K.-J. CHUNG KODAI MATH. J. 6 (1983), 301–307

ON WEAKLY NONLINEAR CONTRACTIONS

By Kun-Jen Chung

The purpose of this paper is to generalize some known fixed point theorems to cone-value metric spaces.

(I) Definitions

Let *E* be a normed space. A set $K \subset E$ is said to be a cone if (i) *K* is closed (ii) if $u, v \in K$ then $au+bv \in K$ for all $a, b \ge 0$, (iii) $K \cap (-K) = \{\theta\}$ where θ is the zero of the space *E*, and (iv) $K^{\circ} \neq \emptyset$, where K° is the interior of *K*. We say $u \ge v$ if and only if $u-v \in K$, and u > v if and only if $u-v \in K$ and $u \neq v$. The cone *K* is said to be strongly normal if there is $\delta > 0$ such that if $z = \sum_{i=1}^{n} b_i x_i$, $x_i \in K$, $||x_i|| = 1$, $\sum_{i=1}^{n} b_i = 1$, $b_i \ge 0$ implies $||z|| > \delta$. The norm in *E* is said to be

semimonotone if there is a numerical constant M such that $\theta \leq x \leq y$ implies $||x|| \leq M ||y||$ (where the constant M does not depend on x and y).

Let X be a set and K a cone. A function $d: X \times X \to K$ is said to be a Kmetric on X if and only if (i) d(x, y) = d(y, x), (ii) $d(x, y) = \theta$ if and only if x = y, and (iii) $d(x, y) \leq d(x, z) + d(z, y)$. A sequence $\{x_n\}$ in a K-metric space X is said to converge to x_0 in X if and only if for each $u \in K^\circ$ there exists a positive integer N such that $d(x_n, x_0) \leq u$ for $n \geq N$. A sequence $\{x_n\}$ in X is Cauchy if and only if for each $u \in K^\circ$ there exists a positive integer N such that $d(x_n, x_m) \leq u$ for $n, m \geq N$. The K-metric space (X, d) is said to be complete if and only if every Cauchy sequence in X converges. Let S be a subset of X; a point $x \in X$ is adherent to S if there is a sequence of points of S converging to x. The set of the points of X adherent to S is called the closure of S. The set S is closed if and only if it is equal to its closure. A point in X is a boundary point of S if it is adherent to both S and its complement C(S). The boundary of S, denoted by ∂S , is the set of its boundary points.

Throughout the rest of this paper we assume that K is strongly normal, that E is a reflexive Banach space, that (X, d) is a complete K-metric space, that $P(S) = \{d(x, y); x, y \in S\}$ where S is a subset of X, that $\overline{P}(S)$ denotes the weak closure of P(S), and that $P_1(S) = \{z; z \in \overline{P}(S) \text{ and } z \neq \theta\}$.

Many preliminary results and examples which will be used in our theorems, are listed in [4, 8].

Received June 12, 1982

(II) Main results

DEFINITION 1. The mapping $\emptyset: P_1(S) \to K$ is said to be upper semicontinuous if $\{u_n\}$ and $\{\emptyset u_n\}$ are both weakly convergent, then $\lim_{n \to \infty} \emptyset u_n \leq \emptyset(\lim_{n \to \infty} u_n)$.

DEFINITION 2. Let $S \subset X$. We say that a mapping $T: S \to X$ satisfies Condition (A) if for each $x \in S$ there exists an element u of S such that d(x, u) + d(u, Tx) = d(x, Tx).

Let $x_0 \in S$. We shall construct two sequences $\{x_n\}$ and $\{x'_n\}$ as follows: Define $x'_1 = Tx_0$. If $x'_1 \in S$, set $x_1 = x'_1$. If $x'_1 \in S$, choose $x_1 \in S$ so that $d(x_0, x_1) + d(x_1, x'_1) = d(x_0, x'_1)$. Set $x'_2 = Tx_1$. If $x'_2 \in S$, set $x_2 = x'_2$. If not, choose $x_2 \in S$ so that $d(x_1, x_2) + d(x_2, x'_2) = d(x_1, x'_2)$. Continuing in this manner, we obtain $\{x_n\}$, $\{x'_n\}$ satisfying

(i) $x'_{n+1} = T x_n$,

(ii) $x_n = x'_n$ if $x'_n \in S$, and

(iii) $x_n \in S$ and $d(x_{n-1}, x_n) + d(x_n, x'_n) = d(x_{n-1}, x'_n)$ if $x'_n \in S$.

Let $Q(x_0) = \{x_i \in \{x_n\} ; x_i \neq x'_i\}$ and $F(x_0) = \{x_i \in \{x_n\} ; x_i = x'_i\}$.

The following is our main result which is comparable to Theorem 2.2 of Caristi [9] and Theorem 1 of Park and Yoon [18].

LEMMA 1. Let (X, d) be a complete K-metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ satisfies Condition (A), (1), (2) and (3). (1) $d(Tx, Ty) \leq \emptyset(d(x, y)), x \neq y \in S$,

(2) $\emptyset(t) < t$ for any $t \in P_1(S)$, where $\emptyset: P_1(S) \to K$ is upper semicontinuous,

(3) $x_n \in Q(x_0)$ implies $x_{n-1}, x_{n+1} \in F(x_0)$, where the sequence $\{x_n\}$ defined as above. Then T has a unique fixed point in S.

Proof. If there exists an integer j such that x_n lies in S for all $n \ge j$, Chung [8] showed that this sequence of iterates converges to a fixed point of T. Hence we may assume that $Q(x_0)$ contains infinitely many points. Let $Q(x_0) = \{x_{n(k)}\}.$

We assert that

(B) $\{d(x_n, x_{n+1})\}$ weakly converges to θ as $n \to \infty$,

and

(C) $\{d(T(x_n), x_n)\}$ weakly converges to θ as $n \to \infty$.

To prove (B) and (C) we first prove that

(G) $d(x_{n(k)-1}, x'_{n(k)})$ weakly converges to θ as $k \to \infty$.

If we put n(k+1)=s, n(k)=r, then it follows that

$$d(x_{s-1}, x'_s) = d(T(x_{s-2}), T(x_{s-1}))$$

$$\leq 0 (d(x_{s-2}, x_{s-1}))$$

$$\leq d(x_{s-2}, x_{s-1}) \leq \cdots \leq d(x_r, x_{r+1})$$

$$\leq d(x_r, x'_r) + d(x'_r, x_{r+1})$$

$$\leq d(x_r, x'_r) + d(x_{r-1}, x_r)$$

$$= d(x_{r-1}, x'_r).$$

Therefore $\{d(x_{n(k)-1}, x'_{n(k)})\}$ and $\{d(x_{n(k)-2}, x_{n(k)-1})\}$ are decreasing and bounded. Let $\{d(x_{m(i)}, x'_{m(i)+1})\}$ be a subsequence of $\{d(x_{n(k)-1}, x'_{n(k)})\}$. There exist subsequences $\{d(x_{s(i)}, x'_{s(i)+1})\}$ of $\{d(x_{m(i)}, x'_{m(i)+1})\}$ and $\{d(x_{s(i)-1}, x_{s(i)})\}$ of $\{d(x_{m(i)}, x'_{m(i)+1})\}$ and $\{d(x_{s(i)-1}, x_{s(i)})\}$ of $\{d(x_{s(i)}, x_{s(i)+1})\}$ weakly converges to $z \in K$ and $\{d(x_{s(i)}, x_{s(i)-1})\}$ to $t \in K$. From the fact $d(x_{s-1}, x'_s) \leq d(x_{s-2}, x_{s-1}) \leq d(x_{r-1}, x'_r)$, we see that z = t.

Because $\emptyset(d(x_{s-2}, x_{s-1})) \ge d(x_{s-1}, x'_s)$ we see that $\{\emptyset(d(x_{s-1}, x_{s-2}))\}$ is bounded. For convenience, we can assume that $\{\emptyset(d(x_{s(i)}, x_{s(i)-1}))\}$ has a weak limit. By the upper semicontinuity, we have $\emptyset(z) \ge z$. Therefore $z = \theta$ and (G) holds.

If $n(k) < n \le n(k+1)$, we have

$$d(x_{n(k+1)-1}, x'_{n(k+1)}) \leq d(x_n, x_{n+1}) \leq d(x_{n(k)-1}, x'_{n(k)}).$$

Therefore (B) holds. From (B) and (G), we see that (C) holds, too.

Now we show that the sequence $\{x_n\}$ is Cauchy. Suppose not. Then there is an $\varepsilon \in K^\circ$ such that for every integer *i*, there exist integers $\underline{n}(i)$, $\underline{m}(i)$ with $i \leq \underline{n}(i) < \underline{m}(i)$ such that

(4)
$$d(x_{\underline{n}(i)}, x_{\underline{m}(i)}) \leq \varepsilon$$
.

Let, for each integer $i, \underline{m}(i)$ be the least integer exceeding $\underline{n}(i)$ satisfying (4); that is

(5)
$$d(x_{\underline{n}(i)}, x_{\underline{m}(i)}) \leq \varepsilon$$
 and $d(x_{\underline{n}(i)}, x_{\underline{m}(i)-1}) \leq \varepsilon$.

Since K is semimonotone, the sequence $\{d(x_{\underline{n}(i)}, x_{\underline{m}(i)-1})\}$ is bounded. For convenience, we let $\{d(x_{\underline{n}(i)}, x_{\underline{m}(i)})\}$ weakly converges to z. Since

(E)
$$\begin{cases} d(T(x_{\underline{n}(i)}), T(x_{\underline{m}(i)})) \leq d(x_{\underline{n}(i)}, T(x_{\underline{n}(i)})) + d(x_{\underline{n}(i)}, x_{\underline{m}(i)}) + d(x_{\underline{m}(i)}, T(x_{\underline{m}(i)})), \\ d(x_{\underline{n}(i)}, x_{\underline{m}(i)}) \leq d(x_{\underline{n}(i)}, T(x_{\underline{n}(i)})) + d(T(x_{\underline{n}(i)}), T(x_{\underline{m}(i)})) + d(T(x_{\underline{m}(i)}), x_{\underline{m}(i)}), \end{cases}$$

we see that $\{d(T(x_{\underline{n}(i)}), T(x_{\underline{m}(i)}))\}$ weakly converges to z. If $z \neq \theta$, we have

(6)
$$d(T(x_{\underline{n}(i)}), T(x_{\underline{m}(i)})) \leq \emptyset(d(x_{\underline{n}(i)}, x_{\underline{m}(i)})) < d(x_{\underline{n}(i)}, x_{\underline{m}(i)}).$$

Let $\{\emptyset(d(x_{\underline{n}(i)}, x_{\underline{m}(i)}))\}$ have a weak limit. Therefore we have $\emptyset(z) \ge z$. We obtain $z=\theta$. The rest of the proof of the theorem is the same as that of theorem

KUN-JEN CHUNG

1 [8]. Therefore $\{x_n\}$ is a Cauchy sequence. By completeness, there is a $u \in S$ such that $\{x_n\}$ converges to u in S, and Tu = u. This completes the proof.

DEFINITION 3. Let $S \subset X$. We say that a mapping $T: S \to X$ is metrically inward if for each $x \in S$ there exists an element u of S such that d(x, u) + d(u, Tx) = d(x, Tx) where u = x if and only if x = Tx.

It is clear that if T is metrically inward, then T satisfies Condition (A).

DEFINITION 4. Let (X, d) be a complete K-metric space. We call (X, d) a complete K-metric convex space if for any real number c, 0 < c < 1, and any x, $y \in X$, there exists $z \in X$ such that d(x, z) = cd(x, y), and d(z, y) = (1-c)d(x, y).

LEMMA 2. If S is a nonempty closed subset of the complete and convex Kmetric space (X, d) and if $p_0 \in S$, and $p_1 \notin S$, then there exists a point p in the boundary ∂S of S such that $d(p_0, p)+d(p, p_1)=d(p_0, p_1)$.

Proof. By Definition 4, we can choose a point $p_2 \in X$ such that

 $d(p_0, p_2) = d(p_2, p_1) = 2^{-1} d(p_0, p_1)$ and $d(p_0, p_2) + d(p_2, p_1) = d(p_0, p_1)$.

Case 1: If $p_2 \in S$, we choose $p_3 \in X$ such that $d(p_2, p_3) = d(p_3, p_1) = 2^{-2}d(p_0, p_1)$ and $d(p_2, p_3) + d(p_3, p_1) = d(p_2, p_1)$. Since $d(p_0, p_2) + d(p_2, p_3) + d(p_3, p_1) = d(p_0, p_1)$, and $d(p_0, p_1) \leq d(p_0, p_3) + d(p_3, p_1)$, we have $d(p_0, p_2) + d(p_2, p_3) \leq d(p_0, p_3)$ and $d(p_0, p_2) + d(p_2, p_3) = d(p_0, p_3)$. We get $d(p_0, p_3) + d(p_3, p_1) = d(p_0, p_1)$.

Case 2: If $p_2 \notin S$, we choose $p_3 \notin X$ such that $d(p_0, p_3) = d(p_3, p_2) = 2^{-2}d(p_0, p_1)$ and $d(p_0, p_3) + d(p_3, p_2) = d(p_0, p_2)$. Since $d(p_0, p_3) + d(p_3, p_2) + d(p_2, p_1) = d(p_0, p_1)$ and $d(p_0, p_1) \leq d(p_0, p_3) + d(p_3, p_1)$, we have $d(p_3, p_2) + d(p_2, p_1) \leq d(p_3, p_1)$, and $d(p_3, p_2) + d(p_2, p_1) = d(p_3, p_1)$. We get $d(p_0, p_3) + d(p_3, p_1) = d(p_0, p_1)$.

Continuing the above process, we can choose a sequence $\{p_n\} \subset X$ such that $d(p_n, p_{n+1})=2^{-n}d(p_0, p_1)$ and $d(p_0, p_n)+d(p_n, p_1)=d(p_0, p_1)$. Let $p_{k(n)}$ be another point such that $p_{k(n)} \neq p_n$ and $d(p_{k(n)}, p_{n+1})=2^{-n}d(p_0, p_1)$. Then either $p_{k(n)} \in S$ and $p_n \in S$ or $p_{k(n)} \notin S$ and $p_n \in S$. By the construction of $\{p_n\}$, we see that $\{p_n\}$ is Cauchy. There exists a point $p \in X$ such that $\{p_n\}$ converges to p. We also know that $p \in \partial S$. Since $d(p_0, p_n)+d(p_n, p_1)=d(p_0, p_1)$ for all $n \ge 1$, we have $d(p_0, p_1) \ge d(p_0, p_n)$, $d(p_0, p_1) \ge d(p_n, p_1)$. Sequences $\{d(p_0, p_n)\}$ and $\{d(p_n, p_1)\}$ are bounded. Since E is a reflexive Banach space, for convenience, let

$$\begin{cases} d(p_0, p_n) \text{ weakly converge to } x, \text{ and} \\ d(p_n, p_1) \text{ weakly converge to } y. \end{cases}$$

According to the triangular inequality, we have

- (7) $d(p_0, p_n) \leq d(p_0, p) + d(p, p_n)$,
- (8) $d(p, p_0) \leq d(p_0, p_n) + d(p_n, p)$,

304

(9) $d(p_n, p_1) \leq d(p_1, p) + d(p, p_n)$,

(10) $d(p_1, p) \leq d(p_1, p_n) + d(p_n, p)$.

From (7), (8), (9), and (10), we see that $x \leq d(p_0, p)$, $d(p_0, p) \leq x$, $y \leq d(p_1, p)$, and $d(p_1, p) \leq y$. By (j) [8], we see that $d(p_0, p) + d(p, p_1) = d(p_0, p_1)$. This completes the proof.

THEOREM 1. Let (X, d) be a complete, convex, K-metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ satisfies (1), (2) and (11). (11) $Tx \in S$ for every $x \in \partial S$. Then T has a unique fixed point in S.

Proof. We construct a sequence $\{p_n\}$ in S as follows: Let p_0 be an arbitrary point in S. Let $p'_1 = T(p_0)$. If $p'_1 \in S$, then $p_1 = p'_1$, otherwise, by lemma 2, we choose $p_1 \in \partial S$ so that $d(p_0, p_1) + d(p_1, p'_1) = d(p_0, p'_1)$. Suppose that $\{p_i\}, \{p'_i\}, i=1, \dots, N$ have been chosen so that

(i) $p'_{i}=T(p_{i-1}), i=1, \dots, N;$

(ii) either $p_i = p'_i \in S$ or $p_i \in \partial S$ and satisfies the relation:

$$d(p_{i-1}, p_i) + d(p_i, p'_i) = d(p_{i-1}, p'_i).$$

Now set $p'_{N+1}=T(p_N)$. If $p'_{N+1}\in S$ we put $p_{N+1}=p'_{N+1}$, otherwise we choose $p_{N+1}\in\partial S$ so that $d(p_N, p'_{N+1})=d(p_N, p_{N+1})+d(p_{N+1}, p'_{N+1})$. Thus by induction we are finished.

By the construction of $\{p_n\}$, (11) implies that the sequence $\{p_n\}$ satisfies (3). Lemma 1 is applicable. Hence T has a unique fixed point in S.

THEOREM 2. Let (X, d) be a complete K-metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ is metrically inward and that T satisfies (1), (2) and (3). Then T has a unique fixed point in S.

If E is the set of all real numbers and if K is the set of all nonnegative reals, then, from (4) and (6), Theorems 1 and 2 may now be restated in the following forms.

THEOREM 3. Let (X, d) be a complete, convex K-metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ satisfies (1), ($\overline{2}$) and (11). ($\overline{2}$) $\emptyset(t) < t$ for any $t \in P_1(S)$, where \emptyset is upper semicontinuous from the right on $P_1(S)$. Then T has a unique fixed point in S.

THEOREM 4. Let (X, d) be a complete metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ is metrically inward and that T satisfies (1), $(\overline{2})$, and (3). Then T has a unique fixed point in S.

Utilizing the way of the proof of Lemma 2 [19], we have the following result.

KUN-JEN CHUNG

THEOREM 5. Let (X, d) be a complete metric space and S a nonempty closed subset of X. Suppose that T is a mapping from S into X. Then the following conditions are equivalent:

(i) For any $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that $d(Tx, Ty) < \varepsilon$ whenever

 $\varepsilon \leq d(x, y) < \varepsilon + \delta(\varepsilon)$ and $x, y \in S$.

(ii) There exists a self-mapping 0 of $[0 \infty)$ into $[0 \infty]$ such that $\emptyset(s) < s$ for all s > 0, where \emptyset is upper semicontinuous from the right on $[0 \infty)$ and $d(Tx, Ty) \leq \emptyset(d(x, y)), x, y \in S$.

From Theorem 5, we have the following results.

THEOREM 6. Let (X, d) be a complete metrically convex space and S a nonempty closed subset of X. Suppose that $T: S \to X$ satisfies (i) in Theorem 5 and (11). Then T has a unique fixed point in S.

Theorem 6 was proved in [1] by Assad, but it is a special case of our Theorem 1.

THEOREM 7. Let (X, d) be a complete metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ is a metrically inward mapping satisfying (i) in Theorem 5 and (3). Then T has a unique fixed point in S.

Theorem 7 was proved in [18] by Park and Yoon, but it is a special case of our Theorem 2.

Many related papers can be found in [2], [4], [7], [8], [9], and [18]. In [11, 12, 13], it is required that the mapping $\emptyset: P_1(S) \to K$ be monotone but in our paper it isn't.

The mapping $\emptyset: P_1(S) \to K$ is said to be lower semicontinuous if $\{u_n\}$ and $\{0u_n\}$ are both weakly convergent, then $\lim_{n \to \infty} \emptyset u_n \ge \emptyset (\lim_{n \to \infty} u_n)$.

The idea of lower semicontinuity is used in many areas. We would like to have the following result.

THEOREM 8. Let (X, d) be a complete K-metric space and S a nonempty closed subset of X. Suppose that $T: S \to X$ satisfies (12), (13), (3) and Condition (A). (12) $0(d(Tx, Ty)) \leq d(x, y), x \neq y \in S$,

(13) 0(t) > t for any $t \in P_1(S)$, where $0: P_1(S) \to K$ is lower semicontinuous. Then T has a unique fixed point in S.

Proof. The proof is almost the same as that of Lemma 1. We omit it. The author thanks the referee very much for his valuable suggestions.

References

[1] N.A. ASSAD, A fixed point theorem for weakly uniformly strict contractions, Canad. Math. Bull. 16(1), (1973), 15-18.

- [2] N.A. ASSAD & W.A. KIRK, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1973), No. 3, 553-562.
- [3] L.E. BLUMENTHAL, Theory and application of distance geometry, Clarendon Press, Oxford, (1953).
- [4] J.C. BOLEN & B.B. WILLIAMS, On the convergence of successive approximations for quasi-nonexpansive mappings through abstract cones, Technical Report No. 29 (1975) University of Texas at Arlington.
- [5] D.W. BOYD & J.S. WONG, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [6] K.J. CHUNG, Common fixed point theorems through abstract cones, Bull. Polon. Sci. Math. (1980), 619-626.
- [7] K.J. CHUNG, Remarks on nonlinear contractions, Pacific J. Math. 101 (1982), 41-48.
- [8] K.J. CHUNG, Nonlinear contractions in abstract spaces, Kodai Math. J. 4 (1981), 288-292.
- [9] J. CARISTI, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
- [10] M. M. DAY, Normed linear spaces. p. 23-24.
- [11] J. EISENFELD & V. LAKSHMIKANTHAM, Remarks on nonlinear contraction and comparison principle in abstract cones, J. Math. Anal. Appl. 61 (1977), 116-121.
- [12] J. EISENFELD & V. LAKSHMIKANTHAM, Comparison principle and nonlinear contractions in abstract spaces, J. Math. Anal. Appl. 49 (1975), 504-511.
- [13] J. EISENFELD & V. LAKSHMIKANTHAM, Fixed point theorems through abstract cones, J. Math. Anal. Appl. 52 (1975), 25-35.
- [14] M.A. KRASNOSELSKII, Positive solutions of operation equations, Noordhoff, Groningen, 1964.
- [15] S. MAZUR, Uber konvexe Menger in linearen normierten Raumen, Studia Math.
 4 (1933), 70-84.
- [16] A. MEIR & E. KEELER, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
- [17] V.M. SEHGAL & S.P. SINGH, On a fixed point theorem of Krasnoselskii for locally convex spaces, Pacific J. Math. 62 (1976), No. 2, 561-567.
- [18] S. PARK & J. YOON, Remarks on fixed point theorems on star-shaped sets, J. Korean Math. Soc. Vol. 18, (2) (1982), 135-140.
- [19] T. SZILAGYI & M. HEGEDUS, Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings, Math. Japon. 1 (1980), 147-157.
- [20] C.L. YEN & K.J. CHUNG, A theorem on fixed point and periodic point, Tamkang J. Math. vol. 5, 2 (1974), 235-239.
- [21] K. YOSIDA, Functional analysis, p. 109.

DEPARTMENT OF MATHEMATICS CHUNG YUAN UNIVERSITY CHUNG LI, TAIWAN R.O.C. AND College of Management GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GEORGIA 30332 U.S.A.