Y. MIZUTA KODAI MATH. J. 7 (1984), 192–202

ON THE BOUNDARY LIMITS OF POLYHARMONIC FUNCTIONS IN A HALF SPACE

Dedicated to Professor Mitsuru Ozawa on the occasion of his 60th birthday

By Yoshihiro Mizuta

1. Introduction and statement of result.

Let \mathbb{R}^n be the *n*-dimensional Euclidean space $(n \ge 2)$, and set

$$R_{+}^{n} = \{x = (x', x_{n}) \in R^{n-1} \times R^{1}; x_{n} > 0\}.$$

For $\xi \in \partial R^n_+$, $\gamma \ge 1$ and a > 0, define

$$T_{\gamma}(\xi, a) = \{ (x', x_n) \in \mathbb{R}^n_+; | (x', 0) - \xi | < a x_n^{1/\gamma} \}.$$

Recently Cruzeiro [2] proved the existence of $\lim u(x)$ as $x \to \xi$, $x \in T_{\gamma}(\xi, a)$, for a harmonic function u with gradient in $L^n(R^n_+)$. In this note we are concerned with polyharmonic functions in R^n_+ , and our purpose is to give a generalization of her result to the polyharmonic case.

For a nonnegative integer m, denote by Δ^m the Laplace operator iterated m times; in particular, Δ^0 denotes the identity operator. A function $u \in C^{\infty}(\mathbb{R}^n_+)$ is said to be polyharmonic of order m in \mathbb{R}^n_+ if

$$\Delta^m u = 0$$
 on R^n_+ .

For $u \in C^m(\mathbb{R}^n_+)$ and $x = (x_1, \dots, x_n) \in \mathbb{R}^n_+$, define

$$|\nabla_m u(x)| = \{\sum_{|\lambda|=m} |D^{\lambda} u(x)|^2\}^{1/2},$$

where $\lambda = (\lambda_1, \dots, \lambda_n)$ denotes a multi-index with length $|\lambda| = \lambda_1 + \dots + \lambda_n$ and $D^{\lambda} = (\partial/\partial x_1)^{\lambda_1} \dots (\partial/\partial x_n)^{\lambda_n}$.

THEOREM. Let m be a positive integer and u be a function which is polyharmonic of order m+1 in \mathbb{R}^n_+ and satisfies

(1)
$$\int_{\mathcal{G}} |\nabla_m u(x)|^p x_n^{\alpha} dx < \infty, \qquad p > 1, \quad \alpha < mp - 1.$$

for any bounded open set G in \mathbb{R}^n_+ . Suppose $(\alpha+1)/p$ is not a positive integer.

Received April 21, 1983

(i) If $n-mp+\alpha>0$, then for each $\gamma>1$ there exists a set $E_{\gamma} \subset \partial R_{+}^{n}$ such that $H_{\gamma(n-mp+\alpha)}(E_{\gamma})=0$ and

$$\lim_{x \to \xi, x \in T_{\chi}(\xi, a)} u(x)$$

exists and is finite for any a > 0 and any $\xi \in \partial R^n_+ - E_\gamma$.

(ii) If $n-mp+\alpha=0$, then there exists a set $E \subset \partial R^n_+$ such that $B_{n/p,p}(E)=0$ and (2) exists and is finite for any a>0, any $\gamma>1$ and any $\xi \in \partial R^n_+ - E$.

(iii) If $n-mp+\alpha<0$, then $\lim_{x\to\xi, x\in\mathbb{R}^n_+} u(x)$ exists and is finite for any $\xi\in\partial\mathbb{R}^n_+$.

Here H_l denotes the *l*-dimensional Hausdorff measure, and $B_{l,p}$ the Bessel capacity of index (l, p) (see Meyers [4]). Note the following results (cf. [4]):

(a) If $H_{n-l}(E) < \infty$, then $B_{l/p, p}(E) = 0$ for any p > 1;

(b) If $B_{l/p,p}(E)=0$ for some p>1, then $H_{l'}(E)=0$ for any l'>n-l.

In the case where $(\alpha+1)/p$ is a positive integer, we have the next theorem.

THEOREM'. Let u be a function which is polyharmonic of order m+1 in \mathbb{R}^n_+ and satisfies (1) for any bounded open set G in \mathbb{R}^n_+ , where p>1 and $(\alpha+1)/p$ is a positive integer smaller than m.

(i) If $n-mp+\alpha>0$, then for each $\gamma>1$ there exists a set $E_{\gamma} \subset \partial R^n_+$ such that E_{γ} has Hausdorff dimension at most $\gamma(n-mp+\alpha)$ and (2) exists and is finite for any a>0 and any $\xi \in \partial R^n_+ - E_{\gamma}$.

(ii) If $n-mp+\alpha=0$, then there exists a set $E \subset \partial R^n_+$ such that E has Hausdorff dimension 0 and (2) exists and is finite for any a>0, any $\gamma>1$ and any $\xi \in \partial R^n_+ - E$.

(iii) If $n-mp+\alpha < 0$, then $\lim_{x \to \xi, x \in \mathbb{R}^n_+} u(x)$ exists and is finite for any $\xi \in \partial \mathbb{R}^n_+$.

If $\lim_{x \to \xi, x \in T_1(\xi, a)} u(x)$ exists and is finite for any a > 0, then u is said to have

a nontangential limit at ξ . If u is a function which is polyharmonic of order m+1 in \mathbb{R}^n_+ and satisfies (1) with p>1 and $\alpha < mp-1$ for any bounded open set G in \mathbb{R}^n_+ , then u has a nontangential limit at any $\xi \in \partial \mathbb{R}^n_+$ except for those in a set E with $B_{m-\alpha/p, p}(E)=0$; this result is best possible as to the size of the exceptional set in the following sense: If $E \subset \partial \mathbb{R}^n_+$, $B_{m-\alpha/p, p}(E)=0$ and $-1 < \alpha < mp-1$, then we can find a harmonic function u in \mathbb{R}^n_+ which satisfies (1) with $G=\mathbb{R}^n_+$ such that $\lim_{x\to \xi, x\in\mathbb{R}^n_+} u(x)=\infty$ for any $\xi \in E$ (see [8; Theorems 1 and 2]). Thus (ii) of the theorem gives an improvement of [8; Theorem 1], and also the

Thus (11) of the theorem gives an improvement of [8; Theorem 1], and also the best possible result as to the size of the exceptional set.

2. Lemmas.

First we prepare several properties of polyharmonic functions. Let B(x, r) denote the open ball with center at x and radius r. For $E \subset \mathbb{R}^n$, denote the closure of E by \overline{E} .

LEMMA 1. Let u be a function which is polyharmonic of order m+1 in \mathbb{R}^n_i . Then there exist constants c_i independent of u such that

$$r^{1-n} \int_{\partial B(x,\tau)} \Delta u(y) dS(y) = \sum_{i=1}^{m} c_i r^{2i-2} \Delta^i u(x)$$

whenever $\overline{B(x, r)} \subset \mathbb{R}^n_+$.

Proof. By a result in [9; p. 189], there exist harmonic functions v_i in B(x, r') such that

$$\Delta u(y) = \sum_{i=1}^{m} |y - x|^{2i-2} v_i(y) \quad \text{on} \quad B(x, r'),$$

where $\overline{B(x, r')} \subset \mathbb{R}^n_+$. Then we note that $\Delta^i u(x) = c'_i v_i(x)$, so that

$$r^{1-n} \int_{\partial B(x,r)} \Delta u(y) dS(y) = \sum_{i=1}^{m} c_i'' r^{2i-2} v_i(x) = \sum_{i=1}^{m} c_i r^{2i-2} \Delta^i u(x)$$

for r with 0 < r < r'. The constants c'_i , c''_i and c_i depend only on i and the dimension n.

LEMMA 2. Let u be a function which is polyharmonic of order m+1 in \mathbb{R}^n_+ , and let $\overline{B(x, r)} \subset \mathbb{R}^n_+$. Then for each nonnegative integer i, $i \leq m$, there exist constants $a_{\lambda}^{(i)}$ independent of u, x and r such that

(3)
$$\Delta^{i} u(x) = r^{-n-2i} \sum_{0 < |\lambda| \le m} a_{\lambda}^{(i)} \int_{B(x,r)} (y-x)^{\lambda} D^{\lambda} u(y) dy.$$

Proof. In view of [3; (15)],

$$\Delta^{i} u(x) = \sum_{k=0}^{m-1} a_{k} \rho^{k} \int_{\partial B(0,1)} \left(\frac{\partial}{\partial \rho}\right)^{k} \Delta^{i} u(x+\rho\sigma) dS(\sigma)$$

with constants a_k . We introduce a differential operator

$$\nu = \sum_{j=1}^{n} (y_j - x_j) \frac{\partial}{\partial y_j}.$$

Letting I denote the identity operator, we note that

$$\nu^k \Delta^i = \Delta^i (\nu - 2iI)^k$$
,

so that

$$\rho^{n-1}\Delta^{i}u(x) = \sum_{k=0}^{m-i} a_{k} \int_{\partial B(x,\rho)} \nu^{k} \Delta^{i}u(y) dS(y)$$
$$= \sum_{k=0}^{m-i} a_{k} \int_{\partial B(x,\rho)} \Delta^{i}(\nu - 2iI)^{k}u(y) dS(y)$$

Integrating both sides with respect to ρ over the interval (0, r), we obtain

ON THE BOUNDARY LIMITS OF POLYHARMONIC FUNCTIONS

$$\begin{aligned} \Delta^{i} u(x) &= r^{-n} \sum_{k=0}^{m-i} a'_{k} \int_{B(x,r)} \Delta^{i} (\nu - 2iI)^{k} u(y) dy \\ &= r^{-n-1} \sum_{k=0}^{m-i} a'_{k} \int_{\partial B(x,r)} \nu \Delta^{i-1} (\nu - 2iI)^{k} u(y) dS(y) \\ &= r^{-n-1} \sum_{k=0}^{m-i} a'_{k} \int_{\partial B(x,r)} \Delta^{i-1} (\nu - 2(i-1)I) (\nu - 2iI)^{k} u(y) dS(y) \end{aligned}$$

Repeating this process, we finally obtain

$$\Delta^{i} u(x) = r^{-n-2i} \sum_{k=0}^{m-i} a_{k}'' \int_{B(x,\tau)} \nu(\nu-2I) \cdots (\nu-2(i-1)I) (\nu-2iI)^{k} u(y) dy,$$

which is of the form (3).

The following fact can be proved easily (cf. [6; Lemma 5]).

LEMMA 3. Let u be a function in $C^{1}(\mathbb{R}^{n}_{+})$ such that

$$\int_{G} |\nabla_{1}u(x)|^{p} x_{n}^{a} dx < \infty, \qquad p > 1,$$

for any bounded open set G in \mathbb{R}^n_+ . Then

$$\int_{G} |u(x)|^{p} x_{n}^{\beta} dx < \infty$$

for any bounded open set G in \mathbb{R}^n_+ , where $\beta = \alpha - p$ if $\alpha > p-1$ and $\beta > -1$ if $\alpha = p-1$.

By [6; Lemma 4] we have

LEMMA 4. Let k be a positive integer, p>1 and $\beta < p-1$. Let u be a function in $C^{k}(\mathbb{R}^{n}_{+})$ such that

$$\int_{G} |\nabla_{k} u(x)|^{p} x_{n}^{\beta} dx < \infty$$

for any bounded open set G in R^n_+ . If we set

$$A = \left\{ \xi \in \partial R_{+}^{n}; \int_{B(\xi, 1) \cap R_{+}^{n}} |\xi - x|^{k-n} |\nabla_{k} u(y)| dy = \infty \right\},\$$

then $B_{k-\beta/p,p}(A)=0$.

LEMMA 5. Let f be a nonnegative measurable function on \mathbb{R}^n_+ such that $\int_G f(y)dy < \infty$ for any bounded open set G in \mathbb{R}^n_+ , and define

$$B_{\delta} = \left\{ \xi \in \partial R^{n}_{+}; \int_{B(\xi, 1) \cap R^{n}_{+}} (|\xi' - y'|^{2\gamma} + y^{2}_{n})^{-(l+\delta)/2} f(y) y^{\delta}_{n} dy = \infty \right\},$$

where $l \ge 0$ and $\gamma \ge 1$. Then $H_{\gamma l}(B_{\delta}) = 0$ for any $\delta > 0$: in case l = 0, this implies that B_{δ} is empty.

Proof. Suppose $H_{\gamma l}(B_{\delta}) > 0$. Then by [1; Theorems 1 and 3 in § II] we can find a nonnegative measure μ with compact support in ∂R_{+}^{n} such that $\mu(B_{\delta}) > 0$ and $\mu(B(x, x)) \leq x^{\gamma l}$ for any x and x.

Then
$$\int (|\xi' - y'|^{2r} + y_n^2)^{-(l+\delta)/2} d\mu(\xi) \leq \text{const. } y_n^{-\delta} \text{ for } y \in \mathbb{R}^n_+.$$
 Hence

$$\infty = \int \left\{ \int_{B(\xi, 1) \cap \mathbb{R}^n_+} (|\xi' - y'|^{2r} + y_n^2)^{-(l+\delta)/2} f(y) y_n^{\delta} dy \right\} d\mu(\xi)$$

$$\leq \int_{\sigma} \left\{ \int (|\xi' - y'|^{2r} + y_n^2)^{-(l+\delta)/2} d\mu(\xi) \right\} f(y) y_n^{\delta} dy$$

$$\leq \text{const.} \int_{\sigma} f(y) dy < \infty,$$

which is a contradiction. Here $G = \bigcup_{\xi \in \text{supp } \mu} B(\xi, 1) \cap R_+^n$.

LEMMA 6. Let k be a positive integer, p>1 and $\beta < p-1$. Let K be a Borel measurable function on \mathbb{R}^n such that $|\nabla_l K(x)| \leq |x|^{k-l-n}$ on $\mathbb{R}^n - \{0\}$ for $l=0, 1, \dots, k-1$, and define

$$u(x) = \int K(x-y)f(y)dy$$

for a nonnegative measurable function f on \mathbb{R}^n such that $\int |x-y|^{k-n} f(y) dy \equiv \infty$ and $\int_G f(y)^p |y_n|^\beta dy < \infty$ for any bounded open set $G \subset \mathbb{R}^n$. Set

$$E_{l,\gamma} = \left\{ \xi \in \partial R^n_+; \lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} \int_{B(x, x_n/2)} |\nabla_l u(y)|^p y_n^{lp-n} dy > 0 \quad for \text{ some } a > 0 \right\}$$

for $\gamma \ge 1$ and $l=1, \dots, k-1$. Then $H_{\gamma(n-k\,p+\beta)}(E_{l,\gamma})=0$ if $n-k\,p+\beta>0$, and $E_{l,\gamma}$ is empty if $n-k\,p+\beta \le 0$.

Proof. Define

$$E_{\gamma} = \left\{ \xi \in \partial R^n_+; \lim_{r \downarrow 0} \sup r^{\gamma(kp-\beta-n)} \int_{B(\xi,r)} f(y)^p |y_n|^\beta dy > 0 \right\}$$

for $\gamma \ge 1$. Then, in view of [7; Lemma 2], we see that $H_{\gamma(n-k\,p+\beta)}(E_{\gamma})=0$ if $n-kp+\beta>0$ and E_{γ} is empty if $n-kp+\beta\le 0$.

Let *l* be a positive integer such that l < k. Then for almost every *x*,

$$|\nabla_{l}u(x)| \leq \int |x-y|^{k-l-n}f(y)dy = U_{1}(x) + U_{2}(x) + U_{3}(x),$$

where

ON THE BOUNDARY LIMITS OF POLYHARMONIC FUNCTIONS

$$U_{1}(x) = \int_{B(x, cx_{n})} |x - y|^{k-l-n} f(y) dy, \quad 0 < c < 1/3,$$
$$U_{2}(x) = \int_{B(\xi, 2|x-\xi|)-B(x, cx_{n})} |x - y|^{k-l-n} f(y) dy,$$
$$U_{3}(x) = \int_{R^{n} - B(\xi, 2|x-\xi|)} |x - y|^{k-l-n} f(y) dy.$$

We first note from Hölder's inequality that

$$\lim_{r \downarrow 0} r^{k-n} \int_{B(\xi,r)} f(y) dy = 0$$

if $\xi \in \partial R^n_+ - E_1$ and hence if $\xi \in \partial R^n_+ - E_1$. Setting $\varepsilon(\eta) = \sup_{0 < r \le \eta} r^{k-n} \int_{B(\xi, r)} f(y) dy$ for $\eta > 0$, we have

$$U_{3}(x) \leq \operatorname{const.} \int_{\mathbb{R}^{n} - B(\xi, z_{1}x - \xi_{1})} |y - \xi|^{k-l-n} f(y) dy$$
$$\leq \operatorname{const.} \left\{ \int_{\mathbb{R}^{n} - B(\xi, \eta)} |y - \xi|^{k-l-n} f(y) dy + \varepsilon(\eta) |x - \xi|^{-l} \right\}.$$

Consequently, $\lim_{z \to \xi, z \in \mathbb{R}^n_+} \sup_{B(z, z_n/2)} U_3(x)^p x_n^{lp-n} dx \leq \text{const. } \varepsilon(\eta)^p.$ This implies that

$$\lim_{z \to \xi, \, z \in \mathbb{R}^n_+} \int_{B(z, \, z_n/2)} U_3(x)^p x_n^{lp-n} dx = 0.$$

By Hölder's inequality,

$$U_{1}(x) \leq \text{const. } x_{n}^{(k-l)/p'} \left\{ \int_{B(x, cx_{n})} |x-y|^{k-l-n} f(y)^{p} dy \right\}^{1/p},$$

so that

Therefore if $n-kp+\beta > 0$ and $\xi \in \partial R^n_+ - E_\gamma$, then

$$\lim_{z \to \xi, \, z \in T_{\gamma}(\xi, \, a)} \int_{B(z, \, z_{n}/2)} U_{1}(x)^{p} x_{n}^{lp-n} dx = 0;$$

if $n-kp+\beta \leq 0$, then

$$\lim_{z \to \xi, \, z \in \mathbb{R}^{n}_{+}} \int_{B(z, \, z_{n}/2)} U_{1}(x)^{p} x_{n}^{lp-n} dx = 0.$$

Letting $\eta = 2|x - \xi|$ and $M = \int_{B(\xi, \eta)} f(y)^p |y_n|^\beta dy$, we have by [7; Lemma 5],

$$U_{2}(x)^{p} \leq \text{const.} \begin{cases} x_{n}^{(k-l)p-\beta-n}M & \text{if } (k-l)p-\beta-n < 0, \\ [\log(\eta x_{n}^{-1}+2)]^{p-1}M & \text{if } (k-l)p-\beta-n = 0, \\ \eta^{(k-l)p-\beta-n}M & \text{if } (k-l)p-\beta-n > 0. \end{cases}$$

If $z \in T_{\gamma}(\xi, a) \cap B(\xi, 1)$ and $x \in B(z, z_n/2)$, then there exists a' > 0 such that $x \in T_{\gamma}(\xi, a')$. Hence we obtain

$$\int_{B^{(z,z_n/2)}} U_2(x)^p x_n^{lp-n} dx \leq \text{const.} \begin{cases} z_n^{kp-\beta-n} M & \text{if } (k-l)p-\beta-n < 0, \\ z_n^{lp} [\log(\eta z_n^{-1}+2)]^{p-1} M & \text{if } (k-l)p-\beta-n = 0, \\ z_n^{lp} \eta^{(k-l)p-\beta-n} M & \text{if } (k-l)p-\beta-n > 0, \end{cases}$$

which tends to zero as $z \to \xi$, $z \in T_{r}(\xi, a)$, if $kp - \beta - n < 0$ and $\xi \notin E_{r}$, and as $z \to \xi$ if $kp - \beta - n \ge 0$. Thus we proved that $E_{l,r} \subset E_{r}$ if $n - kp + \beta > 0$ and $E_{l,r}$ is empty if $n - kp + \beta \le 0$. The proof is now complete.

COROLLARY. Let k, p and β be as in the lemma. Let u be a function in $C^{k}(R^{n}_{+})$ such that $\int_{G} |\nabla_{k}u(x)|^{p} x_{n}^{\beta} dx < \infty$ for any bounded open set G in R^{n}_{+} , and define $E_{l,\gamma}$ as in the lemma. Then $H_{\gamma(n-kp+\beta)}(E_{l,\gamma})=0$ if $n-kp+\beta>0$ and $E_{l,\gamma}$ is empty if $n-kp+\beta\leq 0$.

Proof. Let q=p if $\beta \leq 0$ and $1 < q < p/(\beta+1)$ if $\beta > 0$. By Hölder's inequality we have

$$\int_G |\nabla_k u(x)|^q dx < \infty$$

for any bounded open set G in R_{+}^n . By Theorem 5 and its proof in [10; Chap. VI], we can find a function $v \in L^q_{loc}(\mathbb{R}^n)$ such that v=u a.e. on \mathbb{R}^n_+ ,

$$\int_{G} |\nabla_{k} v(x)|^{q} dx < \infty \quad \text{and} \quad \int_{G} |\nabla_{k} v(x)|^{p} |x_{n}|^{\beta} dx < \infty$$

for any bounded open set G in \mathbb{R}^n , where the derivatives are taken in the sense of distributions.

We shall show that $H_{\gamma(n-k\,p+\beta)}(E_{l,\gamma}\cap B(0,r))=0$ if $n-kp+\beta>0$ and $E_{l,\gamma}\cap B(0,r)$ is empty if $n-kp+\beta\leq 0$ for any r>0. Let r>0 be fixed, and take a function $\phi\in C_0^{\infty}(\mathbb{R}^n)$ such that $\phi=1$ on B(0,2r). Set $w=\phi v$. Then by [5; Theorem 4.1],

$$w(x) = \sum_{|\lambda| = k} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} D^{\lambda} w(y) dy \quad \text{a.e. on } R^n.$$

Since w is considered to be continuously k times differentiable on R_{+}^{n} , the right hand side is also continuously k times differentiable on R_{+}^{n} and the equality is

considered to hold at every point of R_{+}^{n} . Further,

$$\int_{B(0,\tau)} |\nabla_k w(y)|^p |y_n|^\beta dy < \infty.$$

Thus the proof of Lemma 6 shows that $H_{\gamma(n-kp+\beta)}(E_{l,\gamma} \cap B(0, r))=0$ if $n-kp+\beta > 0$ and $E_{l,\gamma} \cap B(0, r)$ is empty if $n-kp+\beta \leq 0$. By noting the arbitrariness of r, we conclude the proof.

3. Proof of the theorem.

Let u be as in the theorem. If $\alpha < p-1$, we let k=1, and if $\alpha \ge p-1$, then we let k be a positive integer such that $(k-1)p-1 < \alpha < kp-1$. Define $\beta = \alpha - (k-1)p$. Then $\beta < p-1$, and, in view of Lemma 3,

$$\int_{G} |\nabla_{m-l} u(x)|^{p} x_{n}^{\alpha-lp} dx < \infty$$

for any bounded open set G in R_{+}^{n} and $l=0, 1, \dots, k-1$.

Let q=p if $\beta \leq 0$ and $1 < q < p/(\beta+1)$ if $\beta > 0$. By Hölder's inequality we have

$$\int_{G} |\nabla_{m-k+1} u(x)|^{q} dx < \infty$$

for any bounded open set G in \mathbb{R}^n_+ . As in the proof of the corollary to Lemma 6, we can find a function $v \in L^q_{\text{loc}}(\mathbb{R}^n)$ such that v = u a.e. on \mathbb{R}^n_+ ,

$$\int_G |\nabla_{m-k+1} v(x)|^q dx < \infty$$

and

$$\int_{G} |\nabla_{m-k+1} v(x)|^{p} |x_{n}|^{\beta} dx < \infty$$

for any bounded open set G in \mathbb{R}^n .

Define

$$\begin{split} A &= \left\{ \xi \in \partial R_{+}^{n} \, ; \, \int_{B(\xi, 1)} |\xi - y|^{m-k+1-n} |\nabla_{m-k+1} v(y)| \, d \, y = \infty \right\} \,, \\ E_{\iota, \gamma} &= \left\{ \xi \in \partial R_{+}^{n} \, ; \, \limsup_{x - \xi, \, x \in T_{\gamma}(\xi, \, a)} \int_{B(x, \, x_{n}/2)} |\nabla_{\iota} u(y)|^{p} y_{n}^{\ell, p-n} \, d \, y > 0 \quad \text{for some } a > 0 \right\} \,, \\ F_{\eta} &= \left\{ \xi \in \partial R_{+}^{n} \, ; \, \limsup_{\tau \neq 0} \, y^{-\eta} \int_{B(\xi, \tau)} |\nabla_{m-k+1} v(y)|^{p} |y_{n}|^{\beta} \, d \, y > 0 \right\} \quad \text{for } \eta > 0 \,, \\ F_{0} &= \left\{ \xi \in \partial R_{+}^{n} \, ; \, \limsup_{\tau \neq 0} \, (\log r^{-1})^{p-1} \int_{B(\xi, \tau)} |\nabla_{m-k+1} v(y)|^{p} |y_{n}|^{\beta} \, d \, y > 0 \right\} \end{split}$$

and

$$E_{j} = A \cup \left(\bigcup_{l=1}^{m} E_{l,j}\right) \cup F_{\gamma(n-mp+\alpha)} \quad \text{for} \quad n-mp+\alpha \ge 0.$$

We shall show below that $\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} u(x)$ exists and is finite for any $\xi \in \partial R^n_+ - E_{\gamma}$ and any a > 0; in case $n - mp + \alpha < 0$, our proof below shows that u(x) has a finite limit as $x \to \xi, x \in R^n_+$, for any $\xi \in \partial R^n_+$.

By Lemma 4, $B_{m_{-}\alpha/p_{+}p}(A)=0$. In view of Lemma 5,

$$\int_{T_{\gamma}(\xi, a) \cap B(\xi, 1)} |\nabla_{l} u(x)|^{p} x_{n}^{lp-n} dx < \infty, \qquad l = m - k + 1, \dots, m,$$

for any a>0 and any $\xi \in \partial R^n_+$ except for a set B_γ such that $H_{\gamma(n-mp+\alpha)}(B_\gamma)=0$ if $n-mp+\alpha>0$ and B_γ is empty if $n-mp+\alpha\leq 0$, so that

$$H_{\gamma(n-mp+\alpha)}(E_{l,\gamma})=0 \quad \text{if} \quad n-mp+\alpha \geq 0 \quad \text{and} \quad l=m-k+1, \cdots, m.$$

The corollary to Lemma 6 implies that $H_{\gamma(n-mp+\alpha)}(E_{l,\gamma})=0$ if $n-mp+\alpha>0$ and $l=1, \dots, m-k$, and $E_{l,\gamma}$ is empty if $n-mp+\alpha\leq 0$ and $l=1, \dots, m-k$. Thus, with the aid of [7; Lemmas 2 and 3], we see that $H_{\gamma(n-mp+\alpha)}(E_{\gamma})=0$ if $n-mp+\alpha>0$, and $B_{n/p,p}(E_{\infty})=0$ if $n-mp+\alpha=0$, where $E_{\infty}\equiv \bigcup_{i=1}^{n} E_{\gamma}=A\cup F_{0}$.

Let $\xi \in \partial R_+^n - E_\gamma$, and take a function $\phi \in C_0^{\infty}(R^n)$ such that $\phi = 1$ on $B(\xi, 2)$. Write $m - k + 1 = 2s + s^*$, where s and s^* are nonnegative integers such that $0 \le s^* \le 1$. Setting $w = \phi v$, we have the following integral representation (cf. [5; Theorems 4.1 and 4.2]):

$$w(x) = U(x; w) \equiv \begin{cases} \int K_{2s}(x-y)\Delta^{s}w(y)dy & \text{if } s^{*}=0, \\ \sum_{j=1}^{n} \int \frac{\partial K_{2s+2}}{\partial x_{j}}(x-y) \left(\frac{\partial}{\partial y_{j}}\Delta^{s}w(y)\right)dy & \text{if } s^{*}=1, \end{cases}$$

holds for almost every $x \in \mathbb{R}^n$, where $K_{2l}(x) = C_l |x|^{2l-n}$ if 2l < n or n is odd, and $K_{2l}(x) = C_l |x|^{2l-n} \log |x|$ if $2l \ge n$ and n is even; the constants C_l are chosen so that $U(x; \psi) = \psi$ for any $\psi \in C_0^{\infty}(\mathbb{R}^n)$. Since w is infinitely differentiable on \mathbb{R}^n_+ , U(x; w) is continuous on \mathbb{R}^n_+ and w(x) = U(x; w) holds for any $x \in \mathbb{R}^n_+$.

We shall prove the theorem only in the case $s^*=1$; the case $s^*=0$ can be proved similarly. Write $U(x; w)=U_1(x)+U_2(x)+U_3(x)$, where

$$U_{1}(x) = \sum_{j=1}^{n} \int_{B(x, x_{n}/2)} \frac{\partial K_{2s+2}}{\partial x_{j}} (x-y) \left(\frac{\partial}{\partial y_{j}} \Delta^{s} w(y)\right) dy,$$

$$U_{2}(x) = \sum_{j=1}^{n} \int_{B(x, +x-\xi)/2} \frac{\partial K_{2s+2}}{\partial x_{j}} (x-y) \left(\frac{\partial}{\partial y_{j}} \Delta^{s} w(y)\right) dy,$$

$$U_{3}(x) = \sum_{j=1}^{n} \int_{R^{n} - B(x, +x-\xi)/2} \frac{\partial K_{2s+2}}{\partial x_{j}} (x-y) \left(\frac{\partial}{\partial y_{j}} \Delta^{s} w(y)\right) dy.$$

Since $\xi \in A$ by our assumption, $\int |\nabla_1 K_{2s+2}(\xi - y)| |\nabla_{2s+1} w(y)| dy < \infty$, so that Lebesgue's dominated convergence theorem implies that $\lim U_3(x)$ exists and is finite as $x \to \xi$, $x \in \mathbb{R}^n_+$.

Define
$$W(x) = \int_{B(\xi, 2|x-\xi|)} |\nabla_{2s+1}w(y)|^p |y_n|^\beta dy$$
. As in [7; Lemma 5], we have

$$|U_{2}(x)|^{p} \leq \text{const.} \begin{cases} x_{n}^{m\,p-\alpha-n}W(x) & \text{if } n-mp+\alpha>0, \\ \left\{\log\left(\frac{|x-\xi|}{x_{n}}+2\right)\right\}^{p-1}W(x) & \text{if } n-mp+\alpha=0, \\ |x-\xi|^{m\,p-\alpha-n}\left[\log(|x-\xi|^{-1}+2)\right]^{p-1}W(x) & \text{if } n-mp+\alpha<0. \end{cases}$$

Since w(x) = v(x) on $B(\xi, 1)$, $\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} U_2(x) = 0$ for any a > 0. Set $k_s(r) = K_{2s+2}(x)$, where r = |x|. If $n - mp + \alpha \ge 0$, then 2s + 1 = m - k + 1 < n.

Set $k_s(r) = K_{2s+2}(x)$, where r = |x|. If $n - mp + \alpha \ge 0$, then 2s+1=m-k+1 < n. First suppose $2s+2 \le n$. Then

$$\begin{split} U_{1}(x) &= -\sum_{j=1}^{n} k_{s}(x_{n}/2) \int_{\partial B(x, x_{n}/2)} \frac{\partial}{\partial y_{j}} \Delta^{s} u(y) \frac{y_{j} - x_{j}}{|y - x|} \, dS(y) \\ &+ \int_{B(x, x_{n}/2)} K_{2s+2}(x - y) \Delta^{s+1} u(y) \, dy \\ &= -\int_{B(x, x_{n}/2)} \left\{ k_{s}(x_{n}/2) - K_{2s+2}(x - y) \right\} \Delta^{s+1} u(y) \, dy \, y \\ &= -\int_{0}^{x_{n}/2} \left\{ k_{s}(x_{n}/2) - k_{s}(r) \right\} \left\{ \int_{\partial B(x, r)} \Delta^{s+1} u(y) \, dS(y) \right\} dr \\ &= -\sum_{i=1}^{m-s} c_{i} \Delta^{i+s} u(x) \int_{0}^{x_{n}/2} \left\{ k_{s}(x_{n}/2) - k_{s}(r) \right\} r^{n-1+2i-2} \, dr \\ &= -\sum_{i=1}^{m-s} c_{i}' \Delta^{i+s} u(x) x_{n}^{2i+2s} \\ &= x_{n}^{-n} \sum_{0 < |\lambda| \le m} c_{\lambda} \int_{B(x, x_{n}/2)} (y - x)^{2} D^{\lambda} u(y) \, dy \end{split}$$

by Lemmas 1 and 2, where $x \in B(\xi, 1) \cap \mathbb{R}^n_+$, so that u(x) = w(x) there. Hence it follows from Hölder's inequality that

$$|U_1(x)| \leq \text{const.} \sum_{l=1}^m \left(\int_{B(x, x_n/2)} |\nabla_l u(y)|^p y_n^{lp-n} dy \right)^{1/p},$$

which tends to zero as $x \to \xi$, $x \in T_{\gamma}(\xi, a)$, since $\xi \in \bigcup_{l=1}^{m} E_{l,\gamma}$. Thus the proof of the theorem is complete.

4. Further results and remarks.

Let D be a special Lipschitz domain as defined in Stein [10; Chap. VI]. Then similar results can be shown to hold for u which is polyharmonic of order m+1 in D and satisfies

$$\int_{\mathcal{D}} |\nabla_m u(x)|^p d(x)^{\alpha} dx < \infty, \qquad p > 1, \ \alpha < mp - 1,$$

if we replace $T_{\gamma}(\xi, a)$ by the set $\{x \in D; |x - \xi| < ad(x)^{1/\gamma}\}$. Here d(x) denotes the distance from x to the boundary ∂D .

Finally we give an open problem: If u is a function which is polyharmonic of order m+1 in R_+^n and satisfies (1) with p>1 and $\alpha=mp-1$ for any bounded open set G in R_+^n , then does there exist a set E such that $H_{n-1}(E)=0$ and uhas a nontangential limit at any $\xi \in \partial R_+^n - E$? By a well known result [10; Theorem 4 in Chap. VII], this is true for a harmonic function u in R_+^n satisfying (1) with $1 and <math>\alpha = p-1$ for any bounded open set G in R_+^n . In view of the proofs of [8; Theorem 1] and our theorem, we have the following result: If u is a function which is polyharmonic of order m+1 in R_+^n and satisfies (1) with p>1 and $\alpha=mp-1$ for any bounded open set G in R_+^n , then there exists a set $E \subset \partial R_+^n$ such that $H_{n-1}(E)=0$ and

$$C(\xi; u, l_{\xi}) = C(\xi; u, T_1(\xi, a))$$

for any a > 0 and any $\xi \in \partial R^n_+ - E$, where $C(\xi; u, F) = \bigcap_{r>0} \overline{u(F \cap B(\xi, r))}$ for a set $F \subset R^n_+$ and $l_{\xi} = \{\xi + (0, \dots, 0, t); t > 0\}$.

References

- [1] L. CARLESON, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [2] A.B. CRUZEIRO, Convergence au bord pour les fonctions harmoniques dans R^d de la classe de Sobolev W_1^d , C.R. Acad. Sci., Paris 294 (1982), 71-74.
- [3] J. EDENHOFER, Integraldarstellung einer m-polyharmonischen Funktion, deren Funktionswerte und erste m-1 Normalableitungen auf einer Hyperspäre gegeben sind, Math. Nachr., 68 (1975), 105-113.
- [4] N.G. MEYERS, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292.
- [5] Y. MIZUTA, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J., 4 (1974), 375-396.
- [6] Y. MIZUTA, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J., 9 (1979), 717-745.
- [7] Y. MIZUTA, On the behavior of potentials near a hyperplane, Hiroshima Math. J., 13 (1983), 529-542.
- [8] Y. MIZUTA AND B.H. QUI, On the existence of non-tangential limits of polyharmonic functions, Hiroshima Math. J., 8 (1978), 409-414.
- [9] M.M. NICOLESCO, Recherches sur les fonctions polyharmoniques, Ann. Sci. École Norm. Sup., 52 (1935), 183-220.
- [10] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima Universiny Hiroshima 730, Japan