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§ 1. Introduction.

Let f(z) be meromorphic in the plane. We define m2{r, f) by

and denote by N(r, c) the usual Nevanlinna counting function for the c-points of
/ i n \z\^r, then Miles and Shea had shown

(1
j,fr, v N(r, 0)+N{r, oo) |sinTΓ^| f
# 2 ( / ) = = l i m s u p — - L — L

ί — 7 r - ^ " I, /) πp I l+sin2τrJo/27rio

for p^lμ^Tir, /)), ^*(T(r, /))].
Further they had characterized those / for which equality holds in (1) as func-
tions which are locally Lindelδffian (or the reciprocals of such).

Let Mp be the class of all meromorphic functions f(z) of order p defined
by g(z)/g(—z) with the canonical product

g(z)= fίE(z/an, q), q = Zpl
71 = 1

Recently by making use of Fourier series method, Ozawa proved

THEOREM A. Let f(z) belongs to Mp, then

,. ^ v ' , - 0 ^ v 2 ICOS7ΓO/2I „ , N

(2) hmsup—~-~ ^ -7— T ~ 1/2 =B(p) -^ τ Γ 1/2πp {πp—smπp\1/z

It is natural to hope that (2) holds for p^[_μ*, λ*~] and that those / for
which equality holds in (2) are f{z)=g(z)/g(—z) with locally Lindelonian g,
But when p is an even integer, B(ρ)>0 and the proof is not straightforward..
We need some existence lemma of strong peaks for f^Mp.

We assume that the reader is familiar with the fundamental concept of
Nevanlinna theory and Fourier series method developed by Miles and Shea (See
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W.K. Hayman [3], Miles and Shea [5], [6] and Ozawa [7]). We use the ter-

minology from [6] without comment.

The author express his heartiest thanks to Professer M. Ozawa for his tender-

support in preparing this note.

§ 2. Discussion of results.

Our first result is following.

THEOREM 1. Let f(z) be meromorphtc in the plane and defined by f(z) =

g(z)/g(—z) with an entire function g. Then

(2.D
m2(r, f)

for p<Ξlμ*(T(r, /)), λ*(T(r, /))], p>0.

Next we have

THEOREM 2. Under the same assumption as in theorem 1 and if

(2.2) l i m s u p - ^ ; 0 ' ^ =B(p)
m2(r, f) r

for some p^Lμ*(T(r, /)), λ*{T(r, /))], pφan odd integer.

Then there exist positive sequences rn-^co and ηn-^0 such that

(2.3) N(r,0)~N(rn,0)(r/rny,

(2.4) N(r, 0)~B(p)mt(r, / ) ,

uniformly for r e [ ^ / n , ηή^nl as n—>oo. Further there exist δΛ->0 and

[0, 2π) such that if

then

(2.5) N(r, 0; Sn) = o(N(r, 0, /)), 7}nrn^r^η-ιra

as n-+oo, where N(r, 0 Sn) denote the counting function for the number of zeros

of f in the sector Sn.

If (2.2) holds with p—an odd integer, i.e. N(ry 0) = o(m2(r, f)) as r~>ooy

then ρ — μ*~λ* and

(2.6) m2(r, f) = rpL(r), lim -£~- = l (0<σ<oo)

holds.

Theorem 1 and 2 have extensions.
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THEOREM 3. Let f(z) be meromorphic in the plane defined by f(z)=g(z)
g(e'Lπaz) with an entire function g and 0<α:gl . Then

Mr Of) ί +°° 4
(2.7) limsup—^-7—~τ~>B(°> p)— 1 2 Σ (1 —cosmβ)—-—

7-00 y m2(r, f) r I m=_oov m2—p

THEOREM 4. Under the same assumption as in theorem 3 and if equality
holds in (2.7) for some p^ίμ^(T(r, /)), ^*(Γ(r, /))], μ^O and £(a, ̂ = 0 . Then
there exist sequences rn->cof ηn-*0, δn-^0 and θn<^tθ, 2π] satisfying (2.2)-(2.5).
// p satisfies B(a, p)=0 and p>0, then ρ~μ*-=λ* and (2.6) holds.

Especially, if a —I, then we have theorem 2. Proofs of theorem 3 and 4 are
quite similar as to theorem 1 and 2. It will be done by improving the lemma 3
and be left to the reader.

Theorem 1 and 3 are not new, essentially they were proved by Ozawa ([7]
theorem 4 and its extension in §11).

§ 3. Preliminaries.

To prove (2.1) we need some lemmas.

LEMMA 1. Let f(z) be meromorphic in the plane defined by f(z)=g(z)/g(—z)
with an entire function g. Put aa be zeros of g and W(z) by

(3.1) log I/to I = Σ log
s < i α ι < β

where 0<2s^\z\=r^R/2. Then if q^l.

(3.2) \W{z)\^Vq(s, r, R)=A\Sχlsf^1{mJ,sf g)+N{2s, 0)}

+(r/R)Q0+1{m2(R, g)+N(2R, 0)}],

where A is an absolute constant and qo=2[(#+l)/2] if q=0,
\W(z)\£Vo(s, r, R)=A{N(2s, 0)log(r/s)+(r/RXm*(R, g)+N{2R, 0))}.

Proof. According to the proof of theorem 3.b in [2],

dm(s)zm+ Σ dm(R)zm+\og Π -ί fpT^T-

1 m=ρ + J \an\<s \l-\-Z/a

w h e r e

1 C^dn{t)=-[t'\og\f(tetβ)\fme-tnβ)dθ
π Jo

\m Σ
mtm i n s 1st
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Hence we have d2m(t)=0 and

λ. I d (t)\< lg2p+ι(^ g)\ + n(t, 0)

Next we have

(r/s)".Σ
I a n I ^ s

Consequently

C(g+l)/2]- i r *iCς 0 )

+2N(sf0)+

and hence we have the desired result when q^i,
If q—0, we have

{ Π (l-*/αn)

and

log Π |(l-e/αn)(l+^/αn)|S2Ms, 0) + n(sf 0)(l+logr/s),

and this completes the proof of lemma 1.

LEMMA 2. Under the same assumption as in lemma ί, we have

(3.4) rot(r, / ) g ^ r ^ j * ^ ^ dt+BVJs, r, R),

where Kq and B are constants depending only on q^O,

Proof. By lemma 1,

log I/(z) I = log Π \E(z/an, q)/E(-z/an, q)\+W{z),

s<iαnιsβ

hence we have by Minkowski's inequality,

(3.5) mlr, f)^ Σ ma(r/|fln|, β(z, q)/E(-z, q)) + Vq(s, ry R).
s<\an\ύR

For q^l, we have by calculating the m-th Fourier coefficients



242 H1R0SHI YANAGIHARA

(3.6) m2(r,

and if <?=0

(3.7)

r < ι

__ I _L9
-
(2H-1)2 '

m%{r, Gf=
Σ r < l

where G(z) = G(z, q) = E(z, q)/E(-z, q) and ^ 0 =2[(^+l)/2]. Hence we obtain
from (3.6) and (3.7)

(3.8) ?772(r, G ) ^
2r90~\

Thus we have from (3.5) and (3.8),

(3.9) m2(r, f)

)-n(r, l/g))+Vq(s, r, R).

Integration by parts applied twice to (3.9) yields (3.4).

LEMMA 3. Let g be a entire function and put f by f(z)=g(z)/g(—z). Suppose
μ*(m2(r, f))<oo and K2(f)<°°.

If μ*(m2(r, f))<ρ<λ*{m2{r, /)) and p is not an odd integer, then there exist
sequences sny rn and Rn tending to oo and ξn~^^ such that

(3.10)

(3.11)

as

(3.12)

7V(ί, 0)^N(rn, 0)(t/rny

mat, f)^ξnN(rn, 0)(sn/rn)

m*(t, f)^ξnN{rn, 0)(RJrn)

If μ*(m2(r, f)) — λ*(nι2{r, /)) and μ*{m2{r, /)) is not an odd integer, then

, 0) ^ π>0lim mf
m2(r, f)

Proof. We first observe that there exist sequences sn, rn, Rn and An tending
to oo and δn->0, such that

(3.13) sn=o{rn), tn^o(Rn) as n
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, f)^m2{in, f)(t/tn),
(3.14)

m2(t, f)^δnm2(tn, f)(t/tn), sn^t^Ansn or RJAn^t^2Rn.

To see this, choose ε>0 so that μ*<ρ — ε, p + εKλ*, then there exist xn, yn and
An tending to co and γn —>0 such that

m2(t, f)^a+Tn)m2(xn, f)(tjxny
+ε,

(3.15)
mt(t, f)ύ(l+ϊn)m2(yn, f)(t/yn)

p-£

And we may assume Alxn<A~2yn. Choose tn^lA^Xn, Anyn~] so that

m2{tn, f)tnp^m2(t, f)t'p Anl

Then

ma(ί, f)<a+rn)(t/Xn)ε(t/Xn)P(Xn/tn)Prn2(tn, f)

^,δn{t/tnYm2{tn, f), Aή'

Thus (3.13) and (3.14) hold with sn=A-2xn and Rn=A%yn.
Choose rn^[sn, 2Rn~] so that

N(rn, 0)rnp^N(t, 0)t~p,

By lemma 2 and K2(f)<oo

N(t, 0)

s t^(t -\~ty

Hence

(l+o(l))ma(ίn, f)ύKqN(rn, 0 ) ( f n / r n ) ' Γ —
Jo ίί "

Since 1^—^ 0 |< l , the integral is convergent. We have

m2{tn, f)^{l + o(l))£pN(rn, 0)(tn/rny as n-+c

Thus for n large enough,

(3.16) m2(t, f)Sδnm2(tn, f){t/tn)
p^2KpδnN(rn, 0)(t/rn)

p,

Next we note from (3.14), (3.16) and K2{f)<^ that

Tn^LAnSn, A~n

lRn]

and (3.10) follows.
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To prove last assertion of lemma 3 suppose first that for any σ>l, there
exist a sequence τ * ^ o o such that τk=N(σtk)/m2(tky /)-*0. Let qo-2[_(pJrl)/2],
and use

,0) Λί

where ϋf̂  is a constant depending only on q0.
Since μ*(m2)=λ*(m2)~ρ, given ε>0 their exist A—/4(ε) and xo-xo(e) such

that for any x^x0, there is a peak ;ye[x, Ax~\ :

»(, /)^m 8(y, f)(t/y)r-
(3.17)

( f ) ^ { , f)(t/y)p+s

(See [1], p. 410 and [6], p. 178). Choose ε>0 so that p-\-ε<qo-\-i and qo~i
<p — ε. Then for all large k there exist peaks yk&\Jk/A, t{]\ if s^e(x0, ^^),

"'*N(σtk, 0)
sk

yk/σtk

y hiσtu yQ0-p~

W e d e t e r m i n e t h e s* so t h a t s^—>oo, yk/sk—*00 a n d

Then since ^ ^ ^ ί ^ ^

as &->oo,

a contradiction if <J has been chosen large enough. Thus m2(r, β^C^iσr, 0),.
Since K2(f)< oo, we have μ*(N) = μ*(m2) = λ*(N) = λ*(m2) = p.. In particular
Mσr, 0)^C2N(r, 0), and we have

Γ . f N{r, 0) „
( /)

§ 4. Proof of Theorems 1 and 2.

We may assume K2(f)<cn, since otherwise (2.1) is trivial. Hence we have

and λ*(rn2)=λ*(T)
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Let /oe[μ*, λ*](p>0) be not odd and choose a = a(ρ)tΞ(Q) e"1) by

(4.1) l-\oga>p-\ (ae)p(l—\oga)<l.

Let ^0=2[( io + l)/2] and put fn(z) by

/„(*) = Π E(z/an, q°)/E(-z/an, q0)
sn<\an\ύaRn

where sn, rn and # n satisfy (3.10), (3.12) and γn->0

(4.2) N(t, 0)^(l+r»W(rn, 0)(ί/rn)^, sn^t^Rn.

Define associated functions G ί̂z) and Fn{z) by

Gn(z)= Π £(z/|fln |,^o),
sn<\an\ύaRn

Fn(z)=Gπ(z)/Gn(-z).

Put ΛΓn(ί, 0)=Mί, VFn) so that by (3.12) and (4.2)

(4.3) Nn(rn, 0)~N(.rn, 0) as n-»oo.

(4.4) ΛΓn(ί, 0)^(l+r«)iV(r,,, 0)(ί/r,,)', 0<ί<«>.

We apply lemma 1 on \z\=rn, and obtain

log\f(z)\= log|/ft(z)|+o(Λ/(rB, 0)), as n-^oo.

Since m2(r, f)^mt(r, Fn), we have

(4.5) m%(rn, f)^(ί+o(ί))m2(rn, Fn), as n->oo.

Let

i»U)= Π£(z/ί/*, q,)/E(-z/dk, ?.)

be the meromorphic function with positive zeros d/fe and negative poles —dk

satisfying

n(t, 0) = ίp(t/rnyN(rnf 0)]

Then for each n ^ l

rn, 0) 0<ί<oo,(
(4.6)

N(t,l/Ln)~(t/rnyN(rn,0) as

and

(4.7) 2

rnj 0) 'Γ ^ - as
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uniformly in p. Hence

(4.8) \cn(rn, Fn)\m + o(l))\cm(rn, Ln)\ as n->oo,

uniformly in m. We deduce

m2(rn, Fn)^(

and thus (2.1) follows (See [4] p. 185).
Proof of theorem 2. Let ρ>0 satisfy (2.2) and be not odd. Then by the

proof of theorem 1 there exist meromorphic fn and associated Gn, Fn, and Ln

satisfying (3.10), (3.12) and (4.2). Let M > 1 be large and suppose that there
exist xn^[rn, Mrn'] and (JG(0, 1) such that

N(xn, 0)<σ2N(rn, 0)(xJrn)
p for infinitely many n.

Then

\cqo+i(rn, Fn)\

a contradiction. We conclude

(4.9) N(x, 0) = (l + o(l))N(rn, 0)(x/rny, :

uniformly as n -^ oo. Thus by lemma 1 and lemma 3

uniformly as n —> oo and we have

(4.10) m,{r, / ) g ( l + o(l))m£(r, F J ^ d + ^ l ^ ^ ί ^ ) - 1 ^ ^ , 0)

uniformly on rn^\z\~r<Mrn as n -»oo by (2.2) equality holds throughout in
(4.10).

Now by (4.8) there exist εn tending to 0 with

(4.11) \cn(rn, fn)\>a-εn)\cm(rn, Fn)\

for m=qo+l, qo+3. By lemma (2.2) of [6], there exist δn-±0 and φn, ψn^
[0, 2π) such that if

qo „ 9 o + 2

(4.12) 7 n = Π S(φn+2jπ/{q0+l), δn) In= Π S(^n+2y^/(^0+3), δn)
j=0 j=0

(4.13) 6 n W = Π E(z/an, q0) Gn(z)= Π £U/α», Qo)
sn<\av\ίίaRn sn<\av\ύaRn

av^I n avέϊn

and put Fn(z)=Gn(z)/Gn(-z) and Fn(z)=Gn(z)/Gn(-z), then

o + 1 (r n , Fn)\ ,
(4.14)

0 + 1(rB, Fn)\ .
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One consequence of (4.14) is

(4.15) N(i, 0, Fn)+N(t, 0, Fn)^M-f"8N(t, 0, Ln) MΆ/irn^t^Mrn.

And (4.15) shows (2.5). (See [6] p. 183).

If (2.2) holds for p — a positive odd integer, the proof of (2.6) is quite similar
to (14) of [6] and will be left to the reader.
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