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DISCRETE STRUCTURES AND VAN DER WAERDEN SETS

BY KOJI SHIGA

In a previous paper [2], we introduced a notion on discrete structure on a
compact smooth manifold M. Actually, a discrete structure is to give an equiva-
lence class of everywhere dense sequences on M, where two such sequences {an}
and {bn} are called equivalent if there are diffeomorphism φ of M and a positive
integer N such that

ψ{an)—bn for n^N.

In the present paper, we attach a closed set of M to an everywhere dense
sequence {an} of M, called van der Waerden set, which consists of those points
that any neighborhood of the point contains arbitrarily long subsequence of {an}
with the form {as, as+r, as+2r, •••, as+ιr}. Then any everywhere dense sequence
has a non-empty van der Waerden set, while for any closed set F of M we can
find an everywhere dense sequence whose van der Waerden set coincides with
F. Also the homeomorphism type of van der Waerden set gives an invariant of
discrete structures.

We note that, while the notion of van der Waerden sets basically lies on
toplogical level, our investigations are concerned with smooth manifolds. We
have much interest in studying the way of distributions of tangent vectors
associated to dense sequences. In this view, we introduce a notion of van der
Waerden set W(a, b) defined for two everywhere dense sequences a—{an) and
b—{bn} on M, close to each other. This W(a, b) is a closed set of the tangent
sphere bundle of M, on which the behavior of the recurrent properties of the
direction vectors directed from an to bn (n = l, 2, •••) reflects. We will establish
some elementary properties on W{a, b).

1. Let S be a subset of N, where N denotes the set of positive integers.
Putting

BD*(S)=\lm sup JηypL ,

we call it the upper Banach density of S, where / ranges over all intervals of
N. More precisely, if BD*(S) = d, then there is a sequence {In} with |/J->oo,
for which we have

while, for any sequence {Jn} with \Jn\-+°°
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Then it is clear that, for any subset Sλ and 5 2 of N, we have

J3β*(

and, if βjD*(S2)=0, we have

Also, it is not difficult to show that, for any O ^ α ^ l , there is a subset 5 of N
with BD*(S)=a.

Let M be a compact smooth manifold. Let α = {αn} be an everywhere dense
sequence on M, where we always assume amφan for mΦn. For any open set
V of M, set Sv—{n\an^V} and define

We have then 0^BD*(V)^l, and if UaV, we have BD*(U)^BD*(V). Put

where F(x) ranges over a basis of open neighborhoods of x.

DEFINITION 1. da(x) is called density at x associated to α.

LEMMA 1. // xn—>x0, then limsup da(xn)^da(x0).

This is clear from the definition. Hence da(x) gives an upper semi-continu-
ous function on M. It follows that the way of value-distribution of da(x) is not
so arbitrary. However, we have

THEOREM 1. Let F be a non-empty closed set of M. Then there exists an
everywhere dense sequence α = {an} with the property that

Γ 1 // x^Fy
da(x)=\

i 0 if x&F.

The next lemma may be interesting in itself.

LEMMA 2. Let {an} (n = l, 2, •••) be an everywhere dense sequence on M.
Then there exists a smooth triangulation Δ of M with the following property.
Let

Δ = Δ { 1 \ J ( 2 \ •-., Δ a \ •••

be a sequence of triangulations of M which are obtained by successive barycentnc
subdivisions of Δ. Then each an is contained in the interior of some k-simplex
at every triangulation Δa) (/=1, 2, •••), where &=dimM.
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Proof. Take any smooth triangulation Δ of M and consider a sequence of
successive barycentric subdivisions of Δ:

Let Q be the union of the faces of all the simplices arising from Δa) (1=1, 2, •••).
Then Q has measure 0, whence we can take an everywhere dense sequence {bn}
(n = l, 2, •••) from the outside of Q. By Proposition 1 of [2], we know that
there is a diffeomorphism φ of M such that

Then, putting Δ—ψ(Δ), we find that Δ satisfies the required property.

Proof of theorem. We assume that F is an infinite set. The case where F
is a finite set will be proved in a similar way. Let N devide in a countable
family of infinite subsets such that

Λ K / I L J Λ L J ••• UΛLJ ••• U / ,

where each /, (s = l, 2, •••) has density 1 and / has density 0. Let Js—{ns>1, nSl2,
nStS, •••} and J={nί, n2, •••}. We take an everywhere dense countable subset S
of M and arrange the points of 5 in order, using / as the set of indices, so that

(1) S={ani, an2, •••} .

Choose an everywhere dense sequence {xs} (s=l, 2, •••) from F. We add a
countable set {yt} (t=l, 2, •••) to {xs} in order to get an everwhere dense set
{xs, yt} (s, ί = l , 2, •••) on M, and apply Lemma to this sequence {xs, yt}.

As a result, we find that there is a smooth triangulation Δ of M such that,
in the sequence

Δ=Δn\ Δ ( 2 ) , •••, Δ a \ •••

of barycentric subdivisions of Δ, each xs is contained in the interior of some k-
dimensional simplex, say Δ(

s

ι\ at each Δa) (k=άimM). Hence {Δ(

s

l)\l=l, 2, •••}
gives a sequence of ^-simplices tending to x8. Take any point p from Δ(

s

ι+S)

and assign a number nsΛ of /, to it. In such a way, we have a point ί = βns>ί

in Δ(

s

ι+S). We may and do assume each anjtιl (s,l=l,2, •••) is distinct. We
have thus for each s a sequence of points { α n β ι i | / = l , 2, •••} tending to xs, whose
set of indices is given by the subset /, of N with density 1. Also, angtl will
be contained in a smaller and smaller simplex when s-»oo.

Combining the sequence {ansl\s, 1=1,2, --} with (1), we have an every-
where dense sequence

of M. From the construction, it follows that da(xs)^l, or, what amounts to the
same thing, da(xs) = l for s = l , 2, •••. Since {xs} is dense in F, by Lemma 1
we can conclude da(x)=l for X G F . On the other hand, take y from the out-
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side of F. Then, if we take a small neighborhood V(y) of y, V(y) contains no
point of {ansl} except a finite number of {angtl}f from which follows directly
da(y)—0. This completes the proof.

We note that F is obtained by the completion of the Cauchy sequences

p{dnv CLnj) > 0 (i, ;->oo, p : distance function)

where the set of indices {wj belongs to the set with density 1. This situation
may be well expressed that F is obtained from a by the completion of Cauchy
sequences in density 1.

2. We first recall the famous theorem due to van der Waerden.
If the set N is partitioned in a finite family of subsets, then at least one

subset contains arbitrarily long arithmetic progression.
In 1975, E. Szemeredi [3] succeeded in obtaining an extension of the above

theorem.
If a subset S of N has positive upper Banach density, then 5 contatins

arbitrarily long arithmetic progression.
Let an everywhere dense sequence a—{an} be given on M.

DEFINITION 2. If a point p of M satisfies the following condition, then we
say that p is a van der Waerden point of a:

Any neighborhood of p contains a finite subsequence of a with the form
{as, as+k, •••, as+ιk}, where the length / may be arbitrarily long.

The set consisting of van der Waerden points of a is called the van der Waerden
set associated to α.

We denote by W(ά) the van der Waerden set associated to a. Intuitively, a
van der Waerden point p is interpreted as a kind of recurrent point in the sense
that the points of the sequence {alf a2, •••} appear arbitrarily many times
(finite!) with a period in any small neighborhood of p.

THEOREM 2. (i) For any a={an}, W(a) zs a non-empty closed set of M.
(ii) For any non-empty closed set F of M, there exists a—{an) with W(a) = F.

Proof of (i). We take a smooth triangulation Δ of M and then consider a
sequence of successive barycentric subdivisions of Δ:

Δ=Δ™, J ( 2 ) , »., Δa\ •••.

If we abuse the terminology ^-simplex for 'half open ^-simplex' (corresponding
to a half open interval as 1-dimensional case), we may assume that each k-
simplex belonging to Δ(l) (1=1, 2, •••) is disjoint to each other. Let

be the &-simρlices belonging to J ( 1 ) . Then for some
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ς(D__fr jι/7 c=/fun

has positive upper Banach density. Let

be &-simplices of Δ(2) which are subdivisions of Δ[^. Then for some z2

has positive upper Banach density. This process can be carried on at each
stage of subdivisions. Hence we have a decreasing sequence of &-simplices

and a decreasing subsets of N

each of which has positive upper Banach density. Put pQ—r\S^\ Then in view
of Szemeredi's theorem, we find that p0 is a van der Waerden point of a.
Hence W{ά)Φ0. On the other hand, from the definition it is clear that W(d)
is closed. This completes the proof.

Proof of (ii). By virtue of Theorem 1, we can take an everywhere dense
sequence a={an} such that da(x) = l on F and = 0 outside F. Here we may
assume that the subset J of N which appears in the proof of Theorem 1 con-
tains no three integers which form arithmetic progression. Then by Szemeredi's
Theorem we find that this a satisfies the desired property, which completes the
proof.

The following proposition gives an example of W(a)—M.

PROPOSITION 1. Let φ be a dijfeomorphism of M such that, for any point p
of M,

0 φn(P)
71 = 1

forms an everywhere dense set of M. Take any point p0 and put a—{an}, where
cin—φn{po)' Then we have W(a)=M.

Proof. Let q0 be a van der Waerden point of α. This implies that in any
neighborhood V(g0) of qQ there exists a finite sequence

φs(Po), φs+r(po), " ,φs+lr(po),

where / is any given positive integer. Hence, for any n, the neighborhood
φn(y(gQ)) of φn(q0) contains
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which shows that <pn(q0) is a van der Waerden point. Since \J <pn(q0) is dense,

it follows that W(a) = M.
Finally, we state a proposition, which shows a relation of van der Waerden

set with discrete structures.

PROPOSITION 2. Let a={an} and b—{bn) be everywhere dense sequence on
M. Suppose that a and b give the same discrete structure to M. Then W(a) is
dijfeomorphic to W{b) through a diffeomorphism of M.

The proof is immediate.

3. In the above discussions, we have not essentially used the fact that the
sequence cι={an} spreads all over M. Hence, in the following rather special
situation, the results above will be generalized to be valid. We endow M with
a Riemannian metric and consider the tangent sphere bundle S(M) of M. Denote
by π the projection from S(M) to M. Let L be a closed set of 5(M) with
π(L) = M. If we have an everywhere dense sequence Ξ={ξn} on L, then, for
this Ξ, we will be able to obtain the results corresponding to Thorems 1 and 2
relative to L by the similar arguments. Really, let WL(S) be the van der
Waerden set associated to Ξ, which is defined similarly to Definition 2 by using
the relative topology of L. Hence WL(Ξ) becomes a closed set of L. From the
definition it is clear that WL(Ξ) is disjoint from the isolated points of L. Then
we have

PROPOSITION 3. (i) WL(Ξ)Φ0.

(ii) Let F be a non-empty closed set of L which contains no isolated points
of L. Then there exists Ξ={ξn} with WL(Ξ)=F.

We will relate this proposition with the discrete structures on M. Let a
— {an} and b—{bn) be two everywhere dense sequences on M. We assume
that anΦbn for each n and that b is close to a in the following sense: For
each n, there exists a unique geodesic γn(t) with γn(0) = an, 7n(X)=bnt the length
of which attains the distance from an to bn. Put

and S—{ξn}. Then L—Ξ is a closed set of S(M) with π{L) — M, and Ξ is an
everywhere dense sequence of L with the property

(2) π(ξm)Φπ{ξn) if mΦn.

We denote the sequence Ξ thus obtained by D(a, b). Conversely, if a dense
sequence Ξ={ξn} on a closed set L of S(M) with π(L)—M satisfies the condition
(2), we can find a and b such that Ξ=D(a, b).
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DEFINITION 3. The van der Waerden set WL(D(a, b)) is called the difference
van der Waerden set of a and b and is denoted by W(a, b).

In view of the restricted condition (2), Proposition 3(ii) cannot be directly
applied to the case where Ξ=D(a, b). But, in essense, Proposition 3 remains
still valid in this case. That is, we have the following theorem.

THEOREM 3. (i) For any a={an} and b={bn} close to a, we have W(a, b)

Φ0.
(ii) For any closed set F of S(M), we can find a and b with W(a, 6) = F.

In fact, in order to prove (ii), we apply the similar arguments to those used
in the proof of Theorems 1 and 2. In this procedure, we have only to check
the fact that we can choose a sequence {ηn} satisfying the condition (2) which
accumulates an everywhere dense set of F. But this is easily verified, which
will complete the proof.

We note that we have always

π(W(a, b)) C W(a).

This follows immediately from the definition. Hence, for any given a, W(a, b)
is not chosen so arbitrarily. However, we do not know what kind of closed set
F of S(M) with π(F)aW(a) is expressed as F=W(a, b) for a certain b.

Let α={αn} and b={bn} be two everywhere dense sequences on M. Let
(M). The following statement is clear.

PROPOSITION 4. // W(a, b) and W(φ(a), φ(fi)) are both defined, then W{a, b)
and W(φ(a), <p(b)) are diffeomorphic via a map dφ. Here W(φ(a), φ(b)) is defined
by the Riemannian metric which is induced by φ from the one used in the de-
finition of W(a, b).

It seems to be interesting to clarify the relation between the homeomorphism
type of W(a, b) and the dependence on Riemannian metric being used for the
definition W(a, b).

EXAMPLE (as a problem). Let Sk be the ^-dimensional standard sphere.
Let a—{an} be an everywhere dense sequence on Sk. We suppose that, if
mΦn, am is not the antipodal point of an. Hence there is a unique geodesic
through am and an. Let Th {h — \, 2, •••) be the shift transformation of a~{an}.
That is,

Tha={an+h} .

It is evident that W(Tha)—W{ά). Then we can obtain the difference van der
Waerden set for each h:

W{a,Tha), A = l, 2, ....

Although the mutual relations of these sets seem to be complicated, we conjecture
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that there might arise some recurrent properties in these sets.
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