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MANIFOLDS AND DISCRETE STRUCTURES

BY KOJI SHIGA

Let M be a smooth manifold and let C(M) be the algebra of smooth func-
tions on M. It is well-known that the smooth structure of M is completely
determined by the algebraic structure of C(M), while the latter structure is de-
termined by the behaviors of smooth functions restricted on an everywhere dense
subset of M. Hence we might say that an everywhere dense subset of M has
already sufficiently many informations on the smooth structure of M. This rather
perspective view seems to give a plausible reason to the validity of the following
fact. Let {an} and {bn} (n = l, 2, •••) be two sequences on M, each of which
forms an everywhere dense subset of M. Then there is a diffeomorphism φ of

( oo \ oo

U an)—{J bn> Actually, this will be proved without difficulty
(Section 3). We note that in this case we have φ(an)=bσin), where σ is a
bijective map of the set of positive integers.

In order to obtain more strict relation between diffeomorphisms and every-
where dense sequences on M, it is natural to ask under what condition there
exists a diffeomorphism φ with φ(an)=bn (n = l, 2, •••). This problem-setting will
be approved if we consider that any manifold M is obtained by first taking a
sequence alf a2, ••• successively so as to make a dense set and then doing com-
pletion of this set. Thus, {an} is, in a sense, regarded as a generating set of
the manifold. Then the above problem implies that, if we have two generating
sets {an} and {bn} of M, under what condition we can find such a diffeomor-
phism ψ of M, that keeps the orders of these generating sets. Really, it seems
to be very difficult to approach this problem in general. However, we hope that
the problem may turn our attention to various aspects of manifolds which relate
continuous or smooth structures with discrete structures.

Besides, we like to make a remark that, in case M is compact, to give an
everywhere dense sequence {an} on M allows us to regard M as a compactiflca-
tion of the set of positive integers via the correspondence of n to an (n = l, 2, •••)•
Hence in such a way the set of positive integers will be able to acquire a kind
of notion on density through the geometric structure of M.

We say that two sequences {an} and {bn}, everywhere dense on M, define
the same discrete structure on M, if there are a diffeomorphism φ on M and an
integer n0 such that φ(an) — bn for n^n0.

In the present paper, we first want to clarify a fact that there exists an in-
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timate relation between the set of discrete structures on M and a certain coset
space of the symmetric group <δoo based on the positive integers. Since the group
structure of ©<» seems interesting in itself, we give some results on the structure
of <5oo (Section 1). In Section 2, we give examples of everywhere dense sequences
on M, which will show the full of variety and complexity of these objects. In
Section 3 we establish a basic relation between discrete structures on M and the
group <δoo.

Next, we put a problem how to distinguish two discrete structures on a given
manifold. Perhaps, there are many ways to approach this problem. For ex-
ample, the local or global density might be available for that purpose, if one
succeeds in introducing such a notion in an appropriate way. But our approach
adapted here is somewhat different. We try to construct function spaces on Mt

closely connected with discrete structures. Specifically, if two dense sequences
on M are given, we will get function spaces on M, canonically associated to them.
If the supports of these function spaces, being defined as closed sets of M, are
not homeomorphic, then these sequences give rise to different discrete structures
to M.

We now explain what the notion of support means. Actually, the notion of
support was obtained from the following intuitive idea. Let us consider the situa-
tion where a physical observation about some quantity spreading on the earth is
taken place. If the number of times of observation on a certain area is com-
paratively small, then the observation will provide only little information on that
area. In an extreme case, we will find an area on which we cannot get any
information from the observation. According to our view, such area is just
regarded as lying outside the support. Sections 4 and 5 concern such subjects.

1. Symmetric group based on the positive integers
Let N be the set of positive integers. Let ©oo be the symmetric group based

on N. Hence any element of <δoo is given by a bijective map of N to itself.
The cardinality of <3oo is of continuum and ©<„ contains a subgroup isomorphic
to a countable group which is given arbitrarily beforehand. Thus we may say
that <3«, is a huge discrete group. We will give some examples of subgroups of
(EL and discuss related topics.

EXAMPLE 1. If we denote by β n (n = l, 2, •••) the symmetric group based on
{1, •••, n}, then the natural injection {1, •••, n}-»{l, •••, n + 1} yields the injec-
tion ©n—^π+i, so that we obtain the inductive limit group

In a similar way, if we start from alternating groups %n (n = l, 2, •••), we obtain

Both © l i m and %im are normal subgroups of ©oo with %imCl&um. It is known
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[ I ; p. 306] that a proper normal subgroup of ©oo is either %im or ©i im. It fol-
lows that if we put

then Gco is a simple group. As a result, we can conclude that ©oo is not iso-
morphic to a subgroup of any direct product of countable groups. Really, this
follows from the observation that the image of ©<* by any non-trivial homomor-
phism has necessarily cardinality H.

EXAMPLE 2. Let N= Π S α > be a subdivision of N, where each Sω is an
1 = 1

infinite subset of N. Considering the symmetric group based on S(ί) (i=l, 2, •••),
we find that there exists a subgroup G of ©oo which is isomorphic to the direct
product βooX^coX •••. Let Q be the additive group of rational numbers. Since
each component ©oo of the direct product contains a subgroup isomorphic to Q,
it follows that G, a fortiori ©oo contains a subgroup which is isomorphic to a
countable direct product of Q's. This subgroup is also characterized as the vector
space over the rational number field with H dimension. Since R has the same
characterization, R is imbedded in ©<*, as a subgroup. This interesting fact is
remarked by I. Amemiya. Related to this, we propose

Problem. What kind of discrete groups with cardinality H is imbedded in
©oo? For example, is it true GL(n

EXAMPLE 3. Let G be a subgroup of ©oo generated by the elements with
the form

(272!—1, 2n 1)(2n 2-l, 2n2) ••• (2n*-l, 2nk) •••,

where n1<n2< ••• <nk< ••• is any increasing sequence of N and (2nk—1, 2nk)
denote the transposition of 2nk—1 and 2nk. Then G is a commutative group,
each element of which has order 2. Also the cardinality of G is of continuum.

EXAMPLE 4. Consider the totality of σ^^ such that

Λ t. . - σ(n) .. σ(n)
0 < hm inf — ^ - , lim sup — ^ - < oo .

n n

Then this becomes a subgroup of ©oo.

EXAMPLE 5. The subgroups of Examples 3 and 4 do not extremely disturb
the order of N. In order to get subgroups of <&<*, with more complicated struc-
ture, it is available to use the imbedding φ of N to a compact space X as a dense
subset. Then the set of homeomorphisms of X, having the dense set as an in-
variant set forms a subgroup Gφ of Homeo(Z). It is easily seen that, through
the operation of Gφ on this set, Gψ is faithfully represented in <δoo. Hence Gψ

is canonically identified with a subgroup of ©oo. Subgroups of ©oo constructed
in such a way seem to have complicated structures. We will treat such sub-
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groups in Section 3 in connection with discrete structures on a manifold.
Now we try to represent the groups ©oo and Goo in the homeomorphism

groups of some compact spaces. Let C(N) be the normed algebra of bounded
functions on N. Let X be the GeΓfand representation space of C(N). Then X
is a compact Hausdorff space and C(N) forms a dense set of C(X), where C(X)
is the algebra of continuous functions on X. The points of X consist of the
maximal ideals of C(N), which in turn are canonically identified with ultraflltres
of N.

We have then an isomorphism

©«,=Homeo (X).

This follows from the observation that any J G ^ naturally induces an automor-
phism σ* of C(N), whence <7* defines a homeomorphism of X. Hence we have
(δooQHomeo (X). In order to show the surjectivity, take r e Homeo (X). Then r*
gives an isomorphism from C(X) to C(X). Note that N is canonically imbedded
in X as an open set and the complement of N has no interior points. Hence the
Dirac function at a point x e l belongs to C{X) if and only if x^N. But Dirac
function δ is characterized as an idempotent element of C(X) such that {f\δf=O}
forms a maximal ideal. It follows that τ* sends Dirac functions to Dirac func-
tions and that τ is induced by ΓG@ M . This proves the surjectivity.

Next we want to show

We identify ^ with Homeo (X). Then from the above discussion, we find that
0 eΞ(δoo induces a homeomorphism of X— N. Hence we have a map

Ψ: ©oo — > Homeo (X-N).

It is sufficient to show that Ker?F=©iim. It is easy to see <&ιim(ZKerΨ. In
order to prove the converse implication, take σ&<5ιim. Then there is a sub-
sequence {ns} (s = l, 2, •••) of N with σ(ns)Φns. Using this fact, we can find an
increasing sequence {ms} such that

{σ(mα), σ(m2), '"}Γ\{mly m2, -- } = 0

Let ω be any ultraflltre containing {raj. Then we have ω^X— iVand σ(ω)Φω.
Hence we have σΦKerίP", as desired.

We note that X—N is a compact space. By the compact-open topology,
Homeo (X) and Homeo (X—N) become topological groups, whence <&<* and G^
inherit structure of topological groups from these groups. Nevertheless, in what
follows, we will regard ©oo and Goo only as discrete groups.

2. Examples of dense sequences on a manifold
The general method of constructing dense sequences on a manifold will be

discussed in the next section. Examples below are rather instructive in character.
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Let M be a compact smooth manifold. Take a smooth triangulation Δ of M
and apply barycentric (or standard) subdivisions successively to it. Then we
can obtain a sequence of triangulations

Δ, Δ(1), Δ(2), Δ(3), •••

on M. We arrange all the vertices appearing in these triangulations in order in
such a way that first we put the vertices in Δ, and next put the vertices in Δ(1>

as successors which do not belong to Δ and so on. Then we get an everywhere
dense sequence

( 1 ) { f l i , a2, •••, an, •••} .

The way of distribution of this sequence may be intuitively understood as some-
thing like what is called 'equi-distributed'.

However, the following give examples of dense sequences on M with more
complicated structure. Let ply p2, •••, ps ~ be a dense sequence of distinct points
on M. To each point ps take a positive continuous function fs on M—ps such
that /s(jc)->oo when x->ps. Take

Then we obtain sequences of points of M

( 2 ) { # i ( 1 ) , Q>iι)> '" > β { 2 ) j "" > &[s)j 0>ϊs), ' " }

We assume that these points are distinct from each other and also from each an

in (1). We note that if fs(x) tends slowly to infinity when x^ps, then a[s),
ais\ ••• accumulate densely towards ps.

First take a rapidly increasing sequence n1<n2< ••• <ns< ••• (for example
ns=es) and put in order

(3) {α 1

( 1 ) , •••, flip alt α ^ i + i , ••, a(n2\ a2, •••}.

Then we obtain an everywhere dense sequence on M. Observe that any truncated
finite sequence of (3) always shows a strong density near the point px. Hence,
from the point of view of approximation, the property that a sequence is every-
where dense cannot be generally foreseen from the step of approximation.

More generally, combining (1) with (2) and arrange them in some order, we
obtain another everywhere dense sequence on M. We want to point out that,
in that case, there is no general rule in introducing the order so that the result-
ing sequence is well distributed. Each order brings utterly different aspect of
approximation to dense sequence and individual properties of {a[s), a2

s), •••} will
disapper in this stage.

3. Discrete structures on a compact manifold
Let M be a compact smooth manifold. Let {an} a n d {bn} (n — 1, 2, •••) be
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everywhere dense sequenses on M, where we always assume that amΦan and
bmΦbn for mΦn. Then we have

PROPOSITION 1. There exists a dijfeomorphism ψ of M such that

Proof. We may assume that M is connected. Let ψx be a diffeomorphism
of M such that ψi(a1)=b1. Inductively, we will construct a sequence of diffeo-
morphism ψn on M with the properties described below. Suppose that we have
obtained a diffeomorphism φn such that

φn(ai)=bllf •••, φn(an)=bln

and

where {ιlf •••, zn} and {jlt •••, ;n} are suitable subsets of TV.
First consider the case where {ιlf •••, ί B } 3 n + l , say tn = n + l. We have

thus φn(an)=bn+1. Then we can find a diffeomorphism ^ n sufficiently close to
φn such that

<Pn(aι)=(pn(aι), i=l, •••, n — l ,

9n(fln)=^i'n, where ϊnψ

φΰ\bi) = φΰ1(bι), t = l, - , n .

Hence if we replace <£>„ by ^Λ, we may assume from the outset that {ι1} •••, zn}
^τί + 1. In a similar way, we may also assume {ju •••, ; n } ^ n + l.

In order to obtain φn+1, first deform φn slightly only on a neighborhood of an+1

so that the resulting diffeomorphism <p'n+1 satisfies the condition <pn+i(an+1)=bin+v

ψn+i{cLi)—ψn{cLι) and ψn'+iΦύ^φήKbi) (i=l, ~'> π). This procedure is possible
since {bn} is dense. Next, deform <p'n-+\ only on a small neighborhood of bn+1.
Then, in view of the density of {an}, we can obtain a diffeomorphism <pn+1 which
satisfies

φn+i(an+1)=bin+1, φn+i(bn+1) = ajn+1,

This completes the inductive procedure. Put <p=lim^n. If we take each
deformation from φn to φn+1 sufficiently small, then the limit exists and ψ^
Diff(M). Moreover, from the construction we have

φn(\Jat)<Z\Jbi9
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Hence, if we take the limit as n->oo, we find that φ is a desired diffeomorphism.
This completes the proof.

From Proposition 1 we know the way how to construct everywhere dense
sequences on M. Actually, take first an everywhere dense sequence {an} on M
and apply a diffeomorphism φ to it. Put bn = φ(an). After that, take any (7G@co
and put cn=bσ(7l)> Then {cn} is an everywhere dense sequence on M and all
everywhere dense sequences on M can be obtained in this way. Note that in
this case we have cn=<p(a<nn)).

Let a={an} be an everywhere dense sequence on M and fix this sequence
in the following discussion. Let

Then Diff(α) is a subgroup of Diff(M). We note that the cardinality of Diff(α)
is H. This follows from the fact that in the proof of Proposition 1 the choice
of φn{cLn) has Ho possibility at each step. Moreover, in view of Proposition 1,
for any b—{bn} Diff(δ) is conjugate to Diff(α).

Here we make a simple remark. Let

a 1 } α 2 , " , a n , •••, a m •••, a 2 ω , •••

(at most till an ordinal of the second number class) be a sequence of everywhere
dense sequences on M, where, if a is not a limit ordinal, aa is obtained from
cia-i by adding countable points. To this sequence we can associate a sequence
of subgroups of Diff(M)

Gai9 Ga2, .- , Gany - , Ga(ϋ, - , G a2ω, '" (G. β = Diff (<!«)) .

Then these subgroups are conjugate to each other and moreover the cardinality
of Gap/GaaΓ\Gaβ (oc<β) is always of continuum.

For ^eDiff(α), we define ê<2>«> by

which gives rise to a representation of Diff(α) to ©oo. Since {an} is dense, this
representation is faithful. Hence Diff(α) can be identified with a subgroup of
<E>oo with cardinality H. Consider the coset space

Diff(α)\©oo.

Take τ and τ' from ©«, and apply them to {an}. So we have two sequences
{aτ(n)} and {aτ,{n)}. Then in order that there exists a diffeomorphism φ with
φ(a>τ{ny) = aτ<{n)> it is necessary and sufficient that τ and τr belong to the same
coset.

Let {bn} be another dense sequence on M. By Proposition 1 we can find
σe<δco and ^eDiff(M) such that bn=φ°σ(an), where σ(an) means aσ{n). For
simplicity, we denote this by b—φσ(a). Then the relation



MANIFOLDS AND DISCRETE STRUCTURES 211

φσ(a) = φ'σ'(a)
is equivalent to

or σ'σ^eDiff (a).

Hence if we denote by [_σ~\ the coset of Diff(a)V2>oo containing σ, we can write

(4) b=φlσl(a),

where the coset [<τ] is uniquely determined by b. This leads to the following
definition.

DEFINITION 1. Two sequences a={an} and b={bn}, everywhere dense on
M, are called smoothly equivalent if there exists a diffeomorphism φ such that
φ(an)=bn (n = l, 2, •••).

Then (4) involves that, for any [σJeDiff (α)Y5oo, if we take a representative
σ of [σ] and put cξ? ]=αα ( w ), then the set

{ c ^ I c [ σ ]={d σ ]}, Cσ]eDiff(α)\@co}

gives a complete set of the smooth equivalence classes. Thus we proved

THEOREM 1. The smoothly-equivalent classes of the sequences on M bijecUvely
correspond to the cosets of Diff (α)\©oo.

Next, for any subgroup G of ©oo, consider the double coset space

Diff(α)VSx,/G.

We can easily see that each double coset canonically corresponds to an equivalence
class of everywhere dense sequences on M, where the equivalence relation is
introduced in the following way:

{bn} and {cn} are equivalent if and only if there are ^eDiff(M) and g^G
such that φ(bn) = cg(n).

In a particular case where G=<5nm, G becomes a normal subgroup so that
we have

Diff (α)\©oo/©iim=Diff (α)\Goo.

Hence each coset of Diff (α)\G«, represents an equivalence class of dense sequences
on My where the equivalence relation is given by

{bn}~{cn} & There is an integer Af such that φ{bn) — cc for n^N, where

Let [{frπ}] denote the equivalence class including {bn}.

DEFINITION 2. A manifold M endowed with an equivalence class [{frn}] is
called a manifold with discrete structure. We say that [{6n}] gives a discrete
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structure to M.
Summarizing the discussion above, we have

THEOREM 2. The set of discrete structures on M can be identified with the
coset space Diff(α)\Goo.

The group Diff (M) is a subgroup of Homeo (M), whence we can consider the
coset space Diff (M)\Homeo(M). This coset space is a huge space. But we have
a natural injection

(5) Diff (M)\Homeo (M) Q Diff (α)\O,.

This is seen as follows. For ψ e Homeo (M), set bn—ψ(an). We want to show
that the map ψ->{bn} induces the injection (5). Suppose ψ^Diff (M). Then a and
6=ψ(α) define different discrete structures, since the behaviors of ψ is completely
determined on a set \J an. On the other hand, any {ψ(an)} and {ψ'(an)}

define the same discrete structure if -ψ1 and ψ' belong to the same coset of
Diff (M)\Homeo(M). As a consequence, we find that the space of discrete struc-
tures on M is also huge.

We will give an additional remark. Even in order that two sequences {an}
and {bn} on M are transformed by a homeomorphism of M in keeping the order
fixed, they have to satisfy a rather strong condition that, if a subsequence {αn j
of {an} tends to some am as nι->oof then {bni} must tend to bm. This condi-
tion, however, is not sufficient to yield a homeomorphism with the property above.
A sufficient condition for this is given by

Lfp(bm, bn)^p{am, an)SLρ(bm, bn)

(m, n — 1, 2, •••) where L and U are positive integers and p is a metric on M.
On the other hand, in order that {an} and {bn} are smoothly-equivalent, it is
necessary that the above condition holds, but it is not sufficient.

3. Function spaces
Let X be a compact metric space. If X is a compact manifold, we always

assume that the metric is induced from a Riemannian metric. We consider a
family of functions ε defined on J^xiVwith the following properties.

i) The values of ε lie in R+.
ii) For each X G I ,

limnε(jt, n ) = 0 .

Let Γ=Γ(XxN) be the set consisting of functions which satisfy i) and ii).
For any ε and η<^Γ, we define a function space C(X; ε, η) which consists of
real-valued functions on X, satisfying the following condition:

C(X; ε, η)= {f\ sup \f(y)-f(x)\£Λτj(x, n) for n^n 0 },
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where Vε{x,n)(x) denotes the ε(x, n)-neighborhood of x, A is a positive constant
independent of (x, n) and n0 is a suitable positive integer independent of x.
Dependence of n0 in the above definition shows that C(X; ε, η) is considered as
an inductive limit space with respect to n0. In what follows, we will simply
write V£(x,n) for Vε{x,n)(x), if there arises no confusion.

The following proposition will be proved immediately.

PROPOSITION 2. C(X; ε, η) is a subalgebra of the algebra formed by the con-
tinuous functions on X.

DEFINITION 3. If there is a positive constant K independent of (x, n) such
that ε(x, n)^Kη{x, n), then we say that η dominates ε.

Henceforce M is always assumed to be a compact smooth manifold.

PROPOSITION 3. // η dominates ε, then C(M; ε, ̂ )Z)C1(M), where C\M)
denotes the space of C1-functions on M.

Proof. If f^Cx(M), then / satisfies the Lipschitz condition. This means
that, for x, y<^M, we have \f(x)—f(y)\^Lp(x, y), where L is a Lipschitz con-
stant and p is a distance function on M. Hence we have

sup \f(y)-f(x)\^Lε(x, n).

The right-hand side then is estimated by LKη{x, n) from the above, whence we
have f^C(M; ε, η).

DEFINITION 4. If ε and η satisfy

C{M',εy η)+C(M; η, ε)Z)C\M),

then we say that ε and η are complementary. Here C(M; ε, η) and C{M; η, ε)
are both regarded as subspaces of C°(M), the space of continuous functions on M.

PROPOSITION 4. // the following condition is fulfilled, then ε and η are com-
plementary.

There are a finite open covering {Ua} of M and continuous functions ka (>0)
defined on Ua such that on each Ua either

ε(x, n)<ka(x)ϊ](x, n)

or

7](x, n)<ka(x)ε(x, n)

holds for n^n0.

This can be easily proved by localization.
We are interested in the mutual relation of ε and η. The following simple

discussions treat with a case where C(X; ε, η) presents a remarkable contrast to
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C(X; η, ε). Let / be the unit interval [0, 1]. Let xx (i—ly 2, •••) be an every-
where dense sequence on /. For ε, η^Γ(IxN), put

ε{n)=mfιε(xι, n), η(n)=supiη(xι, n).

PROPOSITION 5. (i) // ε(x, n) is lower semi-continuous in x and

then C(I ε, η) consists only of constant functions.
(ii) // ε and η are continuous in x and

then C(I rjy ε)Z)CKI).

Proof, (i) First we note that, under the assumption of lower semi-con-
tinuity of ε, ε{n) is always positive. The variation of / on V{Xi>n) is at most
2η(xιy ή)S2γ]{n\ On the other hand, if n is fixed, / is covered by at most /
open sets Vε(Xis,n) (s = l, 2, •••, /), where /=l/ε ( 7 l ) . Hence the variation of / o n
/ is dominated by at most 2η(n)/ε(n\ Hence if there exists a subsequence {ns}
such that 57(7lsYεUs)->0, then / must be constant.

(ii) This follows directly from the Lipschitz condition of /εC 1 ! / ) .
We are now going to study the effect of diffeomorphism upon the space

C(M; ε, η). For peDiff (M) and εeΓ(MxiV), put

(φ*ε)(x, ri)^=ε(φ(x)} n).

Then φ*ε€ΞΓ(MxN).
First we note that the relation

(6) φ

is rewritten as

(β)/ p(ω(x), φ(y))<ε(φ(x), n) = {φ*ε){x, n).

Let L'1 be a Lipschitz constant of φ. Then we have

(7) p(x, y)>Lp(φ(x),φ(y)).

Consider for a pair of points x and y a relation

(8) p{x, y)<L{φ*ε){x, n).

If (8) holds, we have by (7)

Lp(φ(x), φ(y))<L(φ*ε)(x, n),

whence we obtain (6)'. Thus we have proved the implication (8)=>(6).
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Now we impose the following condition (P) on ε:
(P) For any a>0, there exist n^N and &eiVsuch that

ε(x, n + k)<aε{x, n)

holds for every x^M when n^wlβ

Under the condition (P), we can find k and nx for which we have

ε(φ(x), n + k)<L(φ*ε)(x, n) for n^nx.

This, combined with (8), yields that, if y satisfies

ρ(x, y)<ε{φ(x), n + k)

for some w, n^nlt then we have (6).

This being understood, for ε^Γ(MxN) put

εk{x, n) = e(x, n + k) (k = l, 2, •••).

Then εk^Γ(MxN) and εk+i(x, n)=εk(x, n + 1). What we have shown is then
reformulated

(9) y^V(φ*εkHx,n)(x) => φ(y)^Vε(φ(xhn)(φ(y)) for n ^ n j .

DEFINITION 5. For ε and η^Γ(MxN), we define

C(M;ε, η)=\JC(M\εk9 η).

THEOREM 3. // ε satisfies the condition (P), then we have

Proof. It is sufficient to show the implication from the left to the right,
since φ*ε also satisfies (P). Let f^C(M; ε, η), say f^C(M; εko, η). Then by
the definition we have

fW\^Aη(x, n)

when y^VSk^χ,n){x). This amounts to saying that

\f(φ(y))-f(φW)\^AV(φ(x), n)

when φ{y)^VekQ{ψ{x),n){φ{x)). Hence by (9) we have

\φ*Άy)-φ*f(x)\^A(φ*η)(x, n)

for n^MaxCnj—k0, 1). This involves that φ*f(ΞC(M; φ*εk+ko, φ*η), which com-
pletes the proof.

DEFINITION 6. The support of C(M; ε, η) is defined as the smallest closed
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set outside of which every f^C(M; ε, η) becomes locally constant.

COROLLARY. The support of C(M; φ*ε, φ*η) is just the image of the support
of C(M; ε, rj) via φ"1.

The following theorem makes a situation clear where the support is not a
total space.

THEOREM 4. Let ε^Γ(MxN) satisfy the condition (P). Moreover, we as-
sume that ε(x, n) is lower semi-continuous in x. Let U be a connected open set
of M. Suppose that there exists an everywhere dense sequence {xu x2, •••} in U,
for which we have

l i m i n f n - ^ ^ j - = 0 , n, k = l, 2, •••,

where εkn)=infιεk(Xι, n), 7](-n)=supi7](xz, n). Then, for every f<^C(M; ε, η), the
restriction of f to U becomes constant.

Proof. Take / from C(M; εk, η). Let x and y be any distinct two points
in U and let c(t) (O^f^l) be a smooth curve in U with c(0) — x, c(l) — y. We
choose a dense set {ylf y2, •••} on this curve and consider an everywhere dense
set {x1} x2, •••, ylt y2, •••} on U. We may and do assume that these points are
all distinct. It follows from Proposition 1 that there exists a diffeomorphism
#>eDiff(ί/) such that φ(x) — x, φ(y) = y and ψ^x^ — ̂ Jxi^Jyj. To each ys, let
ψ{xsl) — ys. Then

By restricting (φ'^f to the curve c, we can regard (φ~ι)*f as a function on
/=[0, 1], which in turn belongs to C(/; (^"1)*ε, (φ-ψr]) by Theorem 3. Then
it is easily checked that (^r1)*/ satisfies the conditions corresponding to those
which are stated in Proposition 5 (i). Hence the proposition applies to this case,
which yields (<p-1)*f(c(0))={φ-1)*f(c(l)), that is, f(x)=f(y). From this we can
deduce that f\U is constant.

The space C(M; ε, rj) itself seems to deserve our attention. Nevertheless,
when we apply the above results to discrete structures, the space C(M; ε, η)
turns out to be not so appropriate. It is better to consider a larger function space

C(M;ε, η)= Q Q C(M; εk, ηt),

k = — oo ϊ = —oo

where for non-positive k we set

(ε(x, n + k), if n> — k
[ε(x,l), if n^-k;

is defined similarly for /^0. Really, the next proposition is useful.
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PROPOSITION 6. // e' and η'^Γ(MxN) satisfy

ε'k(x, n)^ε(x, n)^εf

k,{x, ή)

η'άx, n)^η(x, n)Srj[ {x, n)

for suitable k, k', I and V independent of (x, n) for sufficiently large n, then we
have

C(M;ε, η) =

This follows immediately from the definitions. For any C{N; ε, ή), we can
also define the notion of the support similar to Definition 6. Then we have

suppC(M; e, η)Z) Πsupp C(M; ε, rji).
1 = 1

4. Discrete structures and function spaces
Let M be a compact Riemannian manifold. The simplest function belonging

to Γ(MxN) is defined by

e(x, n)=γn,

where 0 < ^ < l . Then it is clear that ε(x, n) satisfies the condition (P). Besides,
ε(x, n) is trivially lower semi-continuous in x. Putting γ for this e, we know
that the results described in Section 3 can be applied to C(M; γ, rj) and C(M; γ, ή)
for any η.

Let a— {an} be an everywhere dense sequence on M. To this a, we try to
associate certain functions belonging to Γ(MxN). There is no standard way in
constructing such functions. First observe the speed of convergence of a ap-
proaching every point of M. Then the following procedure gives a function
I?3.A(O>), depending on the parameters d and A. Here d and A are decreasing
positive sequences given by

d: δ>32> ••• >δn> ••• for 0<<Kl

and

A: Λ1>Λ2> ••• >An> >0.

For any n^N and xeM, let nx be the integer defined by the relation

Hence anχ is just the first point of α, entering Vδn(x). We define

Vd,A(ct)(x, n)=Anχ.

Then it is clear that ηδtA(a)^Γ(MxN), so that we obtain the function space
C(M; γ, 7jδ,A(a)). We note that if a={an} and a'={a'n} coincide with each other
for n^n0, then
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; γ, VδιA(a))=C(M; γ, ηδ.A(a')).

Let φ^Όiff(M) and consider the discrete structure φ(a)— {φ{a'n)}. Since φ
satisfies the Lipschitz condition, we can find positive integers / and V with

ri))^ηδ,A(a)v(x, n)

or

{ψ'Ψηδ.A{a)ι^ηδ,A{φ{a))^{φ-ψη9tA{<a)ι. .

Accordingly, in view of Proposition 6, we have

C(M; γ, (φ-γ7]δ,A(a))=C(M; γ, ηδtA(φ(a))).

Hence, referring to Corollary to Theorem 3, we have

THEOREM 5. In order that a and b give rise to the same discrete structure,
it is necessary that supp C(M; γ, ηδ,A(a)) is diffeomorphic to supp C(M; γ, ηδ,A{b))
through a diffeoniorphism of M.

In this theorem, γ plays a role of assigning the range of 'observations', which
is independent of the choice of α. If we want to study the relative situation a
and b, it might be better to consider the space

C(M; ηδίA{a), rjδ)A(b)).

However, if we demand that this space should have a definite meaning for dis-
crete structures, ηδιA(a) have to satisfy the condition (P). These conditions will
impose some restriction upon a={an} about the distribution over M.

On the other hand, we can introduce another function which shows to some
extent the degree of approximation to 'density' defined by a. For any open set
U of M, put

(U N) *{i\

For 0 < δ < l , let d: δ>52> ••• be fixed. Consider the ^-neighborhood Vδn(x) of
each point x of M. Let μn be the least number which satisfies the condition that
each Vδrι(x) (xeM) contains at least one aτ (l^ki^kμn). Moreover let Ψ be a
real valued function defined on TV such that Ψ(ri)-^χ> as n-*oo. Now we put

fcδtΨ(a)(x, n) = ~ψτ^γfc(Vδn(x), μn).

Then tcδiψ{a)>§. If we can find Ψ such that tcδ,ψ{a){x, n)->0 as n->°o, we say that
a={an} has the degree of unform density at most Ψ. Then fcδ>ψ(a)<^Γ(MxN)
so that we can get the function space C(M; γ, rcδ,ψ(a)). Hence we will be able
to formulate a theorem corresponding to Theorem 5. However we do not repeat
it here. We note that in this case it is not so easy to put some other interpreta-
tion on the condition (P).
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The above examples of the functions associated to a discrete structure are
rather special. There are many ways of constructing function spaces, each of
which furnishes some information on a given discrete structure. From this fact,
we may infer that the discrete structure is so complicated that any standard (for
example, axiomatic) treatment might not be expected.
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