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A CHARACTERIZATION OF THE EXPONENTIAL

FUNCTION BY PRODUCT

BY SHIGERU KIMURA

1. Introduction and statement of results.

Let f(z) be an entire function and set

m(r, / )=min |/(z) | ,
\z\=r

M(r, /)=max|/(z)|.
|z |=r

The relation between m(r, f) and M(r, f) has been very thoroughly explored
for functions whose orders lie strictly between 0 and 1. Hayman [7] proved
the following result.

THEOREM A. // f(z) is an entire function such that

(1.1) mix, f) M(r, / ) = O(1), as r-^cv,

then f(z)=AeBz, where A, B are constants, or else

He was unable to decide whether (1.1) can hold for functions of order one and
of maximal type.

In this connection we prove the following results in this paper.

THEOREM 1. Suppose that f{z) is an entire function of positive integral order
p, and that f(z) has no zeros in a sector {z |arg^ | <π—π/2pJrτj} (η>0) and
δ(Q, /) = 1. // there exists a Jordan curve I joining z=0 to z=co such that

(1.2) f{z)-f{ωz)... f{ω^z) = O(\) (zε/)

where ω=exp(πi/p), then f(z) — eP{z\ where P{z) is a polynomial of degree p, or
else
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A CHARACTERIZATION OF EXPONENTIAL FUNCTION 17

We show that there exists an entire function satisfying the hypotheses of
Theorem 1 and (1.3).

As an immediate consequence of Theorem 1,

COROLLARY 1. Suppose that f(z) is an entire function of order one, and that
f(z) has no zeros in a sector {z | a r g z | < π / 2 + ^ } (η>0) and 5(0, /) = 1. // there
exists a Jordan curve I joining z—ΰ to z—^ such that

(1.4) /(z) /

then f(z) = ΛeBz, where A, B are constants, or else

(1.5) l i m
r-*oo r

We show that there exists an entire function satisfying the hypotheses of
Corollary 1 and (1.5). Observing the function cos z, we note that we can remove
neither the condition on the defect nor the condition on the location of zeros in
Corollary 1.

To prove Theorem 2, we need the following Lemma.

LEMMA 1. Suppose that g{z)~eQ(z)g1(z) is an entire function of finite order
having only negative zeros, where Q(z) is a polynomial and gi(z) is a canonical
product. Then the sign of log\g(r)\ is definite for r^r0 where r0 is a positive
number, unless

(1.6) deg(Re(?(r))=0 and gl(z) = l.

THEOREM 2. Suppose that f{z) is an entire function of order q—2p-Y\ hav-
ing only negative zeros and δ(0, /) = 1. Further setting φ(z2) = f(z) f(—z), g(z) =
φ(—z)/φ(0) we assume that there is an arbitrarily small β>0 such that

(1.7) I log I g{re^)g{re-^) | -2(cos•&) log | g(r) |

for all sufficiently large r where 0^ε(r) — O(l/rε°), εo>O unless g{z) is in case
(1.6). Then f(z) = ePCz) where P(z) is a polynomial of degree q, or else

(1.8) l i m

r-oo rq

We show that there exists an entire function satisfying the hypotheses of
Theorem 2 and (1.8).

We can remove the condition 3(0, f) = l in Theorem 2, by giving some con-
ditions which are stronger than (1.7) and have a variant of Theorem 2.
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THEOREM 3. Suppose that f(z) is an entire function of order q=2p+l hav-
ing only negative zeros. Setting φ(z2)—f(z)-f(—z), g{z)=φ(—z)/φ(O), we assume
that g{z) is a canonical product. Further we assume that there is an arbitrarily
small β such that if \g(r)\^l,

(1.9) log |£(r^) |^(cos^/2) log\g(r)\

for all sufficiently large r and if \g(r)\^l,

(1.10) log |^(r^) |^(cos^/2) log|*(r)|

for all sufficiently large r. Then f{z) — eP{z) where P(z) is a polynomial of degree
q, or else

(1.11) n r ^

We are unable to decide whether there exist functions satisfying the hypo-
theses of Theorem 3 and (1.11).

Arguing as in the proof of Theorem 3, we have the following.

THEOREM 4. // f{z) is an entire function of order one having only negative
zeros such that

(1.12) f(r)'f(~r) = O(l) ( r-oo),

then f{z) — AeBz, where A, B are constants, or else

(1.13) l i m J ?

We show that there exists an entire function satisfying the hypotheses of
Theorem 4 and (1.13).

Finally we can see the following result which is obtained under some conditions
on the value distribution.

THEOREM 5. Suppose that f(z) is an entire function having only negative
zeros and that φ(z)=f(z)-f(—z) is real for real z. Further assume that φ{z)—w
for any real number w has either only real roots or only non-real roots. Then
f(z)=(Az+B)eP(z) or else f{z)—AeP{z)f1{^)> where A, B are real or pure imaginary
constants, P(z) is an odd function and fλ(z) is a canonical product of genus one
such that n(r, 0, /i)~Cr, with a constant C.

2. Proof of Theorem 1. We need two known results.

L E M M A A [5]. Let f(z)=exp(aoz
PJra1z

p~1Jr ••• JrocP)flE[—, p) be an entire
v=i \av '

function of order p and δ(0, /) = 1. Then for any ε>0 we have
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(2.1) log|/ω|-Re^<4εk>^ (/̂ /o(ε)),

for z=reiθ^Γj and

(2.2) log\f(z)\-RecJz
p>-Aε\cj\rp U^jΌ(ε)),

for z=reίθ^Γj-Ej where Cj=ao+ Σ a~p (α=exp(l/(/> + l)), Γ,= {z

^ j s a n exceptional set which is confined in a finite number of disks,
the sum of whose radii is at most ieδaj+2 with an arbitrary small δ>0.

LEMMA B [8]. // φ{z) is a non-constant entire function such that

(2.3) log m(r, φ)<cos πλ log M(r, φ)-\-O(l)

as r-*co, where 0 < ^ < l , then

(2.4) H m l 0 g 4 r ' ^ = ^

where

Let f(z) be an entire function satisfying the hypotheses in Theorem 1. We
suppose that (1.3) is false, i.e.,

(2.5) l t o i n

At first, we show that the genus of the canonical product of f(z) is not greater
than p—1. Since the order of f(z) is equal to p, we can write

(2.6) f(z) = ea°zP+"'+ap Π

Hence

Cj = ao+ Σ a:p = ao+aτpjr - + α " f .

Case (1). p is odd. Setting av= \ αjexp {iiπ + θ^)) (p\θι\<~/2—ηQ, η^ — pη),
we have

Re (cjrp)=rp(Re aQ- \ax\-p cos pθλ \a^\"p cos pθ,)

^rpR^a^-rp{\aλ\-pΛ \- \alfJ\ ~p) cos (π/2-rJ0)

Using (2.1), we see

log I /(r) I £rp Re ̂ 0 - r ^ ( | aλ \ ~
p^r - + | fltj I -?>) cos (^/2- 3; 0)-f-4ε k ; | r .

Therefore we have

- + I aVj\ -p)^-(\og\f(r)\)/rp.
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Hence (2.5) yields

Σ \av\-p<+oo.
v = l

Thus the genus of the canonical product of f(z) is not greater than ρ—1 and
we can rewrite (2.6) as follows

(2.7) /(*)=exp (aoz*+ - +α P )/i(*),

where the genus of fx{z) is at most p — 1. By the well known estimation [6,
P. 29],

logM(r, f^oirη.

Now, it is easy to see that

(2.8) φi(z) = fi(z)fi(ωz) ••• Uω^-'z), (ω-exp (;«//>)) ,

is a function of z2p. Hence setting

we have log M(r2p, φ)^2p log M(r, f^=o(rp). Therefore it follows that

(2.9) U m M M & _ . 0 = o > ( , = ICI = W ) .

On the other hand, by the assumption (1.2) we have

and it follows that φ satisfies hypothesis (2.3) in Lemma B with Λ=l/2 or else

(2.10) φ(z)=K'=constant.

Hence, if φ(z) is not constant, we have

which contradicts (2.9).
Now we deal with case (2.10). Suppose first that K'=Q. Then (2.8) shows

that /i(z)=0 for every z, and so we have f(z)=0 for every z from (2.7). This
contradicts the hypothesis of Theorem 1 that f(z) is an entire function of posi-
tive integral order. Thus K'ΦO. Then (2.8) shows that f(z) does not take the
value 0. From this and (2.10) we have f(z)=eP{z\ where P(z) is a polynomial
of degree p.

Case (2). p is even. Similarly we can prove the conclusions of Theorem 1
using (2.2) instead of (2.1). In fact, for any d0>0, setting δ=(4eα8)"1 sind0 we
have 4eδai+2=aJ sinδo and so in view of EjdΓj={z; aj< \z\ < α 7+3/2}, Ej is con-
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fined in {z |argz|^ττ/2} (;^/0(s)).

EXAMPLES. We show two examples satisfying the hypotheses of Corollary
1 and (1.5), and we show an example satisfying the hypotheses of Theorem 1
and (1.3).

(1). f(z)=l/(zΓ(z)), where Γ(z) is the Gamma function. Since it is well
known [11, p. 151] that,

(2.11) l o g / » = (*-1/2) log z-z+1/2 log 2^+0(1/*),

(—π+δ^&vg z^π—δ)

we have

(2.12) log /(z) = -(z+l/2) log z+z-1/2 log 2π+0(l/z).

Now it is also well known [3, p. 21] that,

exp{log Γ(z)} =exp{log π—log (sin πz)—log Γ(l—z)}

and so we have

(2.13) exp{-log Γ(-z)} =exp{-log ττ+log (-sinτrz)+log Γ(l-z)}.

From (2.11) and (2.13), it follows that

exp{-log Γ(-z)}=exp{-log τr+log (-sinττz)+(z+l/2) log

-z-l+l/2exρ2τr+O(l/z)}, (-π+δ^argz^π-δ).

Therefore we obtain in {z — π+δ^avgz^π—δ},

(2.14) exp{log /(-z)}=exp{log (-sinτrz)+(z+l/2) log (z+1)

Combining (2.12) and (2.14) we have

(2.15) /(r) / ( - r ) — > 0

This is a stronger condition than (1.4). Condition (1.5) follows from (2.12).
(2). If we set g(z)=f(z/π-l/2) where f(z) = l/(zΓ(z)), then g{z) g(-z) =

π~1CΌSz. Hence g{z) satisfies (1.4) and (1.5). However g{z) does not satisfy
(2.15).

(3). Let

where a,=-((2v-l)π/2Y'P. Then, setting p,=(2v-l)π/2 we obtain
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Thus φ^ — Oil) (r—>oo). Hence /(z) is an entire function satisfying the hypo-
theses of Theorem 1 and (1.3).

3. Proof of Lemma 1. Denoting the genus of g±(z) by k, we have

cos kθ
ά(3.1) log\gl(re^\=(l)r\oΊ^ x>+r*+2xr cos β

If k is odd, then (3.1) yields

Thus we have

-dx — > +cχ>

If k is even7 then (3.1) yields similarly (Iog\g1(r)\)/rk—>+°° as r—>+co. Hence,
if ^^/=deg(Re Q(r)), then the sign of \og\g(r)\ coincides with the one of
log|gΊ(r)| for all sufficiently large r.

On the other hand, if k<l, then the sign of log\g(r)\ coincides, with the
one of Re Qir) for all sufficiently large r. In fact, from (3.1) we have

n(x) dx

o xk

x+r

n(x)

and so | log|^Γi(r)| | — o(Re Q{r)). Thus the sign of \og\g(r)\ is definite for
with the exception of case (1.6).

To prove Theorem 2, we shall make use of the following Baernstein's result
[2].

LEMMA C. Let B(t) be a nondecreasing convex function of log t on (0, co)
with B(β) = B(0Jr)=0. Let l(θ) be a bounded and measurable function on (0, π).
Let b(z) be the function which is bounded and harmonic in the half disk {z \z\<R,
lmz>0}, and which has the following boundary values:

b(Reiθ)=l(θ), b(r)=0, b(-r) = B(r) (0<r<R).

Let σe(0, 1), « G ( 0 , 1). Suppose 0<r<s = aR. Then
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(3.2) j ; . (—t)—(cos πσ)be(t)
•f-i+σ

bekr)

-dt

where Kλ is a positive constant depending only on σ, K(a, σ) is a positive constant
depending only on a and σ, and Mλ= sup 1/(0)1.

O<0<τr

4. Proof of Theorem 2. Let f(z) be an entire function satisfying the
hypotheses in Theorem 2. We suppose that (1.8) is false. Proceeding as in § 3
we obtain

(4.1) f(z) = ePW'Uz)9

where P{z) is a polynomial of degree at most q and the genus of fλ(z) is not
greater than q—l—2p. If we set

then the degree of R(z) is not greater than 2p=q—l. Hence we have

log M{r\ φ)^Kr2p+2 log Mir, f^oir*).

Since g(z)=φ(—z)/φ(Q), we obtain

(4.2) UmJ°β^Uo.

Now we can write

(4.3) g(z) = eQW'gl(z),

where Q{z) is a polynomial of degree at most p and the genus of the canonical
product gι(z) is not greater than p.

We can easily deal with case (1.6). Since g(z) has only negative zeros, it
follows from (43) and (1.6) that

where a} (j=0, •••, kf) are all real. Hence by (4.1) we deduce f(z)=exp(P(z))
where P{z) is a polynomial of degree q, which is the desired result.

Now we consider the other cases than (1.6).

Case (1). log|g (r)|^0 and log \g{re^)g{re-^)\-2{cos βq/2) \og\g(r)\ ^
ε{r)\og\g(r)\ for all sufficiently large r.

We set
Q(z) = ak,z

k'+ +a1z, deg (Re Q(r)) = l
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a n d
&rgaj=θj 0 = 1, - , k f ) .

Let β be a sufficiently small positive number. We define in D—{z; 0< \z\ <R,
0<argz</3},

= 1 \og\g{rel

j - Θ

= \" Re(Q(rei*))dφ+2\'Ίog\g1(reit)\dφ,
J -θ JO

Then we have

(4.4) H(reiθ) = γ\ aL\rι sin/fl cos θt-\-

+2\ax\r sin^ cos Θ1+2^\og\g1(rei*)\dφ .

Since ^(z) has only negative zeros, we can show that H(reiθ) is harmonic in D
by arguments similar to those in the proof of Theorem 1 in [1].

Furthermore we consider the subcases.

Case (1-1). k^l. In this case the sign of log|g(r)| coincides with the one
of log|gi(r)| for all sufficiently large r.

Setting /! = [0, π/2)U(3π/2, 2ττ], i 2 =(π/2, 3ττ/2) we define

(4.5) i / α ( r e i < ? ) = Σ -^r \ aj\rj sin jθ cos Θj+H3(reiθ),
θξΞl J

H2(reiθ)= Σ 4 - l α j l
θj<Ξl2 J

where

H3(rei0)=2\θlog\g1(rei

Jo

Then we have ^ ^ ^ )
At first we show that Hλ{reiβ) is a nondecreasing convex function of log r

on (0, oo) with H1(0)=H1(0+)=0, for all sufficiently small positive numbers β.
Since it is trivial from (4.5) that H1(reίβ)—H3(reiβ) is a nondecreasing convex
function of log r on (0, oo) with H1(0)—Hs(0)=0} it is sufficient to show that
H3(reiβ) is so.

We can see that \og\g1{reίθ)\ is monotone decreasing for 0 ^ # ^
In fact, setting

we have from (3.1),
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(4.6,

where

dGk ίsin (k + l)θ Tk(t, 0)+sin£0 Tk+1(t, θ)
dθ

and

T( Θ) (j+l)2+2jt cos

Since T3(t, Θ)>Q for 0^#^( l- l/2/)ττ [13], observing 2π/(q+l)^π/(k + l), we
easily deduce that

Tk(t, θ)>0, Tk+1(t, θ)>0 for 0^θ^

Thus \og\gί(reίθ)\ is monotone decreasing for 0^θ^
Hence we have

and therefore we have

3(log r)2

from the harmonicity of Hz(reίθ). Hence Hz{reίβ) is a convex function of log r
on (0, oo). On the other hand, Hs(reίβ) is a nondecreasing function of log r on
(0, oo) from the fact that \og\g1(reiβ)\ is positive and (3.1). Thus Hλ{reiβ) is a
nondecreasing convex function of logr on (0, oo) with ϋΓ1(O)=//1(O+)=O.

Next we show that H(reiβ) is an increasing convex function of logr for all
sufficiently large r for all sufficiently small positive numbers β. Since log |gx{reiθ) \
is a decreasing function of θ (O^θt^β), we have from (3.1)

)=2\βlog |g&e**) I dφ^2β log | ^ ( r ^ ) |
J o

cosfcfi

+ + COS

^^9r* cos (^ + 1 ) J S Γ ^ ^ ? 0
Jo xn

Hence H3(reiβ)/rk->J

Γoo, as r-*+oo and H(reίβ) is unbounded. From (4.6) we
have

Jo x^+1 (x2+2rx cos 0+r 2 ) 2

where Tf=(^+l)% 2 +2^rx cos #+(&-l)r 2 . Hence we have
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I k + 1

Jo X Λ + 1

r3

(x+rY

1X

dx

for all sufficiently small positive numbers θ. Hence (o2H/dθ2)e=β is negative and
(d2H/(d log r)2)β=β is positive for all sufficiently large r. Thus H(rei^) is an
increasing convex function of log r for all sufficiently large r.

Let γ=β/π. Now we can define a function B*(t) satisfying the hypotheses
on B(t) of Lemma C such that B^{t)^H{treί?) on (0, oo). In fact, choosing a
sufficiently large rlt we define

log-: r^t^

where i/(r2e^)= Jfl r

1(r1e^)+r1ifί(r1β^) log rjrx.
Fix R>r2. Let H*(z) be the bounded harmonic function in D~ {z 0< \z\ <R,

0<argz</3}, which has the following boundary values:

H*(r)=0,

H*(Reiθ)=H(Reίθ).

We define ^ ) in ^ ^ { ^ 0< \z\<Rllr, 0<argz<π} by b(z)=H*{zγ). Then
6(z) is the function considered in Lemma C, with B{t) — B*(t), the R there replaced
by R1/r and

l(θ)=b{Rιlr eiθ)=H*(Reirθ)=H(Reirθ) = [* log | ̂ (ie^^5) | dφ .

Let s=2-1 / 2i? and r2^r<s. Using (3.2) with σ=γq/2 ( = βq/2π<β(q+l)/2π<l)
and α=2~ 1 / 2 r (<1), we obtain

(47)

B*(21/2γR1/r)+2β log M(R, g)
Qq/2

where ϋd, K2 depend only on /3 and q. Now bθ(t)=γH$(tr), bθ{-t)=γHH}re^\
Changing variables in (4.7) and using B*(2li2rR1/r)=H*(21/2ReiP)=H(2sei?)=

[ rlog\g(2seίφ)\dφ^2β log M(2s, ^ ), we obtain

γHf(r) τ, iβ log
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Since Hftte^SiHeite^loglgite^gite-1^ and Hf(t)^Hθ(t)=2 log\g(t)\ (t^r2),
Hf(teiθ)-(cos βq/2)Hf(t)^ε(t) log\g(t)\ from (1.7). Hence we have

e(t)\og\g(t)\ log\g(r)\ \ogM(2s,g)

where d , C2 depend only on β and q. From (4.2) we find a sequence of r = {rj
tending to infinity with n such that

Γ (r)j _ r jogM2s,_^)_ \og\g(r)\
1 r9 / 2 ~ 2 (2s)9/2 = rqί2

< r log\g(r)\
= U

 rq/2 + ε0 >

where C, C are positive constants which do not depend on r. For each fixed r,
if s tends to oo, then we arrive at an impossible inequality from εo>O.

Case (1-2). l>k. In this case, since Re(Q(r)) is positive for all sufficiently
large r, θt lies in ^ = [ 0 , 7r/2]W(3τr/2, 2ττ].

Firstly we assume that k is even. In this case, we use the functions H, Hlf

H2 and Hz defined by (4.5). Hλ(reiβ) is a nondecreasing convex function of log r
on (0, oo) with H1(0)=H1{0+)=0. Since the degree of H^re'^-H^re^) is
higher than one of H2{reiβ), H(reίβ) is a nondecreasing convex function of log r
for all sufficiently large r. Hence arguments similar to those in case (1-1) lead
to a contradiction.

Secondly we assume that k is odd. In this case we define

i/i(re<<?)= Σ — I α, Ir 'sin/0 cos 0,,

H2(reίθ)= Σ — \aj\r3 sin jθ cos Θj+Hs(reιβ),

θjζΞl2 J

where

H>(reiθ)=2[\og\gl(rei'>)\dφ.
Jo

Then we have H(reίθ)=H1(reιθ)J

ΓH2{reιθ).
It is trivial that Hλ{reiβ) is a nondecreasing convex function of log r on

(0, oo) with H1(0)=H1(0+)=0.
Now we show that H{reiβ) is a nondecreasing convex function of log r for

all sufficiently large r for all sufficiently small positive numbers β. Since
Iog\g1(reίθ)\ is an increasing function of θ (0^0^/3), we have from (3.1)



28 SHIGERU KIMURA

(r->oo).

Hence \Hs(reiβ)\/rι->0 as r-> + °° and H(reiβ) is unbounded.

Proceeding as in case (1-1), we have

(d/dθ)(\og\g1(rei0)\) f°° n(x) x sin(k+l)θ Tf+r sinkθ Tf+i ,
= V^1 =)*ΊP^ (x2+2rx cos θ+r2)2

r~n(x) x(k + l)(x+r)2+(k+2)r(x+r)2

^Jo xk+1 (cos θ)2(x+rY

^ k+2 lcrn(x) J , ^ + 2 f n(x)
\ —TTT-dx-i 7̂r\ — v z ^ d x — > 0 (r~>oo)

r Jo xk+1 cos2θ Jr xk+2 J- cos2θ r

for all sufficiently small positive θ.
Hence (d2H/dθ2)θ=β is negative and (92i//(3 log r)2)θ=β is positive for all suf-

ficiently large r. Thus H(reίβ) is a nondecreasing convex function of logr for
all sufficiently large r. Thus arguments similar to those in case (1-1) lead to a
contradiction.

Case (2). log |^(r) |<0 and \og\ g{reiβ)g(re-iβ)\-2{o,o$ βq/2) \og\g(r)\^
ε(r)\og\g(r)\ for all sufficiently large r.

Set Q*(z) = -Q(z), g:ί(z)=g1(z)-1 and g*(z) = eQ*^g*(z\ Then (1.7) is equi-
valent to

I log I g*(re%fi)g*(re-*P) \ -2(cos βq/2) log | g*(r) \ \ ^ε(r) | log | g*(r) \ | .

Thus our case is handled in a fashion almost similar to case (1).
We only show how to handle the inequality corresponding to (4.8). Proceed-

ing as in case (1-1), we have

(4 9) fe(01oglg*(01 ^ ,^^ Jogi^WL __r log M (̂2s, g*)

where Mβ(2s, g*)= sup |g*(2s<?^)|. In this inequality we must show that
o<\θ\<β

Since logM^r,^*)^ sup Re(O*(rei<?)) + logMi8(r,g?) and lim{ sup Re(Q*(reiθ))}
0<\θ\<β r-oo 0<θ<β

/rq/2=0, it is sufficient to show that
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(4.10) lim —

in the case that the genus of g^(z) is not smaller than degree of Re (Q(r)). In
this case we have from (3.1),

— dt.

Hence there exists a θ0 for some δo>O such that

Since (4.2) implies lim {log M{r, gί)}/rq/2^0, we have mθo(r, g*)/rQ/2->0 as r-

and so we have

n(rt) dt ^ _>4-co)

Since log|g?(re^)| is monotone decreasing for 0^^^27r/(^+l), we have
logM θ(r,£ί) = log|^?(r)| for 0<β^2π/(q+l). Therefore we proved (4.10).

Proceeding as in case (1), we have a contradiction from (4.9) and (4.10).
An example. Let

—)exp{(—+ - +-(—Y\ tq=2p+l),

where an= — n1/q. Since

we have

where bn — — n2l<ι. Now n(r, 0: g)~rq/2 and hence we have in {z |argz] <ττ
7r) the asympotic expansion [9, p. 232],

\og\g(reiθ)I =(-l) p ττr 2 ) + 1 / 2 cos{θ(p+l/2)} +O(r^+log r).

Therefore

where ε(r) = O(l/rε°) (ε0>0). Thus f(z) satisfies the hypotheses of Theorem 2
and (1.8).
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δ. Proof of Theorem 3. Let f{z) be an entire function satisfying the
hypotheses in Theorem 3. We suppose that (1.11) is false, i.e.,

.. . £ log M(r, f)
hm inf — —- <oo .

Since φ(z*) = f(z) f(-z), g(z)=φ(-z)/φ(0) and log M(r2, φ)£2\ogM(r, /), there
exists a sequence {rn} —r which tends to infinity, such that

(5.1) —
j -x - -

Arguing as in § 3, we see that the sign of log | g(r) | is definite for all sufficiently
large r, with the exception of case (1.6) in which case we have the required
function f(z) — eP{z\ deg P(z)=q.

If the sign of log|g(r)| is positive, (5.1) yields

(5.2) lim inf -------' < + co .

If the sign of log|g(r)| is negative, then arguments similar to those in case (2)
of §4 yields lim inf (—log\g(r)\)/rq/2<+oD. Thus in the sequel we may assume

that the sign of \og\g(r)\ is positive for all sufficiently large r, because the
remaining case is similarly dealt with.

Fix R>0. We define in Ό— {z 0< \z\<R, 0<arg^<β} a harmonic function
H(z) as follows

H(reiθ)=[θlog\g(re^)\dφ.
Jo

Let γ = β/π and define b(z) by b(z)=H(zr) in {z 0< \z\ <Rllr, 0<arg2<ττ}. Then
b(z) is the function considered in Lemma 4, with B(t)=H(treίβ), the R there
replaced by R1/r and

^)\dφ.

It is easily verified that B(t) satisfies the hypotheses of Lemma C. Now be{t) —
Tlog\g(t7)\, bβ(—t)=γlog\g(t7eίβ)\. Hence arguing as in §4, we have

> c I c logics)I

Case (1).
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From (5.2) we can find arbitrarily large values of r and s, with r<s, such that
the righthand side of (5.3) is positive. Thus it follows that the inequality

log I g(fβ^) I - (cos βq/2) log I g(t) I > 0

holds for some t>r and this constradicts with our assumption (1.9).

Case (2). B=0. In any case, we have (\og\g(r)\)/rqί2>0 for r>0. For
each fixed r the right-hand side of (5.3) is positive for sufficiently large s, and
again we have a contradiction.

Case (3). 0 < 5 < + ° o . Using the identity [ 2 ] :

r, t)dt,

where Q(r, t)=2rπ-2(r2-t2)~1 log rΓ\ we have

(5.4) log I g(rη I g Γ(log | g(f) \ + log | g(fe^) \)Q(r, t)dt.
Jo

Dividing g by a large positive constant, if necessary, we can assume that (1.9)
holds for all t>0. Putting (1.9) in (5.4), we obtain

log\g(rη\ ^ Γ ( l + cos βq/2) \og\g(f)\-Q(r, t)dt.
Jo

Proceeding as in § 4 of [8], with γq/2 in place of λ, we arrive at

Hence, by Valiron's Tauberian Theorem [12], we have

and

n{r, 0, g)^ —

n{r, 0, /)~-r*.
7Γ

Therefore we have δ(0, / ) = 1 . Proceeding as in the proof of Theorem 2, we
have B—Q, which is impossible.

6. Proof of Theorem 4. Put φ(z2) = f{z)f{-z) and g(z) = φ(-z)/φ(Q), then
g{—r) is bounded i.e., \g(-r)\^C. If C>1, then h(z)=g(z)/C satisfies the as-
sumption of Theorem 3, that is,

with β = π and q=L
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Now we have the following fundamental inequality which corresponds to
(5.3),

log|Λ(r)|+log|C|
)r f

C 2

We note that if Crgl, then we use (5.3) with q=l, again. Proceeding as in the
proof of Theorem 3, we have the desired result.

7. Proof of Theorem 5. Let Jl be the set of real numbers w for which
φ(z) = w has only real roots.

We consider three cases.

Case (1). JL consists of one element. In this case we have φ{z)—K (=con-
stant). Suppose first that K=0, then φ(z)=f(z) f(—z) shows that f(z) or f{—z)
is zero for every z, so that f(z)=0. Suppose next that KφO, then we have
f(z)Φ0 and f(z) = Aexp(P(z)) where P(z) is an odd function.

Case (2). Jl is unbounded. We need the following result [4] .

L E M M A D. Let φ{z) be an entire function. Assume that there exists an un-
bounded sequence {wn} such that all the roots of the equations φ[z) — wn (n = l, •••)
are real. Then φ(z) is a polynomial of degree not greater than two.

Since φ(z)=f(z)f(—z) is a polynomial of degree not greater than two by
Lemma D and f{z) has only negative zeros, it follows that φ(z)=K(z—a)(z+a),
where K and a are real numbers. Hence f(z)=A(z—a)exp(P(z)) where P{z) is
an odd function.

Case 3. Jl consists of at least two elements and is bounded. In this case,
we shall make use of the following result [10].

LEMMA E. Let φ{z) be a transcendental entire function, real for real z.
Assume that φ{z)—w has either only non-real roots or only real roots for all real
numbers w. Then φ(z) = A cos (Bz+Q+D with real constants A, B, C, D, ABΦΰ.

Since φ{z)=f{z)f{—z) and since f(z) has only negative zeros, Lemma E
yields n(r)~\B\r/πf which is the desired result.
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