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ON A HILBERT MODULE OVER AN OPERATOR
ALGEBRA AND ITS APPLICATION TO
HARMONIC ANALYSIS

By YUICHIRO KAKIHARA

1. Introduction.

We study a left A-module with an A-valued inner product where A is an
operator algebra. Such a space has been investigated by many authors: Kaplansky
[71, Saworotnow [14], Paschke [127], Rieffel [13], Ozawa [11], Itoh [5], Kaki-
hara and Terasaki [6] and others.

Let A be a von Neumann algebra. Then a Hilbert A-module is defined to
be a left A-module with an A-valued inner product respecting the module action,
called a Gramian, which is complete with respect to (w.r.t.) the norm induced
from the Gramian. Our main object is harmonic analysis on a topological group
in the Hilbert A-module context. Especially, a Stone type and a Bochner type
theorems are formulated and proved.

Basic definitions of a Hilbert A-module are given in section 2. In section 3,
A-valued positive definite kernels are considered in connection with reproducing
kernel Hilbert A-modules which are analogous to Aronszajn’s reproducing kernel
Hilbert spaces [1]. Section 4 deals with Gramian unitary representations of a
topological group and Gramian *-representations of a L'-group algebra on a
Hilbert A-module. Results stated in sections 3 and 4 hold when A is a (unital)
C*-algebra. In section 5, we prove our main result which is a Stone type the-
orem for a continuous, in an appropriate sense, Gramian unitary representation
of a locally compact abelian group. As a corollary we give a proof to a Bochner
type theorem for a weakly continuous A-valued positive definite function. Section
6 is devoted to Hilbert A-module valued processes over a locally compact abelian
group. Such a formulation of processes is closely related to Banach space valued
stochastic processes (cf. Cobanjan and Weron [2], Weron [19] and Miamee [8]).

Acknowledgments: The author would like to express his hearty thanks to
Professor H. Umegaki for his valuable suggestions and encouragement in the

course of preparing this paper.

2. Hilbert A-modules.

Throughout this paper A stands for a von Neumann algebra with the norm
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I-1. We denote the action of A on a left A-module X by (a, x) > a-x, aE A,
xeX. We assume that all such modules treated below have a vector space
structure compatible with that of A in the sense that a(a-x)=(aa)-x=a-(ax)
for xeX, a= A and a complex number a.

2.1. DEFINITION. A (left) pre-Hilbert A-module is a left A-module for which
there is a map [, -]: XXX — A such that for x, v, z€X and e A (1) [x, x]
=0, and [x, x]=0iff x=0; 2) [x+y, z]=[x, z21+[y, z21; Q) [a-x, y1=alx, ¥];
4) Cx, y1J*=[y, x]. The map [-, -] is called a Granuzan on X. We sometimes
denote it explicitly by [-, -Jx.

If X is a right A-module, then we can define (right) pre-Hilbert A-module
structure for X in a similar manner as above except that the condition (3) is
replaced by (3') [x-a, y1=[x, y]a. Since there is no essential difference between
right and left A-modules, we restrict our attention to left A-modules.

In a pre-Hilbert A-module X define ||x||x=|[x, x]II*/% xX. Then by [12,
2.3 Proposition], ||| x becomes a norm on X and we have for x, yeX and ac A

la-xlx=lal-lxlx,  Ilx, yI=lxlx-lylle- 2.1)

2.2. DEFINITION A pre-Hilbert A-module X which is complete w.r.t. the
norm |-|lx is called a Hilbert A-module.

Examples of (right) Hilbert A-modules are seen in [12] where A is a C*-
algebra.

2.3. DEFINITION. Let X be a Hilbert A-module. We define the Gramuan
orthogonal complement of a subset ¥ of X by Y¥={xeX; [x, y]=0, yet¥}. A
subset YV is called a submodule if it is a left A-module and is closed w.r.t. || x-
In this case Y is itself a Hilbert A-module. Denote by &(Y) the submodule
generated by a subset Y. It is seen that for each subset Y its Gramian ortho-
gonal complement Y# is a submodule and the relation &) (Y #)# holds.

2.4. DEFINITION. Let X and Y be two Hilbert A-modules with Gramians
[+, *Jx and [-, -Jy, respectively. B(X,Y) denotes the Banach space of all
bounded linear operators from X into Y. A(X, Y) denotes the set of all opera-
tors SeB(X, Y) for which there is an operator T B(Y, X) such that [Sx, yly
=[x, Tylx, x€X, y€Y. It is seen that T is unique if it exists, so that we
denote it by S* and call it the Gramian adjoint of S. An operator U B(X, Y)
is said to be Gramuan unitary if it is onto and satisfies that [Ux, Ux'Jy=[x, x'Jx,
x, x’€X. It can be seen that each Gramian unitary operator U< B(X, Y) belongs
to A(X, Y) and satisfies U*U=1y, the identity operator on X. We write B(X)
=B(X, X) and AX)=A(X, X). An operator P=B(X) is called a Gramian pro-
jection if PeY(X) and P?>=P*=P. Two Hilbert A-modules X and Y are said
to be zsomorphic, in symbols X=Y, if there is a Gramian unitary operator in
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AKX, V).

For ac A define n(a) by m(a)x=a-x, x€X, X being a Hilbert A-module.
Then, by (2.1), wm(a)eB(X). A kind of functionals on a Hilbert A-module is
defined in the following (cf. [7, 12, 14]).

2.5. DEFINITION. Let X be a Hilbert A-module. Denote by X* the set of
all bounded module maps v: X — A. That is, ¢ satisfies 7(a-x+b-y)=ar(x)+
br(y), x, y€X, a, b€ A, and there is some a>0 such that ||z(x)|Zalx|x, x€X.
Each x<= X gives rise to a map £ X* defined by £(y)=[y, x], yeX. X is said
to be self-dual if X*=X(={%; x=X}).

2.6. Remark ([12]). Let X be a Hilbert A-module. Then X* becomes a
self-dual Hilbert A-module in which X can be embedded as a submodule. More-
over, each operator in A(X) can be uniquely extended to an operator in A(X*).
If X is self-dual, then we have WA(X)={S<B(X); Sz(a)=n(a)S, ac A}. That
is, A(X) consists of all bounded module maps from X into itself. Furthermore,
there is a collection {p,; ;€3J} of (not necessarily distinct) nonzero projections
in A such that X=UDS{Ap,; :=3J}, the ultraweak direct sum of self-dual Hil-
bert A-modules Ap,, i€3J. For each :=JX the Gramian on Ap, is defined by
Lap,, bpl.=ap.b*, a, b€ A. As a consequence of this decomposition, for any
self-dual submodule Y of X, we have that X=Y @Y#, the direct sum, and that
there is a Gramian projection of X onto Y.

3. Positive definite kernels.

We consider A-valued positive definite kernels on 22X 2, £ being a set, and
construct reproducing kernel Hilbert A-modules.

3.1. DEFINITION. An A-valued function I” on 22X £ is called a positive
definite kernel (PDK) if for every finite {w,, -+, w,} C£2 and {a,, -+, a,} CA it
holds that X a;[(w;, ®;)a*=0. Every PDK I"on 2XxQ satisfies that (o, »")

2%

=, 0)* v, Q.

For each A-valued PDK I on 2X £ we can associate a Hilbert A-module
2 rA by the method similar to that of Umegaki [17]. To this end, let F(£; A)
be the set of all A-valued functions on 2 with finite supports. For f, geF(2; A)
and a€A define (a-f/)(-)=af(-), [f, g]r:wEw,f(w)F(w, o) glw)* and | fllr=

I/, fArl*2 Then [-, -] satisfies conditions of a Gramian except that [f, f]r
=0 implies f=0. Put Ny={feF(@2; A); [f, f1r=0} and let 2QrA be the
completion of the quotient space F(Q; A)/N, w.r.t. the norm |-|,r. Then
Q®rA is a Hilbert A-module. Moreover, it is closely related to the reproducing
kernel Hilbert A-module of I” defined below.
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3.2. DEFINITION. Let I" be an A-valued PDK on 2x £ and X be a Hilbert
A-module consisting of A-valued functions on £. Then X is said to be the
reproducing kernel (RK) Hilbert A-module of I if

(1) for each we, I'w, )eX;

(2) for each we R and x&X, x(w)=[x(+), ['(w, -)].

The PDK [’ is called the reproducing kernel (RK) for X.

3.3. PROPOSITION. For each A-valued PDK I'on 2X 2 there 1s a unique, up to
tsomorphism, Hilbert A-module Xp admitting I' as a RK. Moreover, the relation

XPE.Q@)FA holds.

Proof. The proof mimics that of [9, 2.5. Lemma] and we only give the
outline. Let X, be the set of all A-valued functions on £ of the form

x()= iaif(wi, ‘), (ZiEA, CUiEQ, 1=:<n

with 7 finite. Define for x(-)=3a.l(w;, +), y(-)=2b;[(w}, )X, and a= A
(a-x)(-)=§)aaif(wf, 9, [x, y]o:]E]aiF(wi, w))b¥.

Then X, becomes a pre-Hilbert A-module with an action and a Gramian defined
as above. Moreover, for x€X, and w2 the reproducing property x(w)=
[x(+), I'(®, )], holds. Hence we have [x(lI=lxlo-III'(@, )ll, where [yll,=
1Ly, y1l*?, yEX,.

Let {x,} be a Cauchy sequence in X, w.r.t. the norm |- [,. It follows from
the above inequality that for every w2 there exists some x(w)e A such that
| xn(@)—x(w)|| — 0. Denote by X, the set of all A-valued functions x on £
obtained in this way. For x, yeXr define [x, y]zLirr;[xn, yalo Where {x,}

and {y,} are Cauchy sequences in X, determining x and y, respectively. Then
we can check that X is actually a Hilbert A-module with the Gramian [-, -].
Furthermore, the reproducing property of " can also be checked and, therefore,
I'is a RK for Xy. The uniqueness of X, and the isomorphism X,=Q®rA

are readily verified.

4. Gramian unitary reresentations and Gramian *-representations.

We first consider Gramian unitary representations of a topological group on
a Hilbert A-module and their relation to A-valued positive definite functions on

the group.

4.1. DEFINITION. Let G be a topological group and X be a Hilbert A-module.

An A-valued function I" on G is said to be positive definite (PD) if for every

finite {a,, -+, a,} CAand {s;, -+, s,} CG it holds that X a./(s;'s,)a*=0. Putt-
7

ing I'(s, )=I(t"%s), s, teG, I'is PD iff I'is a PDK on GXG. Iis said to be
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continuous if it is norm continuous on G. A Gramian unitary representation
(GUR) of G on X is a homomorphism s — U(s) from G into A(X) for which
U(s) is Gramian unitary for every s€G. A GUR s — U(s) is said to be contin-
uous if for every x=X the function s— U(s)x is norm continuous on G. A
vector x,= X is said to be cyclic for a GUR s — U(s) if &{U(s)x,; s€G}=X.

Then we can prove the following.

4.2. PROPOSITION. Let G be a topological group and I': G — A be PD. Then
there exist a Hilbert A-module X, a GUR s - U(s) of G on X and a cyclic vector
x0€X such that I'(s)=[U(s)x,, x0], s€G. It also holds

[PASIEAC! N AOEY NOl =1 VRO KC I RV AOI! (4.1)

for s, tG where e 1s the identity of G. Furthermore, I' is continuous 1f and
only if so 1s s = U(s).

~Proof. Put I'(s, )=I"(t"'s), s, teG and let X be the RK Hilbert A-nlodule
of I with tlge Gramian [, -] (cf. 3.3. Proposition). Then we have I'(s)=1'(s, e)
=[I(s, -), I'(e, -)], s€G. Let X, be the set of all A-valued functions on G of

the form Enalf(sl, 9, a;€4, s;€G, 1=:<n with n finite. For s&G define
=1

U@s) on X, by U)X a;l'(s,, )=2al'(ss,, -). Then it is easy to see that for
x, ye X, the equality [U(s)x, U(s)y]=[x, y] holds. Hence U(s) can be uniquely
extended to a Gramian unitary operator on X since X, is dense in X. Thus
s—U(s) is a GUR of G on X. Putting x,=1'(e, -)€X, it is readily seen that
x, is a cyclic vector for s — U(s) and that the equality /'(s)=[U(s)x,, x,] holds
for s€G. Two inequalities in (4.1) follow from this equality as in the case of
scalar valued PD functions (cf. [18]). The last assertion is not hard to check.

In the remainder of this section let G be a locally compact group with a
left Haar measure ds and consider the space LG ; Z,4) of all Z,-valued Bochner
integrable functions on G w.r.t. ds where Z, is the center of A, i.e., Z,=
{asA; ab=ba, b A}. LYG; Z,) is a Banach *-algebra whose multiplication,

involution and norm are respectively defined by (f g)(t):SG f(s)g(s~t)ds, f*t)=
A®)*f(tY)* and ||le:S(;||f(s)||ds for each f, geLXG; Z4) and t=G where A

is the modular function of G. Define (a-f)-)=af(-), acA, f€LYG; Z,) and
denote by UG ; Z,) the left A-module generated by LYG; Z4). Now we con-
sider Gramian *-representations of LY(G; Z,) on a Hilbert A-module in connec-
tion with GURs of G.

4.3. DEFINITION. Let X be a Hilbert A-module. Then a map f — T(f) from
LG ; Z,) into B(X) is called a Gramian *-representation (G*R) of LNG; Z4) on
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X if the restriction of T to LYG; Z,) is A(X)-valued and if T(a-f-+b-g)=
()T (f)+=b)T(g), T(f*)=T(f)* and T(fg)=T(f)T(g) for each f, g LXG; Z,)
and a, b A where n(a)x=a-x, x€X. A G*R f— T(f) is said to be nonde-
generate if S{T(f)x; feLXG; Z,), xeX}=X.

Given a continuous GUR s—U(s) of G on a Hilbert A-module X, define
T(f) for feLXG; Z,) by

T(f)ngaU(s)(f(S)-x)ds . xeX, 4.2)

where the right hand side is a well-defined Bochner integral. If X is self-dual,
then we can show that f — T(f) is a G*R of LY(G; Z,) on X.

Let B, be the Borel s-algebra of G and M(G; Z,) be the set of all Z,-
valued countably additive (CA) measures, in the norm, on B, of bounded varia-
tions. For p, veM(G; Z,) and a, b€ A define (a-pu+b-v)(B)=au(B)+bv(B),
p¥(B)=p(B~Y)* and (u)(B)=pXv(B')(B'={(s, t); ste B}) for BB, and ||p|=
the total variation of g Then M(G; Z,) becomes a Banach *-algebra. G ; Z4)
denotes the left A-module generated by M(G; Z,). By a Gramian *-representa-
tion of M(G; Z,) on a Hilbert A-module X we mean a map p— T(y) from
WM(G; Z,4) into B(X) whose restriction to M(G; Z,) is UA(X)-valued and which
satisfies that T'(a - p+b-v)=n(a)T()+zB)T ), T(*)=T(w* and T(p)=T ()T (v)
for u, ve M(G; Z,) and a, be A. LNG; Z,) is a Banach *-subalgebra of M(G; Z,)
by identifying feLYG; Z,) with f(s)dseM(G; Z,). By similar proofs of [3,
13.3.1. and 13.3.4. Propositions] we can show the following.

4.4, PROPOSITION. Let X be a self-dual Hilbert A-module. Given a continuous
GUR s—U(s) of G on X, define for peM(G; Z,)

T(r={ Uonuds)x, xeX.

Then T(u) 15 a well-defined operator on X and p— T(u) is a G*R of M(G; Z4)
on X whose restriction to LNG ; Z4) is nondegenerate.

If f— T(f) is a nondegenerate G*R of LYG; Z,) on X, then there is a
unique continuous GUR s —» U(s) of G on X such that (4.2) holds.

5. A Stone type and a Bochner type theorems.

In this section we assume that G is a locally compact abelian group. Denote
by Asx the predual of A and by Aj its positive part. For a Hilbert A-module
X we define the Gramian o-weak topology on (X) (or B(X)) to be the topology
determined by the family of seminorms

SeAX) (or B(X))— [p([Sx, DI, =x, yeX, peA;.

We prove a Stone type spectral representation theorem for a Gramian o-weakly
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continuous GUR of G on some self-dual Hilbert A-module. As a consequence
we give a proof to a Bochner type integral representation theorem of an A-
valued weakly continuous PD function on G. For the scalar valued case we
refer to Nakamura and Umegaki [10] and Umegaki [18].

Before we proceed we need some preparations. Let B¢ be the Borel g-algebra
of the dual group G of G and X be a Hilbert A-module.

5.1. DEFINITION. A map P: Bs— A(X) is called a Granuan spectral measure
on G if P is Gramian projection valued and if, for each p€Af and x, yeX,
p(CP(-)x, ¥]) is a regular measure on G.

Take p=Af and define a semi-inner product on X by (x, y),=p([x, y1), %,
yeX. Put N,={xeX; (x, x),=0} and define X, to be the completion of the
quotient space X/N, w.r.t. (-, -),. Then X, is a Hilbert space where we denote
the inner product and the norm by (-, -), and |-|,, respectively. Write x,=x
+N,=X/N, for x€X. Note that the inequality |x,l,=lpl"*-|lx|x holds for
x€X. Let s — U(s) be a Gramian o-weakly continuous GUR of G on X. For
each s G define an operator U,(s) on X/N, by U,(s)x,=(U(s)x),, x&X. Then
U,(s) is well-defined, maps X/N, onto itself and is isometry on X/N,. Hence
U,(s) can be uniquely extended to a unitary operator, still denoted by U,(s), on
X,. Moreover, s — U,(s) is a weakly continuous unitary representation of G on
the Hilbert space X, by the Gramian o-weak continuity of K U(s). By Stone’s
theorem there is a regular spectral measure P, on G such that U,(s)=

Sé<s, XP,(dX), seG where (-, -) is the duality pair of G and G (cf. [18, The-

orem 7.17).
Now let x, ye X and Be®Bs be fixed and consider the functional 4 on Ax

defined by
A(p)=(Pp(B)xp, ¥0)o, pEAL. (6.1)

We first show that / can be uniquely extended to a bounded linear functional
on A*

5.2. LEMMA. The functional A on Af defined by (5.1) 1s umiquely extended
to a bounded linear functional on As.

Proof. 1t suffices to prove that if p;, -+, po€ A% and complex numbers
ay, -+, a, are such that f}la,-pjzo, then ila]/l(pj)zo. Put m;(-)=(Py,(+)x,,,
J= J=

Yo)op 1=j=n and define m=|m|+ -+ +|m,| where |m;| is the variation of
m,. Then m is a finite positive regular measure on G and the linear span of
G, regarded as the dual group of G, is dense in LYG, m). It follows that for
any ¢>0 there exist some s;, -, s;€G and complex numbers f;, -+, S, such that
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I

where 1 is the characteristic function of B. Hence we have

150~ 3 8435, B | m(di)< - (max |, )

Sa, o)~ a3 piTer, Hom(d)]

=3, 1a(0— 3 5iT, D m,(an)

A

Slayl |1 100— 2 135, B Iman<e.
J G k
On the other hand, it follows from the assumption that
by ajgé 2 Basi Homy(d=20, 5 falU, (00X 05 Y00,
= ‘JL a, 2 BroLU(Gsw)x, y1)= z? ;0% B+LU(sp)x, y1)=0.

Consequently, | X a,4(p;)|<e. Since ¢ is arbitrary, we have X a,4(p;)=0, as
desired. The boundedness of 4 on Ay is easily verified.

It follows from 5.2. Lemma that there is a unique element P, ,(B)<A such
that A(0)=0(P.,,(B)), 8 = Ay and, in particular, (Po(B)x,, ¥,),=p(Pz,4(B)), ps
A}. If B varies over B¢, the function P, ,(:) defines an A-valued o-weakly CA
measure on G. Then we have the following.

5.3. LEMMA. (1) For each x, ye X the relation
[UGs)x, y1=], & DPeydn), 56 62)
holds where the integral 1s in the o-weak topology of A.
(2) For each x, y, ze X and a€ A the equalities Pq.p, ,(-)=aPy, ;(+), Priy, (+)
= zz()+Pyz() and ny():Py,z()* hold.
(3) For each B€Bg and y<X the function x — P, ,(B) from X into A is
a bounded module map, i.e., P. ,(B)e X*.

Proof. (1) Let x, yeX. For every pe Ay it holds that
OV, D= ()55, 30)0=] T BP0, 3,0

|, Dot (@) =p(] T TP, (1)

This is enough to prove (5.2).
(2) Let x, yeXand a= A, and take p= Af. By [U(s)a-x), yIl=a[U(s)x, y]
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we have Sé<s, x>p(Pa.I_y<dx>):Sé<s', T p(aPs. ,(d) for sE€G. Since p(Pa.s. ()

and p(aP., 4(-)) are regular, they coincide. This is enough to show that Pg.. ,(-)
=aP,, ,(-). Other equalities can be checked in a similar manner.

(3) Let BeBs and y=X. It follows from (2) that x — P, ,(B) is a module
map. To see the boundedness, let pAf. Then we have that |p(P. ,(B))|=
[(Po(B)x, 0ol S lxollp 13l =Nl Ixlx-Iplx for x€X. Thus [P ,(B)<
4)x|x-llyllx, x€X. Therefore P. ,(B) is bounded.

Assume that X is self-dual. Then it follows from 5.3. Lemma (3) that for
each ye X and BB there is a unique z€ X such that P, ,(B)=[x, z], x&X.
Define z=P(B)y. Then P(B) is a well-defined operator in B(X) and P(-) is a

B(X)-valued Gramian o-weakly CA measure on G such that U(s)zgé<s, 1P (dX),

se G where the integral is in the Gramian o¢-weak topology. All we have to
do is to show that P(-) is a Gramian spectral measure.

5.4. LEMMA. P(-) s a Granuan spectral measure on G.

Proof. Let B84 be fixed. It follows from 5.3. Lemma (2) that [x, P(B)y]
=P, (B)=P,, .(B)*=[y, P(B)x]*=[P(B)x, y] for x, ye X. Hence P(B)=A(X)
with P(B)*=P(B). Now we show that P(B)*=P(B). First we see that
(x0, (P(B)Y)o)o=p([x, P(B)y])=p(Pz (B)=(x,, Po(B)y,), for x, yeX and p<
A% Hence (P(B)y),=P,(B)y,, yeX, p€ A% Consequently we have (P(B)y),
=P,(B)*y,=P,(B)(P,(B)y,)=P,(B)(P(B)y),=(P(B)y), for yeX and p<sAjf.
Therefore P(B)*=P(B), as desired. It is clear that p([P(-)x, ¥]) is a regular
measure on G for each x, y= X and o€ A% Thus P(-) is a Gramian spectral
measure.

We summarize these discussions in the following theorem.

5.5. THEOREM. Let X be a self-dual Hilbert A-module and s— U(s) be a
Granuan o-weakly continuous GUR of G on X. Then there s a Graman spectral
measure P on G such that

ve=[5TPan,  sec
where the integral 1s in the Gramian g-weak topology.

Now we can prove a Bochner type theorem as follows.

5.6. COROLLARY. For an A-valued weakly continuous PD function I' on G
there 1s an A-valued g-weakly CA measure F on G such that

F(s):Sé_(s_, DEY), seG
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where the integral 1s in the g-weak topology of A.

Proof. It follows from 4.2. Proposition that there exist a Hilbert A-module
Xr, a GUR s—Uys) of G on Xr and a cyclic vector x,& X, such that I'(s)
=[Uq($)x0, Xolr, SEG where [-, -]p is the Gramian on X,. Again by 4.2.
Proposition " is o-weakly continuous since weak and o-weak topologies coincide
on bounded subsets of A. Hence we can see that s — Uy(s) is Gramian g-weakly
continuous. Then s— Uy(s) can be uniquely extended to a Gramian o-weakly
continuous GUR s — U(s) of G on the self-dual Hilbert A-module X%¥. Conse-
quently, by 5.5. Theorem, there is a Gramian spectral measure P on G such

that U(S):S@<S’ XP(dX), s€G. Putting F(-)=[P(*)x,, x,] where [-, -] is the

A

Gramian on X%, we have that F is an A-valued o-weakly CA measure on G
and that, for s€G,

) =[Ux0, x1=] | T BP0 20| =] G DI @O0, 2]

=§é‘<‘s','_x>F<dx) .

6. Hilbert A-module valued processes.

Let G be a locally compact abelian group and X be a Hilbert A-module. We
consider X-valued processes over G.

6.1. DEFINITION. (1) An X-valued process {x(t)} over G is a map t— x()
from G into X.

(2) The covariance function I' of a process {x(t)} is defined by I(s, )=
[x(s), x@®)], s, teG. I'is an A-valued PDK on GXG.

(3) A process {x(t)} is said to be stationary if its covariance function I(s, t)
depends only on st~! and, putting I'(s, )=1I(st™), if I' is an A-valued weakly
continuous function on G.

(4) For a process = {x()} the time domain $(%) and an observation space
$H(x; D) of a subset D of G are defined as submodules by H(F)=&{x(t); teG}
and §(%; D)=&{x(t); teD}, respectively.

(5) Let ¥={x(f)} be an X-valued process and j={y({)} be a Y-valued pro-
cess, Y being a Hilbert A-module. Then % and j are said to be equivalent if
there exists a Gramian unitary operator U : $(%) — $(§) such that Ux(#)=1y(?),
teG.

Then the following is easily proved.

6.2. PROPOSITION. (1) For any A-valued PDK I' on GXG there s some
Hilbert A-module valued process with the covariance function I.
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(2) Let % be an X-valued process with the covariance function I. Then we
have, for each subset D of G, 9(%; D)=DRX rA and, n particular, HX)=GCR rA
where DQ rA was constructed in section 3.

(3) Let % be an X-valued process and 5 be a Y-valued process, Y being a
Hilbert A-module. Then % and § are equivalent i1f and only if thewr covariance
functions are identical.

(4) Stationarity is invariant within equivalence. More precisely, let % and §
be as in (3) above. If they are equivalent and % 1s stationary, then ¥ is also
stationary.

(5) Let {x@®)} be an X-valued stationary process with the covariance function

I Then there exist an X*-valued CA orthogonally scattered measure & and an
A-valued CA measure F on G such that

x<t>:§é<t, TE(d), F<z>:§é<t, LFY, teG

where the orthogonal scatteredness of & means that [§(A), E(B)]1=0 for every dis-
joint pair A, BeBe.

Let (£2, B, p) be a probability measure space and £ be a Banach space with
the dual space E*. An E-valued function x on £ is said to be of weak second
order if it is weakly measurable and f*(x(-))eL*&, p) for every f*eE*. For
each such function x there is an operator T',: E* — L%{2, p) such that (T, /*)(+)
=f*(x(-)), f*€E* If E is separable, then T%: L¥2, p)— ECE** (cf. [19,
2.2. Proposition]). Putting H=L%$2, p) and L=E*, we define an E-valued process
over G of weak second order to be a B(L, H)-valued process over G where
B(L, H) is the Banach space of all bounded linear operators from L into H.
The case where L is a Hilbert space was studied by Gangolli [4]. In this case
B(L, H) is a (right) Hilbert B(L)-module as was noted by Gangolli. Susiu and
Valsescu [16] considered in this view point (see also Saworotnow [15]). The
case where L is an arbitrary Banach space was studied by several authors such
as Cobanjan and Weron [2], Weron [19] and Miamee [8] (cf. [9]).

Let {x(#)} be an E-valued process of weak second order, i.e., {x(f)} is a
B(E*, H)-valued process. When FE is separable or reflexive, the adjoint process
{x@®*}, which is B(H, E**)-valued, becomes a B(H, E)-valued process. The
space B(H, E) is a (right) Hilbert B(H)-module if we define a module action and
a Gramian by x-a=xa and [x, y]=y*x for x, yeB(H, E) and a< B(H), res-
pectively. Hence our theory is available in this respect.
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