AN ESTIMATE FOR THE MEAN CURVATURE OF COMPLETE SUBMANIFOLDS IN A TUBE

By Yoshihisa Kitagawa

1. Introduction.

Let $f: M \to E^n$ be an isometric immersion of a compact Riemannian manifold M into the Euclidean space E^n . If f(M) is contained in a ball of radius λ , then the mean curvature vector field H of the immersion f satisfies the following inequality:

 $\sup |H| \ge 1/\lambda$.

Recently, generalizing the above inequality, Jorge and Xavier [4], and Jorge and Koutroufiotis [2] proved the following theorem.

THEOREM A. Let M be a complete Riemannian manifold whose scalar curvature is bounded below and let B_{λ} be a closed normal ball of radius λ in a Riemannian manifold N. Set b for the supremum of the sectional curvature of N in B_{λ} . Let $f: M \rightarrow B_{\lambda} \subset N$ be an isometric immersion. Then the mean curvature vector field H of the immersion f satisfies the following:

- (1) $\sup |H| \ge \sqrt{b} / \tan(\lambda \sqrt{b})$, if b > 0 and $\lambda < \pi/2\sqrt{b}$,
- (2) $\sup |H| \ge 1/\lambda$, if b=0,
- (3) $\sup |H| \ge \sqrt{-b}/\tanh(\lambda\sqrt{-b})$, if b < 0.

In this paper we show a natural extension of the inequalities in Theorem A considering a tube instead of a ball.

2. Statement of results.

Let $f: M \to N$ be an isometric immersion of an *m*-dimensional complete Riemannian manifold M whose scalar curvature is bounded below into an *n*-dimensional Riemannian manifold N whose sectional curvature K_N satisfies $-\infty < \inf K_N$ and $K_N \leq b$. For $n > p \geq 1$, let P be a *p*-dimensional embedded submanifold in N and let TP^{\perp} be the normal bundle of P. We denote $\tau(P, \lambda)$ the tube of radius λ about P in N (i.e. $\{\xi \in TP^{\perp} : |\xi| \leq \lambda\}$ is mapped diffeomorphically onto $\tau(P, \lambda)$ through the exponential map). We define μ by

Received April 18, 1983

YOSHIHISA KITAGAWA

$$\mu = \sup \{ \mu(\xi) : \xi \in TP^{\perp}, |\xi| = 1 \},$$

where $\mu(\xi)$ denotes the maximum eigenvalue of the shape operator A_{ξ} . Then our main result is the following.

THEOREM B. In the notations above suppose that f(M) is contained in a tube about P. Let λ be the infimum of the radius of tubes about P which contain f(M). If $p \leq m$, and $0 < \lambda$, then the mean curvature vector field H of the immersion f satisfies the following \cdot

(1)
$$\sup |H| \ge -\frac{p}{m} \left(\frac{\mu \sqrt{b} + b \cdot \tan(\lambda \sqrt{b})}{\sqrt{b} - \mu \cdot \tan(\lambda \sqrt{b})} \right) + \frac{m - p}{m} \left(\frac{\sqrt{b}}{\tan(\lambda \sqrt{b})} \right),$$

if b > 0, $\lambda < \pi/2\sqrt{b}$ and $\mu < \sqrt{b}/\tan(\lambda\sqrt{b})$,

(2)
$$\sup |H| \ge -\frac{p}{m} \left(\frac{\mu}{1-\mu\lambda}\right) + \frac{m-p}{m} \left(\frac{1}{\lambda}\right), \text{ if } b=0 \text{ and } \mu < 1/\lambda,$$

(3)
$$\sup |H| \ge -\frac{p}{m} \left(\frac{\mu \sqrt{-b+b} \cdot \tanh(\lambda \sqrt{-b})}{\sqrt{-b-\mu} \cdot \tanh(\lambda \sqrt{-b})} \right) + \frac{m-p}{m} \left(\frac{\sqrt{-b}}{\tanh(\lambda \sqrt{-b})} \right)$$

if b < 0 and $\mu < \sqrt{-b}/\tanh(\lambda\sqrt{-b})$.

Applying Theorem B to minimal immersions, we have immediately:

THEOREM C. Let $f: M \rightarrow N$ be an isometric immersion of an m-dimensional complete Riemannian manifold M whose scalar curvature is bounded below into an n-dimensional Riemannian manifold N whose sectional curvature K_N satisfies $-\infty < \inf K_N$ and $K_N \leq b$. For $n > p \geq 1$, let P be a p-dimensional embedded submanifold in N and let $\tau(P, \lambda)$ be the tube of radius λ about P. Suppose that f is minimal and P is totally geodesic. Then the following holds:

- (1) $f(M) \oplus \tau(P, \lambda)$, if b > 0, $\lambda < \pi/2\sqrt{b}$ and $p \{1 + \tan^2(\lambda\sqrt{b})\} < m$,
- (2) $f(M) \oplus \tau(P, \lambda)$, if b=0 and p < m,
- (3) $f(M) \subset P$, if b < 0, $p \leq m$ and $f(M) \subset \tau(P, \lambda)$.

Remark. Let P be a linear subspace of E^3 . It is interesting to study complete minimal surfaces in a tube $\tau(P, \lambda)$. For dim $P \leq 1$, Theorems A and C imply that $\tau(P, \lambda)$ contains no complete minimal surface whose Gaussian curvature is bounded. For dim P=2, Jorge and Xavier [3] proved that there exists a complete non-flat minimal surface in $\tau(P, \lambda)$.

3. Preliminaries.

For $n > p \ge 1$, let N be an n-dimensional Riemannian manifold and let P be a p-dimensional embedded submanifold in N. The Riemannian metric, Riemannian connection and curvature tensor of N are denoted by \langle , \rangle , ∇ and R respectively. Let $\sigma : [0, \lambda] \rightarrow N$ be a geodesic parametrized by arclength such that $\sigma(0) \in P$ and $\dot{\sigma}(0) \in T_{\sigma(0)}P^{\perp}$, where $T_{\sigma(0)}P^{\perp}$ denotes the normal space to P at $\sigma(0)$.

186

Let $L(P, \sigma)$ denote the vector space of all piecewise smooth vector fields along σ whose initial value is tangent to P. The index form for the pair (P, σ) is a symmetric bilinear form $I: L(P, \sigma) \times L(P, \sigma) \rightarrow \mathbf{R}$ defined by

$$I(V, W) = -\langle A_{\dot{\sigma}(0)}V(0), W(0) \rangle + \int_{0}^{\lambda} \{\langle \nabla_{\dot{\sigma}}V, \nabla_{\dot{\sigma}}W \rangle + \langle R(\dot{\sigma}, V)\dot{\sigma}, W \rangle \} dt,$$

where $A_{\dot{\sigma}(0)}$ denotes the shape operator for $\dot{\sigma}(0)$. A Jacobi field $J \in L(P, \sigma)$ is called a *P*-Jacobi field if it satisfies the following condition:

$$A_{\dot{\sigma}(0)} J(0) + (\nabla_{\dot{\sigma}} J)(0) \in T_{\sigma(0)} P^{\perp}$$

For $0 < t_0 \leq \lambda$, $\sigma(t_0)$ is called a focal point of the pair (P, σ) if there exists a nonzero *P*-Jacobi field *J* along σ such that $J(t_0)=0$.

LEMMA 3.1 ([1, p. 228]). Suppose that there is no focal point of the pair (P, σ) . Then for each $V \in L(P, \sigma)$ there exists a unique P-Jacobi field J along σ such that $J(\lambda) = V(\lambda)$. Furthermore $I(J, J) \leq I(V, V)$ and equality holds only if J = V.

For $(b, \mu, t) \in \mathbb{R}^3$, we define $g_i(b, \mu, t)$ as follows:

$$g_{0}(b, \mu, t) = t,$$

$$\int \cos(t\sqrt{b}) - \mu \cdot \sin(t\sqrt{b}) / \sqrt{b}$$

$$g_{1}(b, \mu, t) = \begin{cases} 1 - \mu t & \text{if } b = 0, \\ 1 + \mu t & \text{if } b = 0, \end{cases}$$

$$(\cosh(t\sqrt{-b})-\mu\cdot\sinh(t\sqrt{-b})/\sqrt{-b})$$
 if $b<0$

if b > 0,

$$(\sin(t\sqrt{b})/\sqrt{b})$$
 if $b > 0$

$$g_{2}(b, \mu, t) = \begin{cases} t & \text{if } b = 0, \\ \sinh(t\sqrt{-b})/\sqrt{-b} & \text{if } b < 0. \end{cases}$$

Let $\{E_0, E_1, \dots, E_{n-1}\}$ be a parallel orthonormal frame field along σ such that $E_0 = \dot{\sigma}$ and $E_j(0)$ is tangent to P for $1 \leq j \leq p$. Then we have the following.

LEMMA 3.2. Let J be a P-Jacobi field along σ and let $f_{j} = \langle J, E_{j} \rangle$. Suppose that N has constant sectional curvature b and the shape operator $A_{\sigma(0)}$ has a unique eigenvalue μ . Then f, satisfies the following

$$f_{j}(t) = \begin{cases} f'_{0}(0)g_{0}(b, \mu, t) & \text{if } j = 0, \\ f_{j}(0)g_{1}(b, \mu, t) & \text{if } 1 \leq j \leq p, \\ f'_{j}(0)g_{2}(b, \mu, t) & \text{if } p+1 \leq j \leq n-1 \end{cases}$$

LEMMA 3.3. Suppose that N has constant sectional curvature b and the shape

operator $A_{\sigma(0)}$ has a unique eigenvalue μ . Then there is no focal point of the pair (P, σ) if one of the following holds:

- (3.1) b > 0, $\lambda < \pi/2\sqrt{b}$ and $\mu < \sqrt{b}/\tan(\lambda\sqrt{b})$,
- (3.2) $b=0 \text{ and } \mu < 1/\lambda$,
- (3.3) b < 0 and $\mu < \sqrt{-b}/\tanh(\lambda\sqrt{-b})$.

Remark. Lemma 3.2 implies Lemma 3.3. In Lemma 3.3, if $\mu \ge 0$, then the nonexistence of focal points of the pair (P, σ) implies one of (3.1)-(3.3).

For (b, μ, λ) which satisfies one of (3.1)-(3.3), we define $h_i(b, \mu, \lambda)$ as follows:

$$h_{0}(b, \mu, \lambda) = 1/\lambda,$$

$$h_{1}(b, \mu, \lambda) = \begin{cases} -\frac{\mu\sqrt{b} + b \cdot \tan(\lambda\sqrt{b})}{\sqrt{b} - \mu \cdot \tan(\lambda\sqrt{b})} & \text{if } (3.1) \text{ holds,} \\ -\frac{\mu}{1 - \mu\lambda} & \text{if } (3.2) \text{ holds,} \\ -\frac{\mu\sqrt{-b} + b \cdot \tanh(\lambda\sqrt{-b})}{\sqrt{-b} - \mu \cdot \tanh(\lambda\sqrt{-b})} & \text{if } (3.3) \text{ holds,} \end{cases}$$

$$h_{2}(b, \mu, \lambda) = \begin{cases} \sqrt{b} / \tan(\lambda\sqrt{b}) & \text{if } (3.1) \text{ holds,} \\ 1/\lambda & \text{if } (3.2) \text{ holds,} \\ \sqrt{-b} / \tanh(\lambda\sqrt{-b}) & \text{if } (3.2) \text{ holds,} \end{cases}$$

For the pair (P, σ) , let $V^{\iota}(P, \sigma)$ be the subspace of $T_{\sigma(\lambda)}N$ defined by

$$V^{0}(P, \sigma) = \operatorname{span} \{E_{0}(\lambda)\},$$

$$V^{1}(P, \sigma) = \operatorname{span} \{E_{1}(\lambda), \cdots, E_{p}(\lambda)\},$$

$$V^{2}(P, \sigma) = \operatorname{span} \{E_{p+1}(\lambda), \cdots, E_{n-1}(\lambda)\}.$$

LEMMA 3.4. Under the same assumptions as in Lemma 3.3, suppose that one of (3.1)-(3.3) holds. Let J be a P-Jacobi field along σ . Then

$$I(J, J) = \sum_{i=0}^{2} h_{i}(b, \mu, \lambda) |V^{i}(P, \sigma)\text{-component of } J(\lambda)|^{2}.$$

Proof. Let $f_j = \langle J, E_j \rangle$. Then $I(J, J) = \langle (\nabla_{\dot{\sigma}} J)(\lambda), J(\lambda) \rangle = \sum_{j=0}^{n-1} f'_j(\lambda) f_j(\lambda)$. By Lemma 3.2 we have

$$f'_{j}(\lambda) = \begin{cases} f_{0}(\lambda)h_{0}(b, \mu, \lambda) & \text{if } j=0, \\ f_{j}(\lambda)h_{1}(b, \mu, \lambda) & \text{if } 1 \leq j \leq p, \\ f_{j}(\lambda)h_{2}(b, \mu, \lambda) & \text{if } p+1 \leq j \leq n-1. \end{cases}$$

188

Hence
$$I(J, J) = h_0(b, \mu, \lambda) f_0^2(\lambda) + h_1(b, \mu, \lambda) \sum_{j=1}^p f_j^2(\lambda) + h_2(b, \mu, \lambda) \sum_{p < j} f_j^2(\lambda)$$
. q. e. d.

LEMMA 3.5. Suppose that the sectional curvature K_N of N satisfies $K_N \leq b$ and the maximum eigenvalue of $A_{\dot{\sigma}(0)}$ is not larger than μ . If one of (3.1)-(3.3) holds for (b, μ, λ) , then each $V \in L(P, \sigma)$ satisfies the following

$$I(V, V) \ge \sum_{i=0}^{2} h_{i}(b, \mu, \lambda) |V^{i}(P, \sigma)\text{-component of } V(\lambda)|^{2}.$$

Proof. Let N(b) denote the *n*-dimensional complete simply connected Riemannian manifold of constant sectional curvature *b* and let $\tau : [0, \lambda] \rightarrow N(b)$ be a geodesic parametrized by arclength. We construct a *p*-dimensional embedded submanifold \tilde{P} in N(b) such that $\tau(0) \in \tilde{P}$, $\dot{\tau}(0) \in T_{\tau(0)} \tilde{P}^{\perp}$ and the shape operator $A_{\dot{\tau}(0)}$ has a unique eigenvalue μ . Let $\{\tilde{E}_0, \dots, \tilde{E}_{n-1}\}$ be a parallel orthonormal frame field along τ such that $\tilde{E}_0 = \dot{\tau}$ and $\tilde{E}_j(0)$ is tangent to \tilde{P} for $1 \leq j \leq p$. We define \tilde{V} in $L(\tilde{P}, \tau)$ by $\tilde{V} = \sum_{j=0}^{n-1} \langle V, E_j \rangle \tilde{E}_j$. Since $K_N \leq b$ and the maximum eigenvalue of $A_{\dot{\sigma}(0)}$ is not larger than μ , we have $I(V, V) \geq \tilde{I}(\tilde{V}, \tilde{V})$, where \tilde{I} denotes the index form for the pair (\tilde{P}, τ) . By Lemmas 3.1, 3.3 and 3.4 we have

$$\tilde{I}(\tilde{V}, \tilde{V}) \ge \sum_{\iota=0}^{2} h_{\iota}(b, \mu, \lambda) | V^{\iota}(\tilde{P}, \tau)$$
-component of $\tilde{V}(\lambda) |^{2}$.

This implies Lemma 3.5.

4. Proof of Theorem B.

We may assume $\sup |H| < \infty$. Let ρ be the scalar curvature of M and let β be the second fundamental form of the immersion $f: M \rightarrow N$. Then by the Gauss equation we have

$$m(m-1)b \ge \rho - m^2 |H|^2 + |\beta|^2,$$

$$\sup |K_N| + 2 \sup |\beta|^2 \ge |K_M|.$$

Since ρ has a lower bound, the above inequalities imply the boundedness of the sectional curvature K_{M} .

Let $\psi: \tau(P, \lambda) \rightarrow P$ be the canonical projection and let $F: M \rightarrow R$ be the smooth function defined by

$$F(x) = \frac{1}{2} \{ d(f(x), \psi f(x)) \}^2,$$

where d(,) is the distance function on N. Since M is a complete Riemannian manifold whose sectional curvature is bounded, [5, Theorem A'] implies the existence of a sequence $\{x_k\}_{k=1}^{\infty}$ in M such that

(4.1)
$$|\operatorname{grad} F|(x_k) < 1/k$$
,

(4.2)
$$(\nabla^2 F)(X, X) < 1/k$$
 for all unit vector $X \in T_{x,k}M$,

(4.3)
$$\lim_{k \to \infty} F(x_k) = \sup F$$

where $\nabla^2 F$ denotes the Hessian of F with respect to the Riemannian metric of M. We set $\lambda_k = d(f(x_k), \phi f(x_k))$. Then (4.3) implies $\lim_{k \to \infty} \lambda_k = \lambda$. Since $\lambda > 0$, we

may assume $0 < \lambda_k \leq \lambda$ for all k. Let $\sigma_k : [0, \lambda_k] \to N$ be the geodesic parametrized by arclength such that $\sigma_k(0) = \psi f(x_k)$ and $\sigma_k(\lambda_k) = f(x_k)$. Then $\dot{\sigma}_k(0)$ is perpendicular to P. Let $\{e_1, \dots, e_m\}$ be an orthonormal basis of $T_{x_k}M$ such that $V^1(P, \sigma_k)$ -component of f_*e_j vanishes for all j > p. We set as follows:

$$h_i(k) = h_i(b, \mu, \lambda_k)$$
,

 $c_j(k) = |V^i(P, \sigma_k)$ -component of $f_*e_j|^2$.

LEMMA 4.1.
$$\sum_{i=0}^{2} \sum_{j=1}^{m} h_{i}(k)c_{j}(k) \ge ph_{1}(k) + (m-p)h_{2}(k) + h(k),$$
where $h(k) = -\{p \mid h_{0}(k) - h_{1}(k) \mid + (m-p) \mid h_{0}(k) - h_{2}(k) \mid\} / (k\lambda_{k})^{2}.$

Proof. For convenience, put $h_i = h_i(k)$ and $c_j^i = c_j^i(k)$. Since $c_j^i = 0$ (j > p), $\sum_{i=0}^{2} c_j^i = 1$ and $h_2 \ge h_1$, we see that

$$\begin{split} \sum_{i=0}^{2} & \sum_{j=1}^{m} h_{i} c_{j}^{i} = \sum_{j=1}^{p} \left\{ h_{0} c_{j}^{0} + h_{1} (1 - c_{j}^{0} - c_{j}^{2}) + h_{2} c_{j}^{2} \right\} + \sum_{p < j} \left\{ h_{0} c_{j}^{0} + h_{2} (1 - c_{j}^{0}) \right\}, \\ & \geq \sum_{j=1}^{p} \left\{ h_{1} + (h_{0} - h_{1}) c_{j}^{0} \right\} + \sum_{p < j} \left\{ h_{2} + (h_{0} - h_{2}) c_{j}^{0} \right\}. \end{split}$$

Since $\langle \operatorname{grad} F, e_j \rangle = \lambda_k \langle \dot{\sigma}_k(\lambda_k), f_*e_j \rangle$, (4.1) implies $c_j^0(k) < 1/(k\lambda_k)^2$. Hence we have

$$\sum_{i=0}^{2} \sum_{j=1}^{m} h_{i} c_{j}^{i} \ge p \{h_{1} - |h_{0} - h_{1}| / (k\lambda_{k})^{2}\} + (m-p) \{h_{2} - |h_{0} - h_{2}| / (k\lambda_{k})^{2}\}.$$

q. e. d.

Let I_k be the index form for the pair (P, σ_k) . Then a calculation shows that

(4.4)
$$\frac{1}{\lambda_k} \nabla^2 F(e_j, e_j) = \langle \beta(e_j, e_j), \sigma_k(\lambda_k) \rangle + I_k(f_j, f_j),$$

where J_j is the *P*-Jacobi field along σ_k such that $J(\lambda_k) = f_* e_j$. Applying Lemma 3.5 to the pair (P, σ_k) , we have

(4.5)
$$I_k(J_j, J_j) \ge \sum_{i=0}^2 h_i(k) c_j^i(k)$$
.

Hence (4.2), (4.4), (4.5) and Lemma 4.1 imply

$$m/k\lambda_k \geq -m \sup |H| + ph_1(k) + (m-p)h_2(k) + h(k)$$
.

190

Since $\lim_{k \to \infty} h_i(k) = h_i(b, \mu, \lambda)$ and $\lim_{k \to \infty} h(k) = 0$, we have

$$\sup |H| \geq \frac{p}{m} h_1(b, \mu, \lambda) + \frac{m-p}{m} h_2(b, \mu, \lambda).$$

This completes the proof of Theorem B.

References

- [1] R. BISHOP AND R. CRITTENDEN, Geometry of manifold, Academic Press, New York, 1964.
- [2] L. JORGE AND D. KOUTROUFIOTIS, An estimate for the curvature of bounded submanifolds, Amer. J. Math., 103 (1981), 711-725.
- [3] L. JORGE AND F. XAVIER, A complete minimal surface in \mathbb{R}^3 between two parallel planes, Ann. Math., 112 (1980), 203-206.
- [4] L. JORGE AND F. XAVIER, An inequality between the exterior diameter and the mean curvature of bounded immersions, Math. Z., 178 (1981), 77-82.
- [5] H. OMORI, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205-214.

Department of Mathematics Utsunomiya University Mine-machi, Utsunomiya, 321 Japan