K. SEKIGAWA KODAI MATH. J. 6 (1983), 174–185

ALMOST COMPLEX SUBMANIFOLDS OF A 6-DIMENSIONAL SPHERE

By Kouei Sekigawa

1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two typical classes: one is the class of almost complex submanifolds, and the other is the class of totally real submanifolds. A Riemannian submanifold (M, ϕ) (or briefly M) of an almost Hermitian manifold $(\tilde{M}, J, \langle , \rangle)$ (or briefly \tilde{M}) is called an almost complex submanifold provided that $J_{\psi(p)}((d\psi)_p(X)) \in (d\psi)_p(T_p(M))$ for any $X \in T_p(M)$, $p \in M$. The most typical example of nearly Kaehlerian manifolds is a 6-dimensional sphere S^6 . In fact, Fukami and Ishihara [3] proved that there exists a nearly Kaehlerian structure on a 6-dimensional sphere S⁶ by making use of the properties of the Cayley division algebra. We shall call it the canonical nearly Kaehlerian structure on S^6 . In this paper, we shall study almost complex submanifolds of a 6-dimensional unit sphere S^6 with the canonical nearly Kaehlerian structure. First of all, Gray [1] proved that with respect to the canonical nearly Kaehlerian structure, S⁶ has no 4-dimensional almost complex submanifolds. We shall prove the following Theorems and some related results. In the following Theorems, we assume that $M=(M, \phi)$ is an almost complex submanifold of S⁶. Then it follows that dim M=2. We denote by K the Gaussian curvature of M.

THEOREM A. If (M, ϕ) is not totally geodesic, then the degree of ϕ is 3.

THEOREM B. If K is constant on M, then K=1 or 1/6 or 0.

THEOREM C. Assume that M is compact. If K>1/6 on M, then K=1 on M, and if $1/6 \le K < 1$ on M, then K=1/6 on M.

In the last section of this paper, we shall give some examples of almost complex submanifolds of S^6 corresponding to the cases, K=1, 1/6 and 0 in Theorem B. We note that the result of Theorem B is a special case of the result obtained by Kenmotsu under more general situation ([6]).

Received July 8, 1982

2. Riemannian submanifolds

Let $(\widetilde{M}, \langle , \rangle)$ (or briefly \widetilde{M}) be a Riemannian manifold and (M, ϕ) (or briefly M) be a Riemannian submanifold of \widetilde{M} with isometric immersion ψ . Let ∇ (resp. $\tilde{\nabla}$) be the Riemannian connection on M (resp. \tilde{M}) and R (resp. \tilde{R}) be the curvature tensor of M (resp. \tilde{M}). We denote by σ the second fundamental form of M in \widetilde{M} . Since ϕ is locally an imbedding, we may identify $p \in M$ with $\psi(p) \in \hat{M}$ locally, and $T_p(M)$ with the subspace $(d\psi)_p(T_p(M))$ of $T_{\psi(p)}(\hat{M})$. Then, the Gauss formula, Weingarten formula are given respectively by

(2.1)
$$\sigma(X, Y) = \tilde{\nabla}_X Y - \nabla_X Y,$$

(2.2)
$$\tilde{\nabla}_{X}\xi = -A_{\xi}X + \nabla_{X}^{\perp}\xi, \qquad X, Y \in \mathfrak{X}(M),$$

where $\hat{\xi}$ is a local field of normal vector to M and $-A_{\xi}X$ (resp. $\nabla^{\perp}_{X}\hat{\xi}$) denotes the tangential part (resp. normal part) of $\tilde{\nabla}_X \xi$.

The tangential part $A_{\xi}X$ is related to the second fundamental form σ as follows:

(2.3)
$$\langle \sigma(X, Y), \xi \rangle = \langle A_{\xi}X, Y \rangle, \quad X, Y \in \mathfrak{X}(M).$$

We denote by R^{\perp} the curvature tensor of the normal connection, i.e., $R^{\perp}(X, Y) =$ $[\nabla_{x}^{\perp}, \nabla_{Y}^{\perp}] - \nabla_{[x, Y]}^{\perp}$. Then, the Gauss, Codazzi and Ricci equations are given respectively by

(2.4)
$$\langle R(X, Y)Z, Z' \rangle = \langle \widetilde{R}(X, Y)Z, Z' \rangle + \langle \sigma(X, Z'), \sigma(Y, Z) \rangle$$

 $- \langle \sigma(X, Z), \sigma(Y, Z') \rangle,$

$$(2.5) \qquad \qquad (\widetilde{R}(X, Y)Z)^{\perp} = (\nabla'_X \sigma)(Y, Z) - (\nabla'_Y \sigma)(X, Z),$$

(2.6)
$$\langle \widetilde{R}(X, Y)\xi, \eta \rangle = \langle R^{\perp}(X, Y)\xi, \eta \rangle - \langle [A_{\xi}, A_{\eta}]X, Y \rangle,$$

for X, Y, Z, $Z' \in \mathfrak{X}(M)$, where $(\nabla'_X \sigma)(Y, Z) = \nabla^{\perp}_X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z)$ and ξ , η are local fields of normal vectors to M.

In the sequel, the following convention for the notations will be used unless otherwise specified:

$$X, Y, Z, \dots, \in \mathfrak{X}(M), \quad U, V, W, \dots, \in \mathfrak{X}(\tilde{M})$$

and $\mathfrak{X}(M)$ (resp. $\mathfrak{X}(\widetilde{M})$) denotes the set of all tangential vector fields to M (resp. \widetilde{M}).

For the definition of the degree of the isometric immersion ϕ , we refere to [8].

3. 6-dimensional nearly Kaehlerian manifolds

In this section, for the sake of later uses, we shall recall some elementary formulas in a 6-dimensional nearly Kaehlerian manifold and furthermore the canonical nearly Kaehlerian structure on a 6-dimensional unit sphere S^{6} . Let \tilde{M} be an almost Hermitian manifold with the almost Hermitian structure (J, \langle , \rangle) . We denote by N the Nijienhuis tensor of J and by $\tilde{\nabla}$ the Riemannian connection of \tilde{M} . It is known that the tensor field N satisfies

(3.1)
$$N(JU, V) = N(U, JV) = -JN(U, V), \quad U, V \in \mathfrak{X}(\tilde{M}).$$

Especially, if \tilde{M} is a nearly Kaehlerian manifold (i.e., $(\tilde{\nabla}_U J)U=0$, for any $U \in \mathfrak{X}(\tilde{M})$, then the tensor field N is written in the following form (cf. [13]):

(3.2)
$$N(U, V) = -4J(\tilde{\nabla}_U J)V, \quad U, V \in \mathfrak{X}(\tilde{M}).$$

From (3.2), we get

(3.3)
$$\langle N(U, V), W \rangle = -\langle N(U, W), V \rangle, \quad U, V, W \in \mathfrak{X}(\tilde{M}).$$

An almost complex submanifold M of an almost Hermitian manifold \tilde{M} is called to be a σ -submanifold if the second fundamental form σ is complex linear, i.e.,

(3.4)
$$\sigma(JX, Y) = \sigma(X, JY) = J\sigma(X, Y), \quad \text{for} \quad X, Y \in \mathfrak{X}(M),$$

(cf. [12]). From (3.4), any σ -submanifold is necessarily minimal. Vanhecke [12] proved that if \tilde{M} is a nearly Kaehlerian manifold, any almost complex submanifold is a σ -submanifold and is also a nearly Kaehlerian manifold. W now assume that \tilde{M} is a 6-dimensional non-Kaehlerian, nearly Kaehlerian manifold. Then the followings hold in \tilde{M} (cf. [7], [9]):

$$(3.5) \qquad \tilde{\nabla}_{U}((\tilde{\nabla}_{V}J)W) - (\tilde{\nabla}_{\tilde{\nabla}_{U}V}J)W - (\tilde{\nabla}_{V}J)(\tilde{\nabla}_{U}W) \\ = -\frac{S}{30} \langle \langle U, V \rangle JW - \langle U, W \rangle JV + \langle JV, W \rangle U \rangle, \\ (3.6) \qquad (\tilde{\nabla}_{U}J)(\tilde{\nabla}_{V}J)W = -\frac{S}{30} \langle \langle U, V \rangle W - \langle U, W \rangle V$$

$$+\langle JU, V\rangle JW - \langle JU, W\rangle JV\rangle$$
,

U, V, $W \in \mathfrak{X}(\widetilde{M})$, where S denotes the scalar curvature of \widetilde{M} . From (3.2), (3.5) and (3.6), we get

(3.7)
$$(\tilde{\nabla}_{U}N)(V, W) = \frac{2S}{15} \langle \langle JU, V \rangle JW - \langle JU, W \rangle JV + \langle JV, W \rangle JU \rangle,$$

(3.8)
$$N(U, N(V, W)) = 16(\tilde{\nabla}_U J)(\tilde{\nabla}_V J)W$$

ALMOST COMPLEX SUBMANIFOLDS OF A 6-DIMENSIONAL SPHERE 177

$$= -\frac{8S}{15} \langle \langle U, V \rangle W - \langle U, W \rangle V + \langle JU, V \rangle JW - \langle JU, W \rangle JV \rangle$$

$$(3.9) \qquad \langle N(U, V), N(U', V') \rangle = -16 \langle V, (\tilde{\nabla}_{U}J)(\tilde{\nabla}_{U'}J)V' \rangle$$

$$= \frac{8S}{15} \langle \langle U, U' \rangle \langle V, V' \rangle - \langle U, V' \rangle \langle V, U' \rangle$$

$$+ \langle JU, U' \rangle \langle JV', V \rangle - \langle JU, V' \rangle \langle JU', V \rangle \rangle,$$

 $U, U', V, V', W \in \mathfrak{X}(\widetilde{M}).$

We shall now recall the canonical nearly Kaehlerian structure on a 6-dimensional sphere S^6 . Let C be the Cayley division algebra generated by $\{e_0=1, e_i(1 \le i \le 7)\}$ over real number field \mathbf{R} and C_+ be the subspace of C consisting of all purely imaginary Cayley numbers. We may identify C_+ with a 7-dimensional Euclidean space \mathbf{R}^7 with the canonical inner product (,) (i.e., $(e_i, e_j) = \delta_{ij}, 1 \le i, j \le 7$). The automorphism group of C is the compact simple Lie group G_2 and the inner product (,) is invariant under the action of the group G_2 . A vector cross product for the vectors in $C_+ = \mathbf{R}^7$ is defined by

(3.10)
$$x \times y = (x, y)e_0 + xy, \quad x, y \in C_+.$$

Then the multiplication table is given by the following:

	k	1	2	3	4	5	6	7
	1	0	e_3	$-e_2$	e_5	$-e_4$	e_7	$-e_{6}$
	2	e_{3}	0	e_1	e_6	$-e_{7}$	$-e_4$	\mathcal{e}_5
	3	e_2	$-e_1$	0	$-e_{7}$	$-e_{6}$	e_5	e_4
$e_{j} \times e_{k} =$	4	$-e_{5}$	$-e_{6}$	e_7	0	e_1	ℓ_2	$-e_{3}$
	5	\mathcal{e}_4	e_7	e_6	$-e_1$	0	$-e_{3}$	$-e_{2}$
	6	$-e_7$	\mathcal{C}_4	$-e_{5}$	$-e_2$	ℓ_3	0	e_1
	7	e_6	$-e_5$	$-e_4$	e_3	e_2	$-e_1$	0

Considering S^6 as $\{x \in C_+; (x, x)=1\}$, the canonical almost complex structure J on S^6 is defined by

$$(3.11) J_x U = x \times U,$$

where $x \in S^6$ and $U \in T_x(S^6)$ (the tangent space of S^6 at x).

The above almost complex structure J together with the induced Riemannian metric \langle , \rangle on S^6 from the inner product (,) on $C_+ = \mathbf{R}^7$ gives rise to a nearly Kaehlerian structure on S^6 . The group G_2 acts on S^6 transitively as the group of automorphisms of the nearly Kaehlerian structure (J, \langle , \rangle) (cf. [3]). It is well known that S^6 does not admit any Kaehlerian structures.

4. Proofs of Theorems A, B and C

Let M be an almost complex submanifold of a 6-dimensional unit sphere $\tilde{M}=S^6$ with the canonical nearly Kaehlerian structure (J, \langle , \rangle) . Then it follows that dim M=2 and hence M is a Kaehlerian manifold of complex dimension 1 with respect to the induced structure from S^6 . We denote by K the Gaussian curvature of M. Then, from (2.4) and (3.4), we get

(4.1)
$$K=1-\frac{\|\sigma\|^2}{2}$$
,

where $\|\sigma\|$ denotes the length of the second fundamental form σ .

Codazzi equation (2.5) implies in particular

(4.2)
$$(\nabla'_X \sigma)(Y, Z) = (\nabla'_Y \sigma)(X, Z).$$

From (2.1), (2.2) and (3.2), we get

(4.3)
$$\tilde{\nabla}_{Z}(J\sigma(X, Y)) = \frac{1}{4} JN(Z, \sigma(X, Y)) + J(-A_{\sigma(X,Y)}Z + \nabla_{Z}^{\perp}\sigma(X, Y)),$$
$$\tilde{\nabla}_{Z}(\sigma(X, JY)) = -A_{\sigma(X,JY)}Z + \nabla_{Z}^{\perp}\sigma(X, JY).$$

From (4.3), taking account of (3.1), (3.3) and (3.4), we get

(4.4)
$$\frac{1}{4}JN(Z, \sigma(X, Y)) = (\nabla'_{Z}\sigma)(X, JY) - J(\nabla'_{Z}\sigma)(X, Y).$$

Since dim M=2, from (3.1) and (3.4), we get easily

(4.5)
$$N(Z, \sigma(X, Y)) = N(Y, \sigma(X, Z)).$$

Let $M' = \{p \in M; \sigma \neq 0 \text{ at } p\}$. Then M' is an open set of M.

We now assume that $M' \neq \emptyset$ (i.e., M is not totally geodesic in S^6). Let $\{X_1, X_2 = JX_1\}$ be a local field of orthonormal frame on a neighborhood of a point $p \in M'$ in M. If we put

(4.6)
$$\nabla_{X_1} X_j = \sum_{k=1}^2 B_{ijk} X_k$$
, $1 \le i, j \le 2$,

then we get

$$(4.7) B_{ijk} = -B_{ikj}, 1 \le i, j, k \le 2.$$

Taking account of (3.1), (3.3), (3.4) and (3.9), we may put

(4.8)
$$(\nabla'_{X_1}\sigma)(X_1, X_1) = a \sigma(X_1, X_1) + b \sigma(X_1, X_2)$$
$$+ \frac{c}{4} N(X_1, \sigma(X_1, X_1)) + \frac{d}{4} N(X_2, \sigma(X_1, X_1)),$$

ALMOST COMPLEX SUBMANIFOLDS OF A 6-DIMENSIONAL SPHERE

179

$$\begin{aligned} (\nabla'_{X_2}\sigma)(X_1, X_1) &= a'\sigma(X_1, X_1) + b'\sigma(X_1, X_2) \\ &+ \frac{c'}{4}N(X_1, \sigma(X_1, X_1)) + \frac{d'}{4}N(X_2, \sigma(X_1, X_1)) \,. \end{aligned}$$

Then, from (4.8), taking account of (2.5), (3.1), (3.4) and (4.4), we get (4.9) a'=-b, b'=a, c'=d, d'=-c-1.

Thus, from (4.8), taking account of (3.3), (3.4) and (4.9), we get

(4.10)
$$a = \frac{1}{\|\sigma\|} X_1 \|\sigma\|, \quad b = -\frac{1}{\|\sigma\|} X_2 \|\sigma\|.$$

From (4.6), (4.7) and (4.10), we get

$$\begin{split} \llbracket X_1, \ X_2 \rrbracket \| \sigma \| = X_1(X_2 \| \sigma \|) - X_2(X_1 \| \sigma \|) \\ = -X_1(b \| \sigma \|) - X_2(a \| \sigma \|) \\ = -(X_1 b + X_2 a) \| \sigma \| , \end{split}$$

and hence

$$(4.11) X_2 a + X_1 b + a B_{121} + b B_{212} = 0$$

Taking account of (3.4), (4.6) and (4.7), we get easily

(4.12)
$$\sum_{i=1}^{2} (\nabla'_{X} \sigma)(X_{i}, X_{i}) = 0.$$

From (4.8) with (4.9), taking account of (2.5), (3.1), $(3.3)\sim(3.6)$ and (4.12), we get

$$(4.13) \|\nabla'\sigma\|^2 = \sum_{1 \le i, j, k \le 2} \langle (\nabla'_{X_i}\sigma)(X_j, X_k), (\nabla'_{X_i}\sigma)(X_j, X_k) \rangle \\ = 4(\langle (\nabla'_{X_1}\sigma)(X_1, X_1), (\nabla'_{X_1}\sigma)(X_1, X_1) \rangle \\ + \langle (\nabla'_{X_2}\sigma)(X_1, X_1), (\nabla'_{X_2}\sigma)(X_1, X_1) \rangle) \\ = (2(a^2 + b^2) + 2(c^2 + c + d^2) + 1) \|\sigma\|^2.$$

From (4.10) and (4.13), we get

(4.14)
$$a^2+b^2 = \|\operatorname{grad}(\log \|\sigma\|)\|^2$$
,

(4.15)
$$c^{2}+c+d^{2}=\frac{1}{2\|\sigma\|^{2}}(\|\nabla'\sigma\|^{2}-2\|\operatorname{grad}\|\sigma\|\|^{2}-\|\sigma\|^{2}).$$

We put

$$F = \|\operatorname{grad} \left(\log \|\sigma\| \right)\|^2$$

and

$$G = \frac{1}{2 \|\sigma\|^2} (\|\nabla'\sigma\|^2 - 2\|\operatorname{grad}\|\sigma\|\|^2 - \|\sigma\|^2).$$

Then, from (4.15), we have easily

LEMMA 4.1.
$$G \ge -\frac{1}{4}$$
 on M' .

From (2.6), taking account of (2.1), (2,2), (3.1)~(3.4), (3.7), (3.8), (4.1), (4.5)~(4.9), we get

$$\begin{split} &-\frac{1}{8} \|\sigma\|^4 = \langle R^{\perp}(X_1, X_2)\sigma(X_1, X_1), \sigma(X_1, X_2) \rangle \\ &= \frac{\|\sigma\|^2}{4} \langle X_1 a - X_2 b - bB_{121} + aB_{212} - 2G - 1 \\ &+ 2 \langle X_1 B_{212} - X_2 B_{112} - B_{121} B_{112} + B_{212} B_{212}) \rangle \\ &= \frac{\|\sigma\|^2}{4} \langle X_1 a - X_2 b - bB_{121} + aB_{212} - 1 - 2G - 2K \rangle, \end{split}$$

and hence

$$(4.16) X_1 a - X_2 b - b B_{121} + a B_{212} = 2G + 3K.$$

Similarly, we get

$$(4.17) X_1 d - X_2 c = 3(2c+1)B_{1\,21} - 6dB_{2\,12} - 2ad - (2c+1)b,$$

$$(4.18) X_1 c + X_2 d = -6d B_{121} - 3(2c+1)B_{212} + 2bd - (2c+1)a.$$

LEMMA 4.2. $\Delta(\log \|\sigma\|) = 2G + 3K$ on M'.

Proof. From (4.6), (4.7), (4.10) and (4.16), we get $\Delta \|\sigma\| = X_1(X_1 \|\sigma\|) + X_2(X_2 \|\sigma\|) + B_{1\,21}X_2 \|\sigma\| + B_{2\,12}X_1 \|\sigma\|$ $= \|\sigma\|(X_1a - X_2b - bB_{1\,21} + aB_{2\,12} + a^2 + b^2)$ $= \|\sigma\|(F + 2G + 3K),$

and hence

Let $\{E_1, E_2=JE_1\}$ be an orthonormal basis of $T_p(M)$, $p \in M'$ and $\gamma_i = \gamma_i(t_i)$ $(1 \leq i \leq 2)$ be the geodesics in M' such that

$$\gamma_i(0) = p$$
 and $\frac{d\gamma_i}{dt_i}(0) = E_i$, $1 \leq i \leq 2$.

Then, we may easily see that there exists an orthonormal frame field $\{X_1, X_2 = JX_1\}$ near p in M' such that

180

 $(4.19) X_i = E_i \quad (1 \leq i \leq 2) \quad \text{at } p,$

and

$$X_1 = \frac{d\gamma_1}{dt_1}$$
 along γ_1 , $X_2 = \frac{d\gamma_2}{dt_2}$ along γ_2 .

From (4.19), we get

From (4.17) and (4.18), taking account of (4.19) and (4.20), we get

$$(4.21) E_1(X_1d) - E_1(X_2c) = -(2c+1)E_1d - 2dE_1a -6dE_1B_{212} - 2bE_1c - 2aE_1d, E_2(X_1c) + E_2(X_2d) = -(2c+1)E_2a + adE_2b -6dE_2B_{121} - 2aE_2c + 2bE_2d.$$

From (4.21), taking account of (4.11), (4.16) and (4.20), we get

$$(4.22) d = -4dG - 2aE_1d + 2bE_2d - 2bE_1c - 2aE_2c.$$

Similarly, we get

$$(4.23) c = -2(2c+1)G + 2bE_1d + 2aE_2d - 2aE_1c + 2bE_2c.$$

On one hand, from (4.17), (4.18) and (4.20), we get

$$(4.24) \qquad (E_1c)^2 = -(E_1c)(E_2d) - (2c+1)aE_1c + 2bdE_1c,$$

$$(E_2c)^2 = (E_2c)(E_1d) + 2adE_2c + (2c+1)bE_2c,$$

$$(E_1d)^2 = (E_2c)(E_1d) - 2adE_1d - (2c+1)bE_1d,$$

$$(E_2d)^2 = -(E_1c)(E_2d) - (2c+1)aE_2d + 2bdE_2d$$

From (4.17), (4.18) and (4.24), we get

(4.25)
$$2((E_2c)(E_1d) - (E_1c)(E_2d)) = -F(4G+1) + (E_1c)^2 + (E_2c)^2 + (E_1d)^2 + (E_2d)^2.$$

Thus, from $(4.21) \sim (4.25)$, we get

(4.26)
$$\Delta G = 2(-(F+G)(4G+1) - 2aE_1G + 2bE_2G + (E_1c)^2 + (E_2c)^2 + (E_1d)^2 + (E_2d)^2).$$

LEMMA 3. The following holds on M'.

(4.27) $\Delta (4G+1)^3 = 24(4G+1)(-(4G+1)^2G+6\|\operatorname{grad} G\|^2).$

Proof. By the definition of the function G, we get

(4.28)
$$E_i G = (2c+1)E_i c + 2dE_i d$$
, $1 \le i \le 2$.

From (4.17), (4.18) and (4.28), we get

$$(4.29) \qquad (4G+1)E_1c = (2c+1)E_1G - 2dE_2G + 2bd(4G+1), \\ (4G+1)E_2c = 2dE_1G + (2c+1)E_2G + 2ad(4G+1), \\ (4G+1)E_1d = 2dE_1G + (2c+1)E_2G - (2c+1)b(4G+1), \\ (4G+1)E_2d = -(2c+1)E_1G + 2dE_2G - (2c+1)a(4G+1).$$

From (4.29), taking account of the definitions of the functions F and G, we get

 $(4.30) \qquad (4G+1)^2((E_1c)^2+(E_2c)^2+(E_1d)^2+(E_2d)^2) \\ = 2(4G+1)((4G+1)^2F+\|\text{grad }G\|^2 \\ + a(4G+1)E_1G-b(4G+1)E_2G) \,.$

Thus, from (4.26) and (4.30), we have finally (4.27). Q. E. D.

We are now in a position to prove Theorems A, B and C. First, we shall prove Theorem A. We denote by ν_p^k the *k*-th normal space and by σ_p^k the *k*-th fundamental form of the isometric immersion ϕ at $p \in M'$. Then from (4.8) with (4.9), we see that ν_p^1 and ν_p^2 are generated respectively by $\{\sigma_p^2(E_1, E_1) = \sigma(E_1, E_1), \sigma_p^2(E_1, E_2) = \sigma(E_1, E_2)\}$ and $\{\sigma_p^2(E_1, E_1, E_1) = (c/4) N(E_1, \sigma(E_1, E_1)) + (d/4) N(E_2, \sigma(E_1, E_1)), \sigma_p^3(E_2, E_1, E_1) = (d/4) N(E_1, \sigma(E_1, E_1)) - ((c+1)/4) N(E_2, \sigma(E_1, E_1))\}$, where $E_2 = JE_1$.

If $G(p) \neq 0$, then it follows that $\dim \nu_p^1 = 2$, $\dim \nu_p^2 = 2$, and hence the degree of the immersion ϕ is 3. So, we assume that G=0 on M'. Let p be any point of M' and define E by

$$\|(\nabla'_E \sigma)(E, E)\| = \underset{\substack{X \in T \ p(M) \\ \|X\| = 1}}{\operatorname{Max}} \|(\nabla'_X \sigma)(X, X)\|.$$

Let $\{X_1, X_2=JX_1\}$ be an orthonormal frame field near p satisfying the condition (4.19) for the basis $\{E_1=E, E_2=JE\}$ at p. Then, we may easily see that d=0 (and hence $c^2+c=0$) at p. We may assume that c=-1 at p. We put

$$\zeta = -\frac{d}{4} N(X_1, \sigma(X_1, X_1)) + \frac{c}{4} N(X_2, \sigma(X_1, X_1)) \quad \text{near } p$$

Then, taking account of (3.1), (3.7), (3.8), (4.2), (4.8), (4.9), (4.20) and (4.29), we get

(4.31)
$$\sigma_p^4(E_1, E_1, E_1, E_1) = -(E_2d + a)\zeta_p$$
$$= -2G(p)\zeta_p = 0.$$

182

Similarly, we get

(4.32)
$$\sigma_p^4(E_2, E_1, E_1, E_1) = 0.$$

Thus, from (4.31) and (4.32), taking account of (4.12) and the symmetricity of σ_p^4 , we have finally $\sigma_p^4=0$, and hence the degree of ψ is 3. This completes the proof of Theorem A. Next, we shall prove Theorem B. We assume that the Gaussian curvature K of M is constant and $K \neq 1$. From (4.1), we get $\|\sigma\|^2 = 2(1-K)$, and hence from (4.10) and (4.14)

(4.33)
$$F=0$$
 on $M=M'$.

Thus, from (4.33) and Lemma 4.2, we get

(4.34)
$$G = -\frac{3}{2}K$$
 on M .

From (4.34) and Lemma 4.3, it follows that G(4G+1)=0. If 4G+1=0, then, from (4.34), we have K=1/6, and otherwise, we have K=0. This completes the proof of Theorem B.

Lastly, we shall prove Theorem C. We suppose that M is compact and $M' \neq \emptyset$. Then $\|\sigma\|$ takes its maximum at some point $p \in M'$. Then, from (4.10), we have F(p)=0. Thus, from Lemmas 4.1 and 4.2, we have

(4.35)
$$0 \ge (\Delta \log \|\sigma\|)(p) \ge -\frac{1}{2} + 3K(p),$$

and hence $K(p) \leq 1/6$.

Thus, if M is compact and K>1/6 on M, from (4.35), it follows that $M'=\emptyset$, and hence the first half of Theorem C is proved. The latter half of Theorem C is immediately followed by using Lemmas 4.1 and 4.2, and Green's theorem. From Lemmas 4.2 and 4.3, taking account of Green's theorem and Gauss-Bonnet theorem, we have the following

THEOREM D. Assume that M is compact and K<1 on M. If the function G satisfies the inequality $-1/4 \le G \le 0$ on M, then G=0 or -1/4 on M, and furthermore M is diffeomorphic to a 2-dimensional torus (resp. a 2-dimensional sphere) in the case where G=0 on M (resp. G=-1/4 on M).

We remark that the equality G=0 (resp. G=-1/4) on M' is equivalent to

$$(4.36) \qquad \Delta \log(1-K) = 6K, \quad \text{on } M'$$

(resp. (4.37) $\Delta \log(1-K) = -1 + 6K$ on M')

5. Some examples

EXAMPLE 1. Let $M = \{x \in S^6; x = x_2e_2 + x_4e_4 + x_6e_6\}$, and ι be the inclusion map from M into S^6 . Then, we may easily see that (M, ι) is a 2-dimensional almost complex and totally geodesic submanifold of S^6 .

EXAMPLE 2. Let $M = S_{1/6}^2 = \{(y_1, y_2, y_3) \in \mathbb{R}^3; y_1^2 + y_2^2 + y_3^2 = 6\}$ and ψ_0 be a C^{∞} map from M into S^6 defined by

(5.1)
$$\phi_{0}(y_{1}, y_{2}, y_{3}) = \left(\frac{\sqrt{6}}{72}(2y_{1}^{3}-3y_{1}y_{2}^{2}-3y_{1}y_{3}^{2})\right)e_{1} + \left(\frac{\sqrt{15}}{72}(3y_{2}^{2}y_{3}-y_{3}^{3})\right)e_{2} + \left(\frac{\sqrt{15}}{72}(y_{2}^{3}-2y_{2}y_{3}^{2})\right)e_{3} + \left(\frac{1}{24}(4y_{1}^{2}y_{2}-y_{2}^{3}-y_{2}y_{3}^{2})\right)e_{4} + \left(\frac{1}{24}(4y_{1}^{2}y_{3}-y_{2}^{2}y_{3}-y_{3}^{3})\right)e_{5} + \left(\frac{\sqrt{10}}{24}(y_{1}y_{2}^{2}-y_{1}y_{3}^{2})\right)e_{6} + \left(\frac{\sqrt{10}}{12}y_{1}y_{2}y_{3}\right)e_{7}, \quad \text{for} \quad (y_{1}, y_{2}, y_{3}) \in S_{1/6}^{2}.$$

Then, we may easily check that $(S_{1/6}^2, \phi_0)$ is a 2-dimensional almost complex submanifold of S^6 and furthermore, any almost complex submanifold $(S_{1/6}^2, \phi)$ of S^6 is obtained by $\phi = \alpha \cdot \phi_0$ for some $\alpha \in G_2$.

EXAMPLE 3. Let $M = \mathbf{R}^2$ be a 2-dimensional Euclidean space with the canonical metric and ϕ be a C^{∞} map from \mathbf{R}^2 into S⁶ defined by

(5.2)
$$\phi(u,v) = \sqrt{\frac{2}{3}} \left(\cos \sqrt{\frac{1}{2}} u \right) \left(\left(\sin \sqrt{\frac{3}{2}} v \right) a_1 - \left(\cos \sqrt{\frac{3}{2}} v \right) b_1 \right)$$
$$+ \sqrt{\frac{2}{3}} \left(\sin \sqrt{\frac{1}{2}} u \right) \left(\left(\sin \sqrt{\frac{3}{2}} v \right) a_2 - \left(\cos \sqrt{\frac{3}{2}} v \right) b_2 \right)$$
$$+ \left(\sqrt{\frac{1}{3}} \cos \sqrt{\frac{2}{2}} u \right) a_3 + \left(\sqrt{\frac{1}{3}} \sin \sqrt{\frac{2}{2}} u \right) b_3 ,$$

for $(u, v) \in \mathbb{R}^2$, where $a_i, b_i \in C_+ = \mathbb{R}^7$ such that $(a_i, a_j) = \delta_{ij}, (a_i, b_j) = 0, (b_i, b_j) = \delta_{ij}, 1 \leq i, j \leq 3$, and

$$a_1 \times b_1 = -b_3$$
, $a_3 \times a_1 = b_2$, $a_3 \times b_1 = -a_2$,
 $a_2 \times b_2 = b_3$, $a_1 \times a_2 = b_1 \times b_2 = -a_3 \times b_3$.

For example, $(a_1, a_2, a_3, b_1, b_2, b_3) = (e_3, -e_2, e_5, -e_7, e_6, e_4)$ satisfies the relations in (5.2). We may easily check that (\mathbf{R}^2, ϕ) is a 2-dimensional almost complex submanifold of S^6 .

The above immersion ψ induces an immersion $\Psi: T^2 = \mathbb{R}^2/\Gamma \to S^6$ in the natural way, where Γ denotes the lattice group in \mathbb{R}^2 generated by $\left\{2\sqrt{2\pi}(1, 0), 2\sqrt{\frac{2}{3}\pi}(0, 1)\right\}$.

References

- [1] E. CALABI, Minimal immersion of surfaces in Euclidean spheres, J. Diff. Geom., 1 (1967), 111-125.
- [2] M.P. DO CARMO AND N.R. WALLACH, Representations of compact groups and minimal immersions into spheres, J. Diff. Geom., 4 (1970), 91-104.
- [3] T. FUKAMI AND S. ISHIHARA, Almost Hermitian structure on S⁶, Tōhoku Math. J., 7 (1955), 151-156.
- [4] A. GRAY, Almost complex submanifolds of six sphere, Proc. Amer. Math. Soc., 20 (1969), 277-279.
- [5] K.Kenmotsu, On minimal immersions of \mathbb{R}^2 into S^N , J. Math. Soc. Japan., 28 (1976), 182–191.
- [6] K. KENMOTSU, The classification of minimal surfaces with constant Gaussian curvature in a space form, to appear.
- [7] M. MATSUMOTO, On 6-dimensional almost Tachibana spaces, Tensor N. S., 23 (1972), 250–252.
- [8] H. NAKAGAWA, On a certain minimal immersion of a Riemannian manifold into a sphere, Ködai Math. J., 3 (1980), 321-340.
- [9] K. TAKAMATSU, Some properties of 6-dimensional K-spaces, Kodai Math. Sem. Rep., 23 (1971), 215-232.
- [10] S. SAWAKI AND K. SEKIGAWA, Almost Hermitian manifold with constant holomorphic sectional curvature, J. Diff. Geom., 9 (1974), 123-134.
- [11] S. SAWAKI AND K. SEKIGAWA, σ -hypersurfaces in a locally symmetric almost Hermitian manifolds, Tōhoku Math. J., **30** (1978), 543-551.
- [12] L. VANHECKE, On immersions with trivial normal connections in some almost Hermitian manifolds, Rendiconti di Matematica (I) Vol. 10, Serie VI., (1977), 75-86.
- [13] K. YANO, Differential geometry on complex and almost complex spaces, Pergamon Press. 1965.

Niigata University Niigata, Japan