 2.1 and $Q_{n} \alpha=x^{p^{n}}$, we have

$$
\begin{array}{r}
p x+a_{1} x^{2}+\cdots=f(x)=0 \text { in } B P^{*}(L) \text { and } a_{p n-1}=v_{n} \bmod \left(p, \cdots, v_{n-1}\right) . \\
\text { q.e.d. }
\end{array}
$$

Remark. From the Gysin exact sequence, it is well known when $L=L$ ($p, 1, \cdots, 1$), the polynomial $f(x)$ is the p-th product $[p]$ of the formal group law.

3.3. Finite H-spaces

Suppose that W is a 1 -connected $(\bmod p)$ finite H-space. Let Q be the $Z_{p^{-}}$ module of indecomposed elements in $H^{*}\left(W ; Z_{p}\right)$. The Kane's binary theorem [4] is stated as follows.

$$
\begin{equation*}
Q^{2 n}=\delta \mathscr{P}^{p s-1} Q^{2 n-p^{s-1}}=Q_{s} Q^{2 n-p^{s+1}} \quad \text { for } \quad s \geqq 0 \tag{1}
\end{equation*}
$$

Moreover for $a \in Q^{2 n}$

$$
\begin{align*}
& a^{p}=0 \quad \text { if } \quad l=p^{k} \text { in (1), } \tag{3}\\
& a^{p^{2}}=0 \quad \text { otherwise. }
\end{align*}
$$

Let denote by $\left(y_{k}, \cdots, y_{1}\right)$ the system of generators such that

$$
\begin{gather*}
\left|y_{l}\right|=\left(p^{k+1}-1\right) /(p-1)-p^{l} \tag{4}\\
\mathscr{P}^{p(l-1)} y_{l}=y_{l-1} . \tag{5}
\end{gather*}
$$

Question 3.3.1. Is it true that $t\left(y_{k}\right)=0$ for all k and

$$
v_{n} y_{l}^{\prime}+v y_{n}^{\prime}=0 \bmod p \text { in } B P^{*}(W)
$$

where $i\left(y_{n}^{\prime}\right)=y_{l}, i\left(y_{n}^{\prime}\right)=y_{n}$?

Remark 3.3.2. (1) Harper constructed [3] an H-space for each odd prime p such as

$$
H^{*}\left(W ; Z_{p}\right)=\wedge\left(x_{3}, x_{2 p+1}\right) \otimes Z_{p}\left[x_{2 p+2}\right] /\left(x_{2 p+2}^{p}\right) .
$$

Then by the arguments similar to [10],

$$
\begin{aligned}
B P^{*}(W) \cong B P^{*}\left\{1, y_{3}, y_{a}\right\} & \oplus B P^{*}\left\{y_{b}, y_{c}\right\} /\left(p y_{b}=v_{1} y_{c}\right) \\
& \oplus B P^{*} /\left(p, v_{1}\right)\left[x_{2 p+2}\right] /\left(x_{2 p+2}\right)^{p},
\end{aligned}
$$

where $a=2 p^{2}+2 p+2, b=a-3, c=2 p^{2}+1$.
(2) The cohomology ring of the exceptional Lid group E_{8} for $p=3$ is

$$
H^{*}\left(E_{8} ; Z_{3}\right) \cong Z_{3}\left[x_{8}, x_{20}\right] /\left(x_{8}^{3}, x_{20}^{3}\right) \otimes \Lambda
$$

where Λ is the external product of odd dimensional generators. The $B P^{*}$. module structure of $B P^{*}\left(E_{8}\right)$ is known [11]. It holds that $t\left(x_{8}\right)=0$ and hence $v_{1} x_{8}=v_{2} x_{20}$.

It is unknown whether there exists an H-space such that $k \geqq 3$ in the binary theorem (2).
3.4. Eilenberg-MacLane space $K(Z, 3)$.

The mod p cohomology of $K(Z, 3)$ is known

$$
H^{*}\left(K(Z, 3) ; Z_{p}\right) \cong Z_{p}\left[\delta \mathscr{P} \tau, \delta \mathscr{P}^{P} \mathscr{P} \tau, \cdots\right] \otimes \Lambda[\tau, \mathscr{P} \tau, \cdots] .
$$

For simplicity of notations, let denote $\mathscr{P}^{P n-1} \ldots \mathscr{P}_{\tau}=c_{n}, \delta c_{n}=b_{n}$. Then $\left|c_{n}\right|=$ $2\left(p^{n}-1\right)+3,\left|b_{n}\right|=2\left(p^{n}-1\right)+4$.

Lemma 3.4.1. In $H^{*}\left(K(Z, 3) ; Z_{p}\right)$, the Milnor operations act
(1) $Q_{m} \tau=b_{m} \quad$ (2) $\quad Q_{m} b_{n}=0$
(3) $Q_{m} c_{n}=Q_{n} c_{m}=\left(b_{n-m}\right)^{p^{m}}$ for $n>m>0$ and $Q_{m} c_{m}=0$.

Proof. The cohomology ring $H^{*}\left(K ; Z_{p}\right)$ is a Hopf algebra and, c_{n}, b_{n} are primitive elements. By the definition, we have (1) and $Q_{0} c_{n}=b_{n}$. We show $Q_{m}\left(\mathscr{P}^{P n-1} c_{n-1}\right)=\left(Q_{m-1} c_{n-1}\right)^{p}$, indeed,

$$
\begin{aligned}
Q_{m}\left(\mathscr{P}^{P n-1} c_{n-1}\right) & =\mathscr{P}^{P n-1+P^{m-1}} Q_{m-1} c_{n-1}-Q_{m-1} \mathscr{P}^{P n-1+P m-1} c_{n-1} \\
& =\left(Q_{m-1} c_{m-1}\right)^{p}\left(, \text { since }\left|Q_{m-1} c_{m-1}\right|=2\left(p^{n-1}+p^{m-1}\right)\right) .
\end{aligned}
$$

Hence inductively we have $Q_{m} c_{n}=\left(b_{n-m}^{P m-1}\right)^{p}$.
Since Q_{m} is a derivation, $Q_{m}\left(b_{n}\right)$ is also primitive. Hence $Q_{m}\left(b_{n}\right)$ is an indecomposed element or its p-th power. By dimensional reason, we have (2). q.e.d.

Theorem 3.4.2. There exist $b_{\jmath}^{\prime} \in B P^{*}(K(Z, 3))$ such that $i\left(b_{j}^{\prime}\right)=b_{j}$ and $v_{1} b_{1}^{\prime}+$ $v_{2} b_{2}^{\prime}+\cdots=0$.

To prove this theorem we recall the Wilson's theorem. Let $B P\langle n\rangle=B P$ $\left(v_{n+1}, \cdots\right)$, namely, $B P\langle n\rangle_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}\right]$.

Theorem 3.4.3. (Wilson [13]) For $k \leqq 2\left(p^{n}+\cdots+p+1\right)$,

$$
i: B P^{k}(X) \longrightarrow B P\langle n\rangle^{k}(X) \quad \text { is epic. }
$$

Proof of Theorem 3.4.2. Since $b_{1}=Q_{0} c_{1}=Q_{1} \tau$,

$$
b_{1} \in \operatorname{Image}\left(B P\langle 1\rangle^{*}(K(Z, 3)) \longrightarrow H^{*}\left(K(Z, 3), Z_{p}\right)\right)
$$

Moreover if $i\left(b_{1}^{\prime \prime}\right)=b_{1}$ then $v_{1} b_{1}^{\prime \prime}=0$. By Wilson's theorem, $\left|b_{1}^{\prime \prime}\right|=2(p+1)$ implies

$$
b_{1}^{\prime \prime} \in \operatorname{Image}\left(B P^{*}(K(Z, 3)) \longrightarrow B P\langle 1\rangle^{*}(K(Z, 3))\right.
$$

Therefore $t\left(b_{1}\right)=0$ and let $i\left(b_{1}^{\prime}\right)=b_{1}$.
From Sullivan's exact sequence, there is $b_{2}^{\prime \prime}$ such that

$$
v_{1} b_{1}=-v_{2} b_{2}^{\prime \prime} \quad \text { in } \quad B P\langle 2\rangle^{*}(X)
$$

Moreover from Lemma 2.1, $i\left(b_{2}^{\prime \prime}\right)=b_{2}$. By also Wilson's theorem, $\left|b_{2}^{\prime \prime}\right|<2\left(p^{2}+p+1\right)$ implies

$$
b_{2}^{\prime \prime} \in \operatorname{Image}\left(B P^{*}(K(Z, 3)) \longrightarrow B P\langle 2\rangle^{*}(X)\right)
$$

Take b_{2}^{\prime} such as $i\left(b_{2}^{\prime}\right)=b_{2}^{\prime \prime}$. Continuing this argument. We have the theorem.
q. e. d.

Theorem 3.4.4. Let the filtration $F_{S}=\operatorname{Ker}\left(P(1) *(X) \rightarrow P(1) *\left(X^{S}\right)\right.$). Then there is a $P(1)^{*}$-module isomorphism

$$
P(1)^{*}(K(Z, 3)) / F_{2 p^{3+2}} \cong P(1) *\left[b_{1}, b_{2}, b_{3}\right] /(R, D)
$$

where D is the ideal of elements of degree $\geqq 2 p^{3}+2$ in $Z_{p}\left[b_{1}, b_{2}, b_{3}\right]$ and R is the ideal generated by the following five relations

$$
\begin{align*}
& v_{1} b_{1}+v_{2} b_{2}+v_{3} b_{3}=0 \bmod I_{3}^{2} \tag{1}\\
& v_{1}^{p} b_{2}+v_{2} b_{1}^{p}+v_{3} b_{2}^{p}=0 \bmod I_{3}^{2}-\left\{v_{1}\right\}^{2} \\
& v_{2} b_{1}^{p+1}+v_{3} b_{2}^{p} b_{1}=0 \bmod I_{3}^{2} \\
& v_{2} b_{1}^{p-1} b_{2}+v_{3}\left(b_{1}^{p^{2}}-b_{1}^{p-1} b_{3}\right)=0 \bmod I_{3}^{2} \\
& v_{1}^{p^{2}+1} b_{3}=0 \bmod I_{3}^{2}-\left\{v_{1}^{2}\right\} .
\end{align*}
$$

Proof. We compute the Atiyah-Hirzebruch spectral sequence

$$
E_{2}=H^{*}\left(K(Z, 3), P(1)^{*}\right) \Rightarrow P(1)^{*}(K(Z, 3))
$$

The first non zero differential is $d_{2 p-1}=v_{1} \otimes Q_{1}$ and Q_{1} acts such as

$$
\tau \longrightarrow b_{1}, \quad c_{1} \longrightarrow 0, \quad c_{2} \longrightarrow b_{1}^{p}, \quad c_{3} \longrightarrow b_{2}^{p}, \cdots
$$

Hence we have

$$
E_{2 p}^{s, *} \cong P(1)^{*}\left[b_{1}, \cdots\right] \otimes \Lambda\left(c_{1}, c_{2}-b_{1}^{p-1} \tau\right) /\left(v_{1} b_{1}^{p}, v_{1} b_{1}^{p}, \cdots\right) .
$$

Each element x of $\left|c_{1}\right|<|x|<\left|b_{2}\right|$ or $\left|c_{1}\right|+\left|c_{2}\right|<|x|<\left|b_{2}^{p}\right|$ is v_{1}-torsion in $E_{2 p}$. Since $K(1)^{*}(K(Z),) \cong 0, v_{1}^{s} b_{2} \in \operatorname{Imd}_{r}$ and we have

$$
d_{2(p-1) p+1} c_{1}=v_{1}^{p} b_{2} .
$$

Since $d_{s}\left(c_{2}-b_{1}^{p-1} \tau\right)=0$ for $s \leqq 2(p-1) p+1$, we also have

$$
d_{2(p-1) p+1} c_{1}\left(c_{2}-b_{1}^{p-1} \tau\right)=v_{1}^{p} b_{2}\left(c_{2}-b_{1}^{p-1}\right) .
$$

Hence if $s \leqq 2 p^{3}+2$, then

$$
E_{2\left(p^{2-1}\right)}^{s, *} \cong P(1)\left[b_{1}, b_{2}, b_{3}\right] \otimes \wedge\left(c_{1} b_{1}, c_{2} b_{1}^{p-1}\right) /\left(v_{1} c_{1} b_{1}, v_{1} b_{1}^{p}, v_{1}^{p} b_{2}\right) .
$$

It is easily seen $v_{1}^{p} x=0$ for $\left|c_{1}\right|+\left|c_{2}\right|<|x|<\left|v_{2}\right|+\left|c_{2}\right|$. The next non zero differential is $d_{2 p^{2}+1}=v_{2} \otimes Q_{2}$. The operation Q_{2} acts
(i) $c_{1} b_{1} \rightarrow v_{2} b_{1}^{p+1}$; both sides are $P(1)^{*} / v_{1}$-free,
(ii) $c_{2}-b_{1}^{p-1} \tau \rightarrow-v_{2} b_{1}^{p-1} b_{2}$; the left side is $P(1)^{*}$-free and the other is $v_{1}-$ torsion,
(iii) $c_{1}\left(c_{2}-b_{1}^{p-1} \tau\right) \rightarrow v_{2}\left(b_{1}^{p}\left(c_{2}-b_{1}^{p-1} \tau\right)+c_{1} b_{1}^{p-1} b_{2}\right)$; both sides are $P(1) / v_{1}$-free.

Therefore if $s \leqq 2 p^{3}+2$,

$$
\begin{gathered}
E_{2 p_{2}^{2}}^{s,} \cong P(1) *\left[b_{1}, b_{2}, b_{3}\right] \otimes\left\{1, v_{1} \otimes\left(c_{2}-b_{1}^{p-1} \tau\right), b_{1}^{p}\left(c_{2}-b_{1}^{p-1} \tau\right)+c_{1} b_{1}^{p-1} b_{2}\right\} / \\
\left(v_{1} b_{1}, v_{1}^{p} b_{2}, v_{2} b_{1}^{p+1}, v_{2} b_{1}^{p-1} b_{2},\left(v_{1}, v_{2}\right)\left(b_{1}^{p}\left(c_{2}-b_{1}^{p-1} \tau\right)+c_{1} b_{1}^{p-1} b_{2}\right)\right)
\end{gathered}
$$

We will see odd dimensional elements are not permanent. Since $K(1)^{*}$ $(K(Z, 3)) \cong 0, v_{1}^{s} b_{3} \in \operatorname{Imd}_{r}$. The $P(1) *$-free generator of dimension $<\left|b_{3}\right|$ is only one and

$$
d_{r}\left(v_{1} \otimes c_{2}-b_{1}^{p-1} \tau\right)=v_{1}^{p_{1}^{2}+1} b_{3} .
$$

Since $d_{2 p^{3+1}}=v_{3} \otimes Q_{3} \bmod \left(v_{1}, v_{2}\right)$, we have

$$
d_{2 p^{3}+1}\left(b_{1}^{p}\left(c_{2}-b_{1}^{p-1} \tau\right)+c_{1} b_{1}^{p-1} b_{2}\right)=v_{3}\left(b_{1}^{p+p^{2}}-b_{1}^{2 p-1} b_{3}+b_{2}^{p+1} b_{1}^{p+1}\right) .
$$

Hence for $s \leqq 2 p^{3}+2$

$$
E_{2 p^{2}}^{s, *} \cong P(1) *\left[b_{1}, b_{2}, b_{3}\right] /\left(v_{1} b_{1}, v_{1}^{p} b_{2}, v_{2} b_{1}^{p+1}, v_{2} b_{1}^{p-1} b_{2}, v_{1}^{p_{1}^{2}+1} b_{3}\right) .
$$

By Lemma 2.1 and Lemma 2.2, we have the relation, for example, the derivations $d_{r} c_{1}=v_{1}^{p} b_{2}, Q_{2} c_{1}=b_{1}^{p}, Q_{3} c_{1}=b_{2}^{p}$ imply relation (2). q.e.d.

References

[1] N. BaAs, On bordism theories of manifolds with singularities, Math. Scand., 33 (1973), 279-302.

〔2〕 W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153-176.
[3] J. Harper, On the construction of $\bmod p H$-spaces, Proc. Symp. Pure Math., 32 (1978), 207-214.
[4] R. Kane, $B P$-torsion in finite H-spaces, Trans. AMS 264 (1981), 473-497.
5.- D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advanced Math., 7 (1971) 29-56.
[6] L. Smith, On realizing complex cobordism modules, Amer. J. Math. 92 (1970), 793-856.
[7] D. Sullivan, Geometric seminor notes, Princeton Univ., (1967).
i8] H. Toda, On realizing exterior parts of the Steenrod algebras, Topology 10 (1971), 53-65.
[9] N. Yagita, On the algebraic structure of cobordism operation with singularities, J. London Math. Soc. 16 (1977), 131-141.
[10] N. Yagita, Brown-Peterson cohomology groups of exceptional Lie groups, J. Pure and Appplied Algebra 17 (1980), 223-226.
[11] N. Yagita, The $B P^{*}$-module structure of $B P^{*}\left(E_{8}\right)$ for $p=3$, preprint.
[12] D. Ravenel and S. Wilson, The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math., 102 (1980), 691-748.
[13] S. Wilson, The Ω-spectrum for Brown-Peterson cohomology II Amer. J. Math., 97 (1975), 101-123.

Department of Mathematics
Musashi Institute of Technolugy
Tamazutsumi Setagaya Tokyo Japan

