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ON WEAKLY NONLINEAR CONTRACTIONS

BY KUN-JEN CHUNG

The purpose of this paper is to generalize some known fixed point theorems
to cone-value metric spaces.

(I) Definitions

Let E be a normed space. A set KdE is said to be a cone if (i) K is
closed (ii) if u, VΪΞK then au+bv^K for all a, b^O, (iii) Kr\(~K)={θ} where
θ is the zero of the space E, and (iv) K°Φ@, where K° is the interior of K.
We say u^v if and only if u—v^K, and u>v if and only if u—v^Kand uφv.

n

The cone Kis said to be strongly normal if there is δ>0 such that if z— ΈibiXτy
t = l

*t| | = l, Σ * * = l, fa^O implies | |z | |>δ. The norm in E is said to be

semimonotone if there is a numerical constant M such that QSx^y implies
||x||gM||;y|| (where the constant M does not depend on x and y).

Let X be a set and K a cone. A function d : I x I - > K is said to be a K-
metric on X if and only if (i) d(x, y) — d{y} x), (ii) d(x, y) — θ if and only if
x=y, and (iii) d(x, y)^d(x, z)Jrd{z> y). A sequence {xn} in a /ί-metric space
Z is said to converge to x0 in X if and only if for each u^K° there exists a
positive integer N such that d(xn, xo)^w for n^N. A sequence {xn} in X is
Cauchy if and only if for each u^K° there exists a positive integer N such
that d(;cn, xm)^u for w, m^N. The /^-metric space (Z, d) is said to be complete
if and only if every Cauchy sequence in X converges. Let 5 be a subset of X
a point I G ! is adherent to S if there is a sequence of points of S converging
to x. The set of the points of X adherent to S is called the closure of S. The
set S is closed if and only if it is equal to its closure. A point in X is a boun-
dary point of S if it is adherent to both 5 and its complement C(S). The boun-
dary of 5, denoted by dS, is the set of its boundary points.

Throughout the rest of this paper we assume that K is strongly normal, that
E is a reflexive Banach space, that (X, d) is a complete /ί-metric space, that
P(S)={d(x, y); x, y^S} where S is a subset of X, that P{S) denotes the weak
closure of P(S), and that P1{S)={z; z<=P(S) and zφθ\.

Many preliminary results and examples which will be used in our theorems,
are listed in [4, 8].
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(II) Main results

DEFINITION 1. The mapping 0: Pλ(S) -> K is said to be upper semicontinuous
if {un} and {Qun} are both weakly convergent, then lim0Mn^0(limwn).

7ϊ-»oo n-*oo

DEFINITION 2. Let SdX. We say that a mapping T : S -+ X satisfies Condi-
tion (A) if for each I G S there exists an element u of S such that d(x, u)-{-
d(u, Tx) = d(x, Tx).

Let x o e 5 . We shall construct two sequences {xn} and {x'n} as follows:
Define χl=Tx0. If x[^S, set x1 = x[. If x ί^S, choose x^S so that </(*<>, Xi)
+ d(xlf xϊ) = d(x0, xί). Set x'2=Txx. If X J G S , set x 2=*2. If not, choose x2^S
so that d(xu x2)+d{x2, x'2) = d(xlf x'2). Continuing in this manner, we obtain
{xn}, {x'n} satisfying

( l ) xn+1 = 1 xny

(ii) xn — xr

n if x'n^S, and
(iii) xn^S and d(xn-u xn) + d(xn, x'n) = d(xn-u x'n) if x'n&S.

Let Q(xo)={xi^{xn} ^ ^ * ί } and F(xo)={^<^{^»} ^ ί = ^ ί } .
The following is our main result which is comparable to Theorem 2.2 of

Caristi [9] and Theorem 1 of Park and Yoon [18].

LEMMA 1. Let (X, d) be a complete K-metric space and S a nonempty closed
subset of X. Suppose that T : S -> X satisfies Condition (A), (1), (2) and (3).
(1) d(Tx, Ty)md{x, y))9 xΦy^S,
(2) Q(t)<t for any t^P^S), where 0: PX(S) —> K is upper semi continuous,
(3) Xn^Q(xo) implies xn-i, Xn+i^F(x0), where the sequence {xn} defined as
above. Then T has a unique fixed point in S.

Proof. If there exists an integer j such that xn lies in S for all n^j,
Chung [8] showed that this sequence of iterates converges to a fixed point of
T. Hence we may assume that Q(x0) contains infinitely many points. Let
Q(Xo)={Xn(k)}

We assert that

(B) {d(xn, xn+ί)} weakly converges to θ as n -> oo,

and

(C) {d(T(xn), xn)} weakly converges to θ as n ~> oo.

To prove (B) and (C) we first prove that

(G) d(xn(k)-u x'n(k)) weakly converges to θ as k -> oo.

If we put n(k-τl) = s, n(k)=r, then it follows that
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^d(xs-2f Xs-i)^ •" £d(xr, Xr+i)

^d{xr, Xrr)Jrd{xf

ry Xr+1)

^d(xr, x'τ) + d{xr-u Xr)

Therefore {d(xn(k)-u x^))} and {d(xna)-2, XΠUD-I)} are decreasing and bounded.
Let {d(xm(i), x'mii)+1)} be a subsequence of {d(xnCk)-lf xr

nUt))}. There exist
subsequences {d(xs(ί), *ί( i )+1)} of {d(xmW, x'mω+i)} and {d(xs(ί)-u #β(i))} of
{d(xmii)-i, Xmu))} such that {d(xaU), xUv+i)} weakly converges to ZZΞK and
{d{xs{i), xs(ί)-i)} to ίe/Γ. From the fact d(xs-i, x's)^d(xs-2, xs-i)^d{xr-u x'r),
we see that z=t.

Because 0(d(x,_2, x , - ! ) ) ^ ^ ^ - ! , xί) we see that {©(dC ,̂-!, xs-2))} is bounded.
For convenience, we can assume that {0(d(xsU), xsa)-i))} has a weak limit. By
the upper semicontinuity, we have 0(z)^z. Therefore z ^ ^ and (G) holds.

If w(&)<w^n(£+l), we have

= d(xn> Xn + l) = d(xn(k)-i} x'nik))

Therefore (B) holds. From (B) and (G), we see that (C) holds, too.
Now we show that the sequence {xn} is Cauchy. Suppose not. Then there

is an ε^K° such that for every integer i, there exist integers n(i), m{i) with
ι^n{ϊ)<m(ϊ) such that

(4) d(xn{i), xmii))£ε.

Let, for each integer /, m(i) be the least integer exceeding n(i) satisfying (4)
that is

(5) d(xnu), xmu))£ε and d(Xna), i m w - i ) ^

Since K is semimonotone, the sequence {d(xnu)> Xmu)-i)} is bounded. For con-
venience, we let {d(xnu)> xma))} weakly converges to z. Since

(E) \

we see that {d(T(xnu)), T(xmu)))} weakly converges to z. If zΦθ, we have

( 6 ) d(T(Xn(i))> T(xm(ί)))S0(d(Xn(i), XmU)))<d(xΏ(ί), Xm(ι)).

Let {Q(d(xnd), Xmd)))} have a weak limit. Therefore we have Q(z)^z. We
obtain z—θ. The rest of the proof of the theorem is the same as that of theorem
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1 [8]. Therefore {xn} is a Cauchy sequence. By completeness, there is a
such that {xn} converges to u in S, and Tu — u. This completes the proof.

DEFINITION 3. Let SdX. We say that a mapping T: S-> X is metrically
inward if for each X G S there exists an element u of S such that d(x, u) +
d(u, Tx) = d(x, Tx) where u = x if and only if x = T x .

It is clear that if T is metrically inward, then T satisfies Condition (A).

DEFINITION 4. Let (X, d) be a complete /ί-metric space. We call (X, d) a
complete /Γ-metric convex space if for any real number c, 0 < c < l , and any x, y^X,
there exists z^X such that d(x, z) — cdix, y), and d{z, y)—(l—c)d{x, y).

LEMMA 2. // S is a nonempty closed subset of the complete and convex K~
metric space (X, d) and if po^S, and pi&S, then there exists a point p in the
boundary dS of S such that dip,, p) + d(p, pi) = dip0, pi).

Proof. By Definition 4, we can choose a point p2^X such that
dip,, p2) = d(p2, p1)=2~1d(p0, pλ) and d(p0, p2)Jrd(p2, p1)^d(p0> pύ.

C a s e l : If p2^S, we choose p^X such that d(p2, ps) = d(pz, pj =
2~2d{p0, pλ) and d{p2, ps) + d(p3, p!) = d(p2, pλ). Since d(p0, p2) + d(p2> ps)+
dips, Pi) = d(p0, pύ, and d(p0, pi)ύd(p0, p*) + d(ps, px), we have d(p0, p2)+
d{ρ2, ps)^d(p0, ps) and d(p0, p2) + d(p2, ps) = d(p0> ps). We get d(p0, ps) +
dips, j&i) = d(ίo, Pi)

Case 2 : If p2$S, we choose ps^X such that d(p0, pz) = d{pz, p2)=2~2d{p0> px)
and dip,, ps) + dipz, p2) = dip0, p2). Since d(p0, pz)Λ-diPs, p2) + dip2, pύ^dip,, pλ)
and d(p0, pi)^dip0, ps)Jrdip3, pj, we have dips, p2)+dip2f p^^dips, pi), and
dips, p2) + dip2, p^dipt, p,). We get d(p0, ps) + dip3, pλ) = dipQ, p,).

Continuing the above process, we can choose a sequence {pn}(ZX such that
dipn, pn+1)=2-ndip0, pi) and dip,, pn) + dipn, pi) = dip0, pi). Let pk(n) be another
point such that pk(n)φpnanά dipk(n), pn+i)=2'ndip0, p,). Then either pk(n)^S
and pn&S or pk(n)&S and pn^S. By the construction of {pn}, we see that
{pn} is Cauchy. There exists a point p^X such that {pn} converges to p.
We also know that p^dS. Since d(p0, pn) + dipn, p^ — dipo, pi) for all n ^ l ,
we have d(p0, pi)^dip0, pn), dip0, pi)^dipn, ρx). Sequences {d(p0, pn)} and
{dipn, Pi)} are bounded. Since E is a reflexive Banach space, for convenience,
let

d(po, pn) weakly converge to x, and

dipn, Pi) weakly converge to v.

According to the triangular inequality, we have

(7) dip,, pn)^diPo, p) + dip, pn),

(8) dip, po)^dipo, pn) + dipn, p),
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(9) d(pn,ρι)^d(ρl9ρ)+d(ρ>pn)t

(10) d ( p u p)^d(pu p n ) + d ( p n , p ) .

From (7), (8), (9), and (10), we see that x^d(p0, p), d(p0, p)^x, y^d(plf p), and
d(plf p)Sy. By (j) [8], we see that d(p0, p) + d(ρ, p1)^d(p0, px). This com-
pletes the proof.

THEOREM 1. Let {X, d) be a complete, convex, K-metnc space and S a non-
empty closed subset of X. Suppose that T : 5 -> X satisfies (1), (2) and (11).
(11) TX<ΞS for every x^dS.

Then T has a unique fixed point in S.

Proof. We construct a sequence {pn} in S as follows: Let p0 be an arbi-
trary point in S. Let p[=T(p0). If pΊ^S, then p1 = pί> otherwise, by lemma
2, we choose p^dS so that d(p0, pi) + d(pu pΊ) = d{p0, pΊ). Suppose that {pi},
{pi}, i—l, •••, N have been chosen so that

( i ) pί = T(pt-1)f i=l, - ,7V;
(ii) either pι—pt

ι^S or pi^dS and satisfies the relation:

d{pt-u Pi)Jrd(pι, pf

t) = d ( p ι - l t p i ) .

Now set p'N+i = T(pN). If PN+I^S we put PN+I — PN+I, otherwise we choose
pN+1(=dS so that d(pN, p'N+1) = d(pN, pN+i)Jrd(pN+ί, pf

N+1). Thus by induction
we are finished.

By the construction of {pn}, (11) implies that the sequence {pn} satisfies (3).
Lemma 1 is applicable. Hence T has a unique fixed point in S.

THEOREM 2. Let (X, d) be a complete K-metnc space and S a nonempty
closed subset of X. Suppose that T: S -> X is metrically inward and that T
satisfies (1), (2) and (3). Then T has a unique fixed point in S.

If E is the set of all real numbers and if K is the set of all nonnegative
reals, then, from (4) and (6), Theorems 1 and 2 may now be restated in the
following forms.

THEOREM 3. Let (X, d) be a complete, convex K-metnc space and S a non-
empty closed subset of X. Suppose that T : S -> X satisfies (1), (2) and (11). (2)
@(t)<t for any t^P^S), where 0 is upper semi continuous from the right on P^S).
Then T has a unique fixed point in S.

THEOREM 4. Let (X, d) be a complete metric space and S a nonempty closed
subset of X. Suppose that T: S —> X is metrically inward and that T satisfies
(1), (2), and (3). Then T has a unique fixed point in S.

Utilizing the way of the proof of Lemma 2 [19], we have the following
result.
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THEOREM 5. Let (X, d) be a complete metric space and S a nonempty closed
subset of X, Suppose that T is a mapping from S into X. Then the following
conditions are equivalent:

( i ) For any ε>0, there exists δ(ε)>Q such that d(Tx, Ty)<ε whenever

ε^d(x, y)<ε+δ(ε) and x,

(ii) There exists a self-mapping 0 of [0 oo) into [0 oo] such that Q(s)<s
for all s>0, where 0 is upper semi continuous from the right on [0 oo) and
d(Tx} Ty)md(x,y)\ x,

From Theorem 5, we have the following results.

THEOREM 6. Let (X, d) be a complete metrically convex space and S a non-
empty closed subset of X. Suppose that T : S -> X satisfies (i ) in Theorem 5
and (11). Then T has a unique fixed point in S.

Theorem 6 was proved in [1] by Assad, but it is a special case of our
Theorem 1.

THEOREM 7. Let (X, d) be a complete metric space and S a nonempty closed
subset of X. Suppose that T : S -> X is a metrically inward mapping satisfying
( i ) in Theorem 5 and (3). Then T has a unique fixed point in S.

Theorem 7 was proved in [18] by Park and Yoon, but it is a special case
of our Theorem 2.

Many related papers can be found in [2], [4], [7], [8], [9], and [18]. In
[11, 12, 13], it is required that the mapping 0: Λ(S) -> K be monotone but in
our paper it isn't.

The mapping 0: P^S) —> X is said to be lower semicontinuous if {un} and
{Oιιn} are both weakly convergent, then lim0wn^0(lim un).

The idea of lower semicontinuity is used in many areas. We would like to
have the following result.

THEOREM 8. Let (X, d) be a complete K-metric space and S a nonempty
closed subset of X. Suppose that T : S -> X satisfies (12), (13), (3) and Condition (Λ).
(12) Q(d(Tx, Ty))^d(x, y), xΦy^S,
(13) Q(t)>t for any t^P^S), where 0: Λ(S) -• K is lower semicontinuous. Then
T has a unique fixed point in S.

Proof. The proof is almost the same as that of Lemma 1. We omit it.
The author thanks the referee very much for his valuable suggestions.
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