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AN ESTIMATE FOR THE MEAN CURVATURE OF

COMPLETE SUBMANIFOLDS IN A TUBE

BY YOSHIHISA KITAGAWA

J, Introduction.

Let / : M—>En be an isometric immersion of a compact Riemannian manifold
M into the Euclidean space En. If f(M) is contained in a ball of radius λ, then
the mean curvature vector field H of the immersion / satisfies the following
inequality :

Recently, generalizing the above inequality, Jorge and Xavier [4], and Jorge
and Koutrouflotis [2] proved the following theorem.

THEOREM A. Let M be a complete Riemanman manifold whose scalar curva-
ture is bounded below and let Bχ be a closed normal ball of radius λ in a
Riemannian manifold N. Set b for the supremum of the sectional curvature of
Nin Bχ. Let f : M—>BχdN be an isometric immersion. Then the mean curvature
vector field H of the immersion f satisfies the following:

(1) sup|i/|^VT/tan(;iVTΓ), if b>0 and λ<π/2VT,
(2) sup I/ί I S I A if b=0,

(3) supli/lSV^ft/tanhUV^S), if b<0.

In this paper we show a natural extension of the inequalities in Theorem A
considering a tube instead of a ball.

2. Statement of results.

Let / : M-^N be an isometric immersion of an ?n-dimensional complete
Riemannian manifold M whose scalar curvature is bounded below into an
n-dimensional Riemannian manifold N whose sectional curvature KN satisfies
— oo<mίKN and KN^b. For n>p^l, let P be a />-dimensional embedded
submanifold in iV and let TP1 be the normal bundle of P. We denote τ(P, λ)
the tube of radius λ about P in N (i.e. {ξ^TP1: \ξ\£λ} is mapped diffeo-
morphically onto τ(P, λ) through the exponential map). We define μ by
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μ=sup{μ(ξ): ξeTP\ |?|=1},

where μ{ξ) denotes the maximum eigenvalue of the shape operator Aς. Then
our main result is the following.

THEOREM B. In the notations above suppose that f{M) is contained in a tube
about P. Let λ be the infimum of the radius of tubes about P which contain f(M),
If p^m, and 0<λ, then the mean curvature vector field H of the immersion f
satisfies the following *

^J+^^f'b) \ , rn-p / VΎ \
-μ tBn(λy/Ύ) Γ m \ tantfVF)/'μ ( ) m

if b>0, λ<π/2VT)~ and μ< V T

(2) sup|//|^—P-ί V
m\l— μλ/ m \ λ

p

—

=° and

if b<0 and μKV-b/tanhiλV^).

Applying Theorem B to minimal immersions, we have immediately:

THEOREM C. Let f: M^-N be an isometric immersion of an m-dimensional
complete Riemannian manifold M whose scalar curvature is bounded below into an
n-dimensional Riemannian manifold N whose sectional curvature KN satisfies
—oo<inf KN and KN^b. For n>p^l, let P be a p-dimensional embedded sub-
manifold in N and let τ(P, λ) be the tube of radius λ about P. Suppose that f is
minimal and P is totally geodesic. Then the following holds:

(1) /(M)cπr(P, λ)y if b>0, λ<π/2VT and p{l+tan2UVT)} <m,
(2) /(M)cHr(P, λ), if b=0 and p<my

(3) f(M)C.P, if b<0, p^m and /(M)Cr(P, λ).

Remark. Let P be a linear subspace of E3. It is interesting to study com-
plete minimal surfaces in a tube τ(P, λ). For dimP^Ξl, Theorems A and C
imply that τ(P, λ) contains no complete minimal surface whose Gaussian curvature
is bounded. For dimP=2, Jorge and Xavier [3] proved that there exists a
complete non-flat minimal surface in τ(P, λ).

3. Preliminaries.

For n>p^l, let N be an ?z-dimensional Riemannian manifold and let P be
a ^-dimensional embedded submanifold in N. The Riemannian metric, Riemannian
connection and curvature tensor of N are denoted by <, >, V and R respectively..
Let σ : [0, Λ]->Λf be a geodesic parametrized by arclength such that σ(0)eP and

where TσWPL denotes the normal space to P at σ(0),
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Let L(P, σ) denote the vector space of all piecewise smooth vector fields
along σ whose initial value is tangent to P. The index form for the pair (P, σ)
is a symmetric bilinear form / : L{P, σ)xL(P, σ)-+R defined by

KV, W)=- , V)σ,

where A'σ(0) denotes the shape operator for σ(0). A Jacobi field / e L ( P , σ) is
called a P-Jacobi field if it satisfies the following condition :

For Q<to^λ, σ(t0) is called a focal point of the pair (P, σ) if there exists a
nonzero P-Jacobi field / along σ such that /(*<>)=0.

LEMMA 3.1 ([1, p. 228]). Suppose that there is no focal point of the pair
(P, σ). Then for each V<^L(P, σ) there exists a unique P-Jacobi field J along σ
such that J(λ) = V(λ). Furthermore /(/, J)^I(V, V) and equality holds only if
J=V.

For φy μ, t)(=R3, we define gi(b, μ, t) as follows:

go(b, μ, t)=t,

C0S(tVT)-μ'Sin(tV~b~)/\/J

bt μ, t) = 1-μt

coshGfV^δ)—μ sinh(ί V ^ & W 1 ^

if

if

if

if

if

if

b>0,

6<0,

ί » 0 ,

6 - 0 ,

b<0.$mh(tV':::b)/\/zrb

En-ί} be a parallel orthonormal frame field along σ such
is tangent to P for l^j^p. Then we have the following..

Let {EQ, EU

that EQ—d and

LEMMA 3.2. Let J be a P-Jacobi field along σ and let f3=(J, E3y. Suppose
that N has constant sectional curvature b and the shape operator A-σ(0) has a
unique eigenvalue μ. Then f 3 satisfies the following

fl(O)go(b,

fMgiΨ,

ffflgtΦ,

μ>

μ>

μ>

t)

t)

t)

if

if

if

; = o ,

LEMMA 3.3. Suppose that N has constant sectional curvature b and the shape
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operator A-σ{0) has a unique eigenvalue μ. Then there is no focal point of the
pair (P, σ) if one of the following holds:

(3.1) b>0, λ<π/2VΊ? and
(3.2) b=0 and μ<l/λ,

(3.3) b<0 and V

Remark. Lemma 3.2 implies Lemma 3.3. In Lemma 3.3, if μ^O, then the
nonexistence of focal points of the pair (P, σ) implies one of (3.l)-(3.3).

For {b, μ, λ) which satisfies one of (3.1)-(3.3), we define ht{b, μ, λ) as follows:

hoφ, μ, λ) =

μ, λ) =

μVΊb+b-taniλy/b)
if (3.1) holds,

l—μλ
if (3.2) holds,

K^7-τr i f (3.3) holds,

hlb, μ, λ)=

V b /tantf V b )

1/λ

if (3.1) holds,

if (3.2) holds,

if (3.3) holds.

For the pair (P, σ), Jet 1Λ(P, σ) be the subspace of Tσa>N defined by

LEMMA 3.,4. Under the same assumptions as in Lemma 3.3, suppose that one
of (3.1H3.3) holds. Let J be a P-Jacobi field along σ. Then

KJ, ])= Σ hτ{b, μ, λ)\V\P, σ)-component of ]{λ)\\

Proof. Let f,= <J,E,\ Then /(/, /)=<(V;/)«, /(«>= " Σ f'M)fM) ^
J = 0

Lemma 3.2 we have

W)=

Mλ)hoφ,μ,λ) if j = 0,

b, μ, λ) if l ^ ^j

b, μ, 1) if
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Hence /(/, J)=ho(b, μ, λ)fl(λ)+h1(b, μ, λ) Σ f%λ)+h2φ, μ, λ) Σ ΓM). q. e. d.

LEMMA 3.5. Suppose that the sectional curvature KN of N satisfies KN^b
and the maximum eigenvalue of A σW is not larger than μ. If one of (3.1)-(3.3)
holds for (b, μ, λ), then each V^L(P, σ) satisfies the following'

ΠV, V)^ Σ htφ, μ, λ)\Vι(P, σ)-component of V{λ)\\
1 = 0

Proof. Let N{b) denote the ^-dimensional complete simply connected Rieman-
nian manifold of constant sectional curvature b and let τ: [0, X]-*N(b) be a
geodesic parametrized by arclength. We construct a ^-dimensional embedded
submanifold P in Nφ) such that : (0)eP, τ ( 0 ) e T r ( 0 ) P 1 and the shape operator
A'r(o) has a unique eigenvalue μ. Let {Eo, •••, En-i$ be a parallel orthonormal
frame field along τ such that E0=τ and £^(0) is tangent to P for ISjSp. We

define V in L(P,τ) by V= Σ (V, EJ}EJ. Since KNSb and the maximum

eigenvalue of A-σW is not larger than μ, we have I(V, V)^I(V, V), where /
denotes the index form for the pair (P, τ). By Lemmas 3.1, 3.3 and 3.4 we have

I(V, V)^ Σ ht(b, μ, λ)\Vι{P, r)-component of V{λ)\\
ι=o

This implies Lemma 3.5. q. e. d.

4. Proof of Theorem B.

We may assume sup]i/]<co. Let p be the scalar curvature of M and let
β be the second fundamental form of the immersion / : M->N. Then by the
Gauss equation we have

m(m-l)b^p-m2\H\2+\β\2,

sup\KN\+2sup\β\2^\KM\.

Since p has a lower bound, the above inequalities imply the boundedness of the
sectional curvature KM.

Let ψ: τ(P, λ)—>P be the canonical projection and let F: M-^R be the smooth
function defined by

F()

where d(, ) is the distance function on Λτ. Since M is a complete Riemannian
manifold whose sectional curvature is bounded, [5, Theorem A/] implies the
existence of a sequence {xk}t=i in M such that

(4.1)
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(4.2) (ΨF)(X, X)<l/k for all unit vector X^TXkM,

(4.3) HmF(x,)=supF,
k-*oo

where ΨF denotes the Hessian of F with respect to the Riemannian metric of
M. We set λk — d{f(xk), ψf(xk)). Then (4.3) implies limΛ^Λ. Since λ>0, we

may assume 0<λk^λ for all k. Let σk: [0, λk~]->N be the geodesic parametrized
by arclength such that σk(0)=ψf(xk) and σk(λk)=f(xk). Then άk(0) is perpen-
dicular to P. Let {ely - , em} be an orthonormal basis of TXkM such that
V\P, <7*)-component of f*e3 vanishes for all j>p. We set as follows:

ht(k)=hi(b9 μ,λk),

c)(k)=\V\P, ^-component of f*ea\\

2 m

LEMMA 4.1. Σ Σhi(k)c)(k)'£ph1(k)+(rn--ρ)h2{k)+h{k),

where h{k)=- {^|A0(*)-Λi(*)l +(m-p)\ho(k)-h2(k)\}/(kλk)\

Proof. For convenience, put hι—hί{k) and c) — c){k). Since c)=0 (j>p),
2

Σ c j = l and h2^hlt we see that
0

2 771 V

S Σ {A1+(Ao-A1)c?}+ Σ {A2+(Ao-A,)c$}.

Since <gradF, e<7>= ĵfe<or*(^*), /*^>, (4.1) implies c5(^)<l/(^>ife)2. Hence we have

2 m

Σ ΣAiC}^ί{Aι-|Aβ-Λil/(W*)ϊ}+(wi-/»){Aί-|A.-Ai|/(W») }.

q. e. d.

Let 7̂  be the index form for the pair (P, σΛ). Then a calculation shows that

(4.4) -^-ΨF(eJ} ej)=(β(βj, eό), σk{λk)>+Ik{JJy J3),

where / ; is the P-Jacobi field along σk such that J(λk)=f*ej. Applying Lemma
3.5 to the pair (P, σk), we have

(4.5) Ik(Jj,Jj)^h
ι=o

Hence (4.2), (4.4), (4.5) and Lemma 4.1 imply

m/kλk^-msup\H\+ph1(k)+(rn-p)h?Xk)i-h(k).
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Since Y\mhι{k) — hi(b, μ, λ) and lim h(k)—O, we have
k -*oo &-»oo

sup I i f I ̂ - ^ - ^ ( 6 , μ, λ)+?^-h9(b, μ, λ).
m m

This completes the proof of Theorem B.
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