ALMOST COMPLEX SUBMANIFOLDS OF A 6-DIMENSIONAL SPHERE

By Kouei Sekigawa

1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two typical classes: one is the class of almost complex submanifolds, and the other is the class of totally real submanifolds. A Riemannian submanifold (M, ψ) (or briefly M) of an almost Hermitian manifold (\tilde{M}, J,\langle,$\rangle) (or briefly \tilde{M}$) is called an almost complex submanifold provided that $J_{\psi(p)}\left((d \psi)_{p}(X)\right) \in(d \psi)_{p}\left(T_{p}(M)\right)$ for any $X \in T_{p}(M), p \in M$. The most typical example of nearly Kaehlerian manifolds is a 6 -dimensional sphere S^{6}. In fact, Fukami and Ishihara [3] proved that there exists a nearly Kaehlerian structure on a 6 -dimensional sphere S^{6} by making use of the properties of the Cayley division algebra. We shall call it the canonical nearly Kaehlerian structure on S^{6}. In this paper, we shall study almost complex submanifolds of a 6 -dimensional unit sphere S^{6} with the canonical nearly Kaehlerian structure. First of all, Gray [1] proved that with respect to the canonical nearly Kaehlerian structure, S^{6} has no 4 -dimensional almost complex submanifolds. We shall prove the following Theorems and some related results. In the following Theorems, we assume that $M=(M, \psi)$ is an almost complex submanifold of S^{6}. Then it follows that $\operatorname{dim} M=2$. We denote by K the Gaussian curvature of M.

Theorem A. If (M, ψ) is not totally geodesic, then the degree of ψ is 3 .
Theorem B. If K is constant on M, then $K=1$ or $1 / 6$ or 0 .
Theorem C. Assume that M is compact. If $K>1 / 6$ on M, then $K=1$ on M, and if $1 / 6 \leqq K<1$ on M, then $K=1 / 6$ on M.

In the last section of this paper, we shall give some examples of almost complex submanifolds of S^{6} corresponding to the cases, $K=1,1 / 6$ and 0 in Theorem B. We note that the result of Theorem B is a special case of the result obtained by Kenmotsu under more general situation ([6]).

[^0]
2. Riemannian submanifolds

Let $(\tilde{M},\langle\rangle$,$) (or briefly \tilde{M}$) be a Riemannian manifold and (M, ψ) (or brieflv M) be a Riemannian submanifold of \tilde{M} with isometric immersion ψ. Let ∇ (resp. $\tilde{\nabla}$) be the Riemannian connection on M (resp. \tilde{M}) and R (resp. \tilde{R}) be the curvature tensor of M (resp. \tilde{M}). We denote by σ the second fundamental form of M in \tilde{M}. Since ψ is locally an imbedding, we may identify $p \in M$ with $\psi(p) \in \tilde{M}$ locally, and $T_{p}(M)$ with the subspace $(d \psi)_{p}\left(T_{p}(M)\right)$ of $T_{\psi(p)}(\tilde{M})$. Then, the Gauss formula, Weingarten formula are given respectively by

$$
\begin{gather*}
\sigma(X, Y)=\tilde{\nabla}_{X} Y-\nabla_{X} Y, \tag{2.1}\\
\tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\frac{1}{X} \xi}, \quad X, Y \in \mathfrak{X}(M), \tag{2.2}
\end{gather*}
$$

where ξ is a local field of normal vector to M and $-A_{\xi} X$ (resp. $\nabla_{\bar{x}} \xi$) denotes the tangential part (resp. normal part) of $\tilde{\nabla}_{x} \xi$.

The tangential part $A_{\xi} X$ is related to the second fundamental form σ as follows:

$$
\begin{equation*}
\langle\sigma(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle, \quad X, Y \in \mathfrak{X}(M) \tag{2.3}
\end{equation*}
$$

We denote by R^{\perp} the curvature tensor of the normal connection, i.e., $R^{\perp}(X, Y)=$ $\left[\nabla_{\frac{1}{X}}, \nabla_{\frac{1}{Y}}\right]-\nabla_{[X, Y]}^{\perp}$. Then, the Gauss, Codazzi and Ricci equations are given respectively by

$$
\begin{align*}
\left\langle R(X, Y) Z, Z^{\prime}\right\rangle= & \left\langle\tilde{R}(X, Y) Z, Z^{\prime}\right\rangle+\left\langle\sigma\left(X, Z^{\prime}\right), \sigma(Y, Z)\right\rangle \tag{2.4}\\
& -\left\langle\sigma(X, Z), \sigma\left(Y, Z^{\prime}\right)\right\rangle, \\
(\tilde{R}(X, Y) Z)^{\perp}= & \left(\nabla_{X}^{\prime} \sigma\right)(Y, Z)-\left(\nabla_{Y}^{\prime} \sigma\right)(X, Z), \tag{2.5}\\
\langle\tilde{R}(X, Y) \xi, \eta\rangle= & \left\langle R^{\perp}(X, Y) \xi, \eta\right\rangle-\left\langle\left[A_{\xi}, A_{\eta}\right] X, Y\right\rangle, \tag{2.6}
\end{align*}
$$

for $X, Y, Z, Z^{\prime} \in \mathfrak{X}(M)$, where $\left(\nabla_{X}^{\prime} \sigma\right)(Y, Z)=\nabla_{\frac{1}{X}} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)$ and ξ, η are local fields of normal vectors to M.

In the sequel, the following convention for the notations will be used unless otherwise specified:

$$
X, Y, Z, \cdots, \in \mathfrak{X}(M), \quad U, V, W, \cdots, \in \mathfrak{X}(\tilde{M})
$$

and $\mathfrak{X}(M)$ (resp. $\mathfrak{X}(\tilde{M})$) denotes the set of all tangential vector fields to M (resp. $\tilde{M})$.

For the definition of the degree of the isometric immersion ψ, we refere to [8].

3. 6-dimensional nearly Kaehlerian manifolds

In this section, for the sake of later uses, we shall recall some elementary formulas in a 6 -dimensional nearly Kaehlerian manifold and furthermore the canonical nearly Kaehlerian structure on a 6 -dimensional unit sphere S^{6}. Let \tilde{M} be an almost Hermitian manifold with the almost Hermitian structure (J,\langle,$\rangle).$ We denote by N the Nijienhuis tensor of J and by $\tilde{\nabla}$ the Riemannian connection of \tilde{M}. It is known that the tensor field N satisfies

$$
\begin{equation*}
N(J U, V)=N(U, J V)=-J N(U, V), \quad U, V \in \mathfrak{X}(\tilde{M}) . \tag{3.1}
\end{equation*}
$$

Especially, if \tilde{M} is a nearly Kaehlerian manifold (i.e., $\left(\tilde{\nabla}_{U} J\right) U=0$, for any $U \in \mathfrak{X}(\tilde{M})$, then the tensor field N is written in the following form (cf. [13]):

$$
\begin{equation*}
N(U, V)=-4 J\left(\tilde{\nabla}_{U} J\right) V, \quad U, V \in \mathfrak{X}(\tilde{M}) \tag{3.2}
\end{equation*}
$$

From (3.2), we get

$$
\begin{equation*}
\langle N(U, V), W\rangle=-\langle N(U, W), V\rangle, \quad U, V, W \in \mathfrak{X}(\tilde{M}) . \tag{3.3}
\end{equation*}
$$

An almost complex submanifold M of an almost Hermitian manifold \tilde{M} is called to be a σ-submanifold if the second fundamental form σ is complex linear, i.e.,

$$
\begin{equation*}
\sigma(J X, Y)=\sigma(X, J Y)=J \sigma(X, Y), \quad \text { for } \quad X, Y \in \mathfrak{X}(M) \tag{3.4}
\end{equation*}
$$

(cf. [12]). From (3.4), any σ-submanifold is necessarily minimal. Vanhecke [12] proved that if \tilde{M} is a nearly Kaehlerian manifold, any almost complex submanifold is a σ-submanifold and is also a nearly Kaehlerian manifold. W now assume that \tilde{M} is a 6 -dimensional non-Kaehlerian, nearly Kaehlerian manifold. Then the followings hold in \tilde{M} (cf. [7], [9]):

$$
\begin{align*}
& \tilde{\nabla}_{U}\left(\left(\tilde{\nabla}_{V} J\right) W\right)-\left(\tilde{\nabla}_{\tilde{\nabla}_{U} V} J\right) W-\left(\tilde{\nabla}_{V} J\right)\left(\tilde{\nabla}_{U} W\right) \tag{3.5}\\
& =-\frac{S}{30}(\langle U, V\rangle J W-\langle U, W\rangle J V+\langle J V, W\rangle U), \\
& \begin{aligned}
\left(\tilde{\nabla}_{U} J\right)\left(\tilde{\nabla}_{V} J\right) W & =-\frac{S}{30}(\langle U, V\rangle W-\langle U, W\rangle V \\
& +\langle J U, V\rangle J W-\langle J U, W\rangle J V),
\end{aligned} \tag{3.6}
\end{align*}
$$

$U, V, W \in \mathfrak{X}(\tilde{M})$, where S denotes the scalar curvature of \tilde{M}.
From (3.2), (3.5) and (3.6), we get

$$
\begin{align*}
& \left(\tilde{\nabla}_{U} N\right)(V, W)=\frac{2 S}{15}(\langle J U, V\rangle J W-\langle J J, W\rangle J V+\langle J V, W\rangle J U, \tag{3.7}\\
& N(U, N(V, W))=16\left(\tilde{\nabla}_{U} J\right)\left(\tilde{\nabla}_{V} J\right) W \tag{3.8}
\end{align*}
$$

$$
\begin{align*}
& \left\langle N(U, V), N\left(U^{\prime}, V^{\prime}\right)\right\rangle=-16\left\langle V,\left(\tilde{\nabla}_{U} J\right)\left(\tilde{\nabla}_{U^{\prime}} J\right) V^{\prime}\right\rangle \tag{3.9}\\
& =\frac{8 S}{15}\left(\left\langle U, U^{\prime}\right\rangle\left\langle V, V^{\prime}\right\rangle-\left\langle U, V^{\prime}\right\rangle\left\langle V, U^{\prime}\right\rangle\right. \\
& \left.\quad+\left\langle J U, U^{\prime}\right\rangle\left\langle J V^{\prime}, V\right\rangle-\left\langle J U, V^{\prime}\right\rangle\left\langle J U^{\prime}, V\right\rangle\right),
\end{align*}
$$

$U, U^{\prime}, V, V^{\prime}, W \in \mathfrak{X}(\tilde{M})$.
We shall now recall the canonical nearly Kaehlerian structure on a 6 -dimensional sphere S^{6}. Let \mathcal{C} be the Cayley division algebra generated by $\left\{e_{0}=1\right.$, $\left.e_{2}(1 \leqq \imath \leqq 7)\right\}$ over real number field \boldsymbol{R} and \mathcal{C}_{+}be the subspace of \mathcal{C} consisting of all purely imaginary Cayley numbers. We may identify \mathcal{C}_{+}with a 7 -dimensional Euclidean space \boldsymbol{R}^{7} with the canonical inner product (,) (i.e., $\left(e_{\imath}, e_{\jmath}\right)=\delta_{i j}, 1 \leqq \imath$, $j \leqq 7$). The automorphism group of \mathcal{C} is the compact simple Lie group G_{2} and the inner product (,) is invariant under the action of the group G_{2}. A vector cross product for the vectors in $\mathcal{C}_{+}=\boldsymbol{R}^{7}$ is defined by

$$
\begin{equation*}
x \times y=(x, y) e_{0}+x y, \quad x, y \in \mathcal{C}_{+} . \tag{3.10}
\end{equation*}
$$

Then the multiplication table is given by the following:

$$
\begin{array}{c|ccccccc}
\\
\hline j & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & 0 & e_{3} & -e_{2} & e_{5} & -e_{4} & e_{7} & -e_{6} \\
2 & -e_{3} & 0 & e_{1} & e_{6} & -e_{7} & -e_{4} & e_{5} \\
3 & e_{2} & -e_{1} & 0 & -e_{7} & -e_{6} & e_{5} & e_{4} \\
4 & -e_{5} & -e_{6} & e_{7} & 0 & e_{1} & e_{2} & -e_{3} \\
5 & e_{4} & e_{7} & e_{6} & -e_{1} & 0 & -e_{3} & -e_{2} \\
6 & -e_{7} & e_{4} & -e_{5} & -e_{2} & e_{3} & 0 & e_{1} \\
7 & e_{6} & -e_{5} & -e_{4} & e_{3} & e_{2} & -e_{1} & 0 \\
\hline
\end{array}
$$

Considering S^{6} as $\left\{x \in \mathcal{C}_{+} ;(x, x)=1\right\}$, the canonical almost complex structure J on S^{6} is defined by

$$
\begin{equation*}
J_{x} U=x \times U, \tag{3.11}
\end{equation*}
$$

where $x \in S^{6}$ and $U \in T_{x}\left(S^{6}\right)$ (the tangent space of S^{6} at x).
The above almost complex structure J together with the induced Riemannian metric \langle,$\rangle on S^{6}$ from the inner product (,) on $\mathcal{C}_{+}=\boldsymbol{R}^{7}$ gives rise to a nearly Kaehlerian structure on S^{6}. The group G_{2} acts on S^{6} transitively as the group of automorphisms of the nearly Kaehlerian structure (J,\langle,$\rangle) (cf. [3]). It is$ well known that S^{6} does not admit any Kaehlerian structures.

4. Proofs of Theorems A, B and C

Let M be an almost complex submanifold of a 6 -dimensional unit sphere $\tilde{M}=S^{6}$ with the canonical nearly Kaehlerian structure (J,\langle,$\rangle). Then it follows$ that $\operatorname{dim} M=2$ and hence M is a Kaehlerian manifold of complex dimension 1 with respect to the induced structure from S^{6}. We denote by K the Gaussian curvature of M. Then, from (2.4) and (3.4), we get

$$
\begin{equation*}
K=1-\frac{\|\sigma\|^{2}}{2}, \tag{4.1}
\end{equation*}
$$

where $\|\sigma\|$ denotes the length of the second fundamental form σ.
Codazzi equation (2.5) implies in particular

$$
\begin{equation*}
\left(\nabla_{X}^{\prime} \sigma\right)(Y, Z)=\left(\nabla_{Y}^{\prime} \sigma\right)(X, Z) . \tag{4.2}
\end{equation*}
$$

From (2.1), (2.2) and (3.2), we get

$$
\begin{align*}
& \tilde{\nabla}_{Z}(J \sigma(X, Y))=\frac{1}{4} J N(Z, \sigma(X, Y))+J\left(-A_{\sigma(X, Y)} Z+\nabla_{\frac{1}{Z}} \sigma(X, Y)\right), \tag{4.3}\\
& \tilde{\nabla}_{Z}(\sigma(X, J Y))=-A_{\sigma(X, J Y)} Z+\nabla_{\frac{1}{Z}} \sigma(X, J Y) .
\end{align*}
$$

From (4.3), taking account of (3.1), (3.3) and (3.4), we get

$$
\begin{equation*}
\frac{1}{4} J N(Z, \sigma(X, Y))=\left(\nabla_{Z}^{\prime} \sigma\right)(X, J Y)-J\left(\nabla_{Z}^{\prime} \sigma\right)(X, Y) \tag{4.4}
\end{equation*}
$$

Since $\operatorname{dim} M=2$, from (3.1) and (3.4), we get easily

$$
\begin{equation*}
N(Z, \sigma(X, Y))=N(Y, \sigma(X, Z)) \tag{4.5}
\end{equation*}
$$

Let $M^{\prime}=\{p \in M ; \sigma \neq 0$ at $p\}$. Then M^{\prime} is an open set of M.
We now assume that $M^{\prime} \neq \emptyset$ (i.e., M is not totally geodesic in S^{6}). Let $\left\{X_{1}, X_{2}=J X_{1}\right\}$ be a local field of orthonormal frame on a neighborhood of a point $p \in M^{\prime}$ in M. If we put

$$
\begin{equation*}
\nabla_{X_{\imath}} X_{\jmath}=\sum_{k=1}^{2} B_{\imath j k} X_{k}, \quad 1 \leqq i, \jmath \leqq 2, \tag{4.6}
\end{equation*}
$$

then we get

$$
\begin{equation*}
B_{\imath \jmath k}=-B_{\imath k \jmath}, \quad 1 \leqq i, \jmath, k \leqq 2 . \tag{4.7}
\end{equation*}
$$

Taking account of (3.1), (3.3), (3.4) and (3.9), we may put

$$
\begin{align*}
\left(\nabla_{X_{1}}^{\prime} \sigma\right)\left(X_{1}, X_{1}\right)= & a \sigma\left(X_{1}, X_{1}\right)+b \sigma\left(X_{1}, X_{2}\right) \tag{4.8}\\
& +\frac{c}{4} N\left(X_{1}, \sigma\left(X_{1}, X_{1}\right)\right)+\frac{d}{4} N\left(X_{2}, \sigma\left(X_{1}, X_{1}\right)\right),
\end{align*}
$$

$$
\begin{aligned}
\left(\nabla_{X 2}^{\prime} \sigma\right)\left(X_{1}, X_{1}\right)= & a^{\prime} \sigma\left(X_{1}, X_{1}\right)+b^{\prime} \sigma\left(X_{1}, X_{2}\right) \\
& +\frac{c^{\prime}}{4} N\left(X_{1}, \sigma\left(X_{1}, X_{1}\right)\right)+\frac{d^{\prime}}{4} N\left(X_{2}, \sigma\left(X_{1}, X_{1}\right)\right) .
\end{aligned}
$$

Then, from (4.8), taking account of (2.5), (3.1), (3.4) and (4.4), we get

$$
\begin{equation*}
a^{\prime}=-b, \quad b^{\prime}=a, \quad c^{\prime}=d, \quad d^{\prime}=-c-1 \tag{4.9}
\end{equation*}
$$

Thus, from (4.8), taking account of (3.3), (3.4) and (4.9), we get

$$
\begin{equation*}
a=\frac{1}{\|\sigma\|} X_{1}\|\sigma\|, \quad b=-\frac{1}{\|\sigma\|} X_{2}\|\sigma\| . \tag{4.10}
\end{equation*}
$$

From (4.6), (4.7) and (4.10), we get

$$
\begin{aligned}
{\left[X_{1}, X_{2}\right]\|\sigma\| } & =X_{1}\left(X_{2}\|\sigma\|\right)-X_{2}\left(X_{1}\|\sigma\|\right) \\
& =-X_{1}(b\|\sigma\|)-X_{2}(a\|\sigma\|) \\
& =-\left(X_{1} b+X_{2} a\right)\|\sigma\|,
\end{aligned}
$$

and hence

$$
\begin{equation*}
X_{2} a+X_{1} b+a B_{121}+b B_{212}=0 . \tag{4.11}
\end{equation*}
$$

Taking account of (3.4), (4.6) and (4.7), we get easily

$$
\begin{equation*}
\sum_{i=1}^{2}\left(\nabla_{X}^{\prime} \sigma\right)\left(X_{i}, X_{2}\right)=0 \tag{4.12}
\end{equation*}
$$

From (4.8) with (4.9), taking account of (2.5), (3.1), (3.3) $\sim(3.6)$ and (4.12), we get

$$
\begin{align*}
\left\|\nabla^{\prime} \sigma\right\|^{2}= & \sum_{1 \leq 2, j, k \leq 2}\left\langle\left(\nabla_{X_{i}}^{\prime} \sigma\right)\left(X_{j}, X_{k}\right),\left(\nabla_{X_{i}}^{\prime} \sigma\right)\left(X_{j}, X_{k}\right)\right\rangle \tag{4.13}\\
= & 4\left(\left\langle\left(\nabla_{X_{1}}^{\prime} \sigma\right)\left(X_{1}, X_{1}\right),\left(\nabla_{X_{1}}^{\prime} \sigma\right)\left(X_{1}, X_{1}\right)\right\rangle\right. \\
& \left.+\left\langle\left(\nabla_{X_{2}}^{\prime} \sigma\right)\left(X_{1}, X_{1}\right),\left(\nabla_{X_{2}}^{\prime} \sigma\right)\left(X_{1}, X_{1}\right)\right\rangle\right) \\
= & \left(2\left(a^{2}+b^{2}\right)+2\left(c^{2}+c+d^{2}\right)+1\right)\|\sigma\|^{2} .
\end{align*}
$$

From (4.10) and (4.13), we get

$$
\begin{equation*}
a^{2}+b^{2}=\|\operatorname{grad}(\log \|\sigma\|)\|^{2}, \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
c^{2}+c+d^{2}=\frac{1}{2\|\sigma\|^{2}}\left(\left\|\nabla^{\prime} \sigma\right\|^{2}-2\|\operatorname{grad}\| \sigma\| \|^{2}-\|\sigma\|^{2}\right) . \tag{4.15}
\end{equation*}
$$

We put

$$
F=\|\operatorname{grad}(\log \|\sigma\|)\|^{2}
$$

and

$$
G=\frac{1}{2\|\sigma\|^{2}}\left(\left\|\nabla^{\prime} \sigma\right\|^{2}-2\|\operatorname{grad}\| \sigma\left\|^{2}-\right\| \sigma \|^{2}\right) .
$$

Then, from (4.15), we have easily
Lemma 4.1. $G \geqq-\frac{1}{4}$ on M^{\prime}.
From (2.6), taking account of (2.1), (2,2), (3.1)~(3.4), (3.7), (3.8), (4.1), (4.5)~ (4.9), we get

$$
\begin{aligned}
-\frac{1}{8}\|\sigma\|^{4}= & \left\langle R^{\perp}\left(X_{1}, X_{2}\right) \sigma\left(X_{1}, X_{1}\right), \sigma\left(X_{1}, X_{2}\right)\right\rangle \\
= & \frac{\|\sigma\|^{2}}{4}\left(X_{1} a-X_{2} b-b B_{121}+a B_{212}-2 G-1\right. \\
& \left.+2\left(X_{1} B_{212}-X_{2} B_{112}-B_{121} B_{112}+B_{212} B_{212}\right)\right) \\
= & \frac{\|\sigma\|^{2}}{4}\left(X_{1} a-X_{2} b-b B_{121}+a B_{212}-1-2 G-2 K\right),
\end{aligned}
$$

and hence

$$
\begin{equation*}
X_{1} a-X_{2} b-b B_{121}+a B_{212}=2 G+3 K \tag{4.16}
\end{equation*}
$$

Similarly, we get

$$
\begin{align*}
& X_{1} d-X_{2} c=3(2 c+1) B_{121}-6 d B_{212}-2 a d-(2 c+1) b \tag{4.17}\\
& X_{1} c+X_{2} d=-6 d B_{121}-3(2 c+1) B_{212}+2 b d-(2 c+1) a \tag{4.18}
\end{align*}
$$

Lemma 4.2. $\Delta(\log \|\sigma\|)=2 G+3 K$ on M^{\prime}.
Proof. From (4.6), (4.7), (4.10) and (4.16), we get

$$
\begin{aligned}
\Delta\|\sigma\| & =X_{1}\left(X_{1}\|\sigma\|\right)+X_{2}\left(X_{2}\|\sigma\|\right)+B_{121} X_{2}\|\sigma\|+B_{212} X_{1}\|\sigma\| \\
& =\|\sigma\|\left(X_{1} a-X_{2} b-b B_{121}+a B_{212}+a^{2}+b^{2}\right) \\
& =\|\sigma\|(F+2 G+3 K),
\end{aligned}
$$

and hence

$$
\begin{aligned}
\Delta(\log \|\sigma\|) & =(1 /\|\sigma\|) \Delta\|\sigma\|-\|\operatorname{grad}(\log \|\sigma\|)\|^{2} \\
& =2 G+3 K .
\end{aligned}
$$

Q.E.D.

Let $\left\{E_{1}, E_{2}=J E_{1}\right\}$ be an orthonormal basis of $T_{p}(M), p \in M^{\prime}$ and $\gamma_{2}=\gamma_{2}\left(t_{2}\right)$ ($1 \leqq i \leqq 2$) be the geodesics in M^{\prime} such that

$$
\gamma_{i}(0)=p \quad \text { and } \quad \frac{d \gamma_{2}}{d t_{2}}(0)=E_{\imath}, \quad 1 \leqq i \leqq 2 .
$$

Then, we may easily see that there exists an orthonormal frame field $\left\{X_{1}, X_{2}=\right.$ $\left.J X_{1}\right\}$ near p in M^{\prime} such that

$$
\begin{equation*}
X_{\imath}=E_{\imath} \quad(1 \leqq \supseteq \leqq 2) \quad \text { at } p, \tag{4.19}
\end{equation*}
$$

and

$$
X_{1}=\frac{d \gamma_{1}}{d t_{1}} \quad \text { along } \gamma_{1}, \quad X_{2}=\frac{d \gamma_{2}}{d t_{2}} \quad \text { along } \gamma_{2}
$$

From (4.19), we get

$$
\begin{equation*}
B_{121}=0 \text { along } \gamma_{1} \text { and } B_{212}=0 \text { along } \gamma_{2} \tag{4.20}
\end{equation*}
$$

From (4.17) and (4.18), taking account of (4.19) and (4.20), we get

$$
\begin{align*}
E_{1}\left(X_{1} d\right)-E_{1}\left(X_{2} c\right)= & -(2 c+1) E_{1} d-2 d E_{1} a \tag{4.21}\\
& -6 d E_{1} B_{212}-2 b E_{1} c-2 a E_{1} d \\
E_{2}\left(X_{1} c\right)+E_{2}\left(X_{2} d\right)= & -(2 c+1) E_{2} a+a d E_{2} b \\
& -6 d E_{2} B_{121}-2 a E_{2} c+2 b E_{2} d
\end{align*}
$$

From (4.21), taking account of (4.11), (4.16) and (4.20), we get

$$
\begin{equation*}
d=-4 d G-2 a E_{1} d+2 b E_{2} d-2 b E_{1} c-2 a E_{2} c . \tag{4.22}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
c=-2(2 c+1) G+2 b E_{1} d+2 a E_{2} d-2 a E_{1} c+2 b E_{2} c . \tag{4.23}
\end{equation*}
$$

On one hand, from (4.17), (4.18) and (4.20), we get

$$
\begin{align*}
& \left(E_{1} c\right)^{2}=-\left(E_{1} c\right)\left(E_{2} d\right)-(2 c+1) a E_{1} c+2 b d E_{1} c \tag{4.24}\\
& \left(E_{2} c\right)^{2}=\left(E_{2} c\right)\left(E_{1} d\right)+2 a d E_{2} c+(2 c+1) b E_{2} c \\
& \left(E_{1} d\right)^{2}=\left(E_{2} c\right)\left(E_{1} d\right)-2 a d E_{1} d-(2 c+1) b E_{1} d \\
& \left(E_{2} d\right)^{2}=-\left(E_{1} c\right)\left(E_{2} d\right)-(2 c+1) a E_{2} d+2 b d E_{2} d
\end{align*}
$$

From (4.17), (4.18) and (4.24), we get

$$
\begin{align*}
& 2\left(\left(E_{2} c\right)\left(E_{1} d\right)-\left(E_{1} c\right)\left(E_{2} d\right)\right) \tag{4.25}\\
& \quad=-F(4 G+1)+\left(E_{1} c\right)^{2}+\left(E_{2} c\right)^{2}+\left(E_{1} d\right)^{2}+\left(E_{2} d\right)^{2}
\end{align*}
$$

Thus, from (4.21)~(4.25), we get

$$
\begin{align*}
\Delta G= & 2\left(-(F+G)(4 G+1)-2 a E_{1} G+2 b E_{2} G\right. \tag{4.26}\\
& \left.+\left(E_{1} c\right)^{2}+\left(E_{2} c\right)^{2}+\left(E_{1} d\right)^{2}+\left(E_{2} d\right)^{2}\right) .
\end{align*}
$$

Lemma 3. The following holds on M^{\prime}.

$$
\begin{equation*}
\Delta(4 G+1)^{3}=24(4 G+1)\left(-(4 G+1)^{2} G+6\|\operatorname{grad} G\|^{2}\right) . \tag{4.27}
\end{equation*}
$$

Proof. By the definition of the function G, we get

$$
\begin{equation*}
E_{i} G=(2 c+1) E_{i} c+2 d E_{i} d, \quad 1 \leqq i \leqq 2 . \tag{4.28}
\end{equation*}
$$

From (4.17), (4.18) and (4.28), we get

$$
\begin{align*}
& (4 G+1) E_{1} c=(2 c+1) E_{1} G-2 d E_{2} G+2 b d(4 G+1) \tag{4.29}\\
& (4 G+1) E_{2} c=2 d E_{1} G+(2 c+1) E_{2} G+2 a d(4 G+1) \\
& (4 G+1) E_{1} d=2 d E_{1} G+(2 c+1) E_{2} G-(2 c+1) b(4 G+1), \\
& (4 G+1) E_{2} d=-(2 c+1) E_{1} G+2 d E_{2} G-(2 c+1) a(4 G+1) .
\end{align*}
$$

From (4.29), taking account of the definitions of the functions F and G, we get

$$
\begin{align*}
&(4 G+1)^{2}\left(\left(E_{1} c\right)^{2}+\left(E_{2} c\right)^{2}+\left(E_{1} d\right)^{2}+\left(E_{2} d\right)^{2}\right) \tag{4.30}\\
&= 2(4 G+1)\left((4 G+1)^{2} F+\|\operatorname{grad} G\|^{2}\right. \\
&\left.+a(4 G+1) E_{1} G-b(4 G+1) E_{2} G\right) .
\end{align*}
$$

Thus, from (4.26) and (4.30), we have finally (4.27).
Q.E.D.

We are now in a position to prove Theorems A, B and C. First, we shall prove Theorem A. We denote by ν_{p}^{k} the k-th normal space and by σ_{p}^{k} the k-th fundamental form of the isometric immersion ψ at $p \in M^{\prime}$. Then from (4.8) with (4.9), we see that ν_{p}^{1} and ν_{p}^{2} are generated respectively by $\left\{\sigma_{p}^{2}\left(E_{1}, E_{1}\right)=\sigma\left(E_{1}, E_{1}\right)\right.$, $\left.\sigma_{p}^{2}\left(E_{1}, E_{2}\right)=\sigma\left(E_{1}, E_{2}\right)\right\}$ and $\left\{\sigma_{p}^{3}\left(E_{1}, E_{1}, E_{1}\right)=(c / 4) N\left(E_{1}, \sigma\left(E_{1}, E_{1}\right)\right)+(d / 4) N\left(E_{2}\right.\right.$, $\left.\left.\sigma\left(E_{1}, E_{1}\right)\right), \sigma_{p}^{3}\left(E_{2}, E_{1}, E_{1}\right)=(d / 4) N\left(E_{1}, \sigma\left(E_{1}, E_{1}\right)\right)-((c+1) / 4) N\left(E_{2}, \sigma\left(E_{1}, E_{1}\right)\right)\right\}$, where $E_{2}=J E_{1}$.

If $G(p) \neq 0$, then it follows that $\operatorname{dim} \nu_{p}^{1}=2, \operatorname{dim} \nu_{p}^{2}=2$, and hence the degree of the immersion ψ is 3 . So, we assume that $G=0$ on M^{\prime}. Let p be any point of M^{\prime} and define E by

$$
\left\|\left(\nabla_{E}^{\prime} \sigma\right)(E, E)\right\|=\operatorname{Max}_{\substack{X \in T_{p}(M) \\\|X\|-1}}\left\|\left(\nabla_{X}^{\prime} \sigma\right)(X, X)\right\| .
$$

Let $\left\{X_{1}, X_{2}=J X_{1}\right\}$ be an orthonormal frame field near p satisfying the condition (4.19) for the basis $\left\{E_{1}=E, E_{2}=J E\right\}$ at p. Then, we may easily see that $d=0$ (and hence $c^{2}+c=0$) at p. We may assume that $c=-1$ at p. We put

$$
\zeta=-\frac{d}{4} N\left(X_{1}, \sigma\left(X_{1}, X_{1}\right)\right)+\frac{c}{4} N\left(X_{2}, \sigma\left(X_{1}, X_{1}\right)\right) \quad \text { near } p .
$$

Then, taking account of (3.1), (3.7), (3.8), (4.2), (4.8), (4.9), (4.20) and (4.29), we get

$$
\begin{align*}
\sigma_{p}^{4}\left(E_{1}, E_{1}, E_{1}, E_{1}\right) & =-\left(E_{2} d+a\right) \zeta_{p} \tag{4.31}\\
& =-2 G(p) \zeta_{p}=0 .
\end{align*}
$$

Similarly, we get

$$
\begin{equation*}
\sigma_{p}^{4}\left(E_{2}, E_{1}, E_{1}, E_{1}\right)=0 \tag{4.32}
\end{equation*}
$$

Thus, from (4.31) and (4.32), taking account of (4.12) and the symmetricity of σ_{p}^{4}, we have finally $\sigma_{p}^{4}=0$, and hence the degree of ψ is 3 . This completes the proof of Theorem A. Next, we shall prove Theorem B. We assume that the Gaussian curvature K of M is constant and $K \neq 1$. From (4.1), we get $\|\sigma\|^{2}=2(1-K)$, and hence from (4.10) and (4.14)

$$
\begin{equation*}
F=0 \quad \text { on } M=M^{\prime} . \tag{4.33}
\end{equation*}
$$

Thus, from (4.33) and Lemma 4.2, we get

$$
\begin{equation*}
G=-\frac{3}{2} K \quad \text { on } M \tag{4.34}
\end{equation*}
$$

From (4.34) and Lemma 4.3, it follows that $G(4 G+1)=0$. If $4 G+1=0$, then, from (4.34), we have $K=1 / 6$, and otherwise, we have $K=0$. This completes the proof of Theorem B.

Lastly, we shall prove Theorem C. We suppose that M is compact and $M^{\prime} \neq \emptyset$. Then $\|\sigma\|$ takes its maximum at some point $p \in M^{\prime}$. Then, from (4.10), we have $F(p)=0$. Thus, from Lemmas 4.1 and 4.2 , we have

$$
\begin{equation*}
0 \geqq(\Delta \log \|\sigma\|)(p) \geqq-\frac{1}{2}+3 K(p), \tag{4.35}
\end{equation*}
$$

and hence $K(p) \leqq 1 / 6$.
Thus, if M is compact and $K>1 / 6$ on M, from (4.35), it follows that $M^{\prime}=\emptyset$, and hence the first half of Theorem C is proved. The latter half of Theorem C is immediately followed by using Lemmas 4.1 and 4.2, and Green's theorem. From Lemmas 4.2 and 4.3, taking account of Green's theorem and Gauss-Bonnet theorem, we have the following

Theorem D. Assume that M is compact and $K<1$ on M. If the functıon G satisfies the inequality $-1 / 4 \leqq G \leqq 0$ on M, then $G=0$ or $-1 / 4$ on M, and furthermore M is diffeomorphic to a 2-dimensional torus (resp. a 2-dimensional sphere) in the case where $G=0$ on M (resp. $G=-1 / 4$ on M).

We remark that the equality $G=0$ (resp. $G=-1 / 4$) on M^{\prime} is equivalent to

$$
\begin{equation*}
\Delta \log (1-K)=6 K, \quad \text { on } M^{\prime} \tag{4.36}
\end{equation*}
$$

(resp. (4.37) $\Delta \log (1-K)=-1+6 K$ on M^{\prime})

5. Some examples

Example 1. Let $M=\left\{x \in S^{6} ; x=x_{2} e_{2}+x_{4} e_{4}+x_{6} e_{6}\right\}$, and c be the inclusion map from M into S^{6}. Then, we may easily see that (M, ι) is a 2 -dimensional almost complex and totally geodesic submanifold of S^{6}.

Example 2. Let $M=S_{1 / 6}^{2}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \boldsymbol{R}^{3} ; y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=6\right\}$ and ψ_{0} be a C^{∞} map from M into S^{6} defined by

$$
\begin{align*}
& \phi_{0}\left(y_{1}, y_{2}, y_{3}\right) \tag{5.1}\\
&=\left(\frac{\sqrt{6}}{72}\left(2 y_{1}^{3}-3 y_{1} y_{2}^{2}-3 y_{1} y_{3}^{2}\right)\right) e_{1}+\left(\frac{\sqrt{15}}{72}\left(3 y_{2}^{2} y_{3}-y_{3}^{3}\right)\right) e_{2} \\
&+\left(\frac{\sqrt{15}}{72}\left(y_{2}^{3}-2 y_{2} y_{3}^{2}\right)\right) e_{3}+\left(\frac{1}{24}\left(4 y_{1}^{2} y_{2}-y_{2}^{3}-y_{2} y_{3}^{2}\right)\right) e_{4} \\
&+\left(\frac{1}{24}\left(4 y_{1}^{2} y_{3}-y_{2}^{2} y_{3}-y_{3}^{3}\right)\right) e_{5}+\left(\frac{\sqrt{10}}{24}\left(y_{1} y_{2}^{2}-y_{1} y_{3}^{2}\right)\right) e_{6} \\
&+\left(\frac{\sqrt{10}}{12} y_{1} y_{2} y_{3}\right) e_{7}, \quad \text { for } \quad\left(y_{1}, y_{2}, y_{3}\right) \in S_{1 / 6}^{2} .
\end{align*}
$$

Then, we may easily check that $\left(S_{1 / 6}^{2}, \psi_{0}\right)$ is a 2 -dimensional almost complex submanifold of S^{6} and furthermore, any almost complex submanifold ($S_{1 / 6}^{2}, \psi$) of S^{6} is obtained by $\psi=\alpha \cdot \psi_{0}$ for some $\alpha \in G_{2}$.

Example 3. Let $M=\boldsymbol{R}^{2}$ be a 2 -dimensional Euclidean space with the canonical metric and ψ be a C^{∞} map from \boldsymbol{R}^{2} into S^{6} defined by

$$
\begin{align*}
\phi(u, v)= & \sqrt{\frac{2}{3}}\left(\cos \sqrt{\frac{1}{2}} u\right)\left(\left(\sin \sqrt{\frac{3}{2}} v\right) a_{1}-\left(\cos \sqrt{\frac{3}{2}} v\right) b_{1}\right) \tag{5.2}\\
& +\sqrt{\frac{2}{3}}\left(\sin \sqrt{\frac{1}{2}} u\right)\left(\left(\sin \sqrt{\frac{3}{2}} v\right) a_{2}-\left(\cos \sqrt{\frac{3}{2}} v\right) b_{2}\right) \\
& +\left(\sqrt{\frac{1}{3}} \cos \sqrt{2} u\right) a_{3}+\left(\sqrt{\frac{1}{3}} \sin \sqrt{ } 2 u\right) b_{3},
\end{align*}
$$

for $(u, v) \in \boldsymbol{R}^{2}$, where $a_{\imath}, b_{i} \in \mathcal{C}_{+}=\boldsymbol{R}^{7}$ such that $\left(a_{\imath}, a_{j}\right)=\delta_{i j},\left(a_{\imath}, b_{j}\right)=0,\left(b_{i}, b_{j}\right)=\delta_{i j}$, $1 \leqq \imath, j \leqq 3$, and

$$
\begin{aligned}
& a_{1} \times b_{1}=-b_{3}, \quad a_{3} \times a_{1}=b_{2}, \quad a_{3} \times b_{1}=-a_{2}, \\
& a_{2} \times b_{2}=b_{3}, \quad a_{1} \times a_{2}=b_{1} \times b_{2}=-a_{3} \times b_{3} .
\end{aligned}
$$

For example, $\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right)=\left(e_{3},-e_{2}, e_{5},-e_{7}, e_{6}, e_{4}\right)$ satisfies the relations in (5.2). We may easily check that ($\left.\boldsymbol{R}^{2}, \psi\right)$ is a 2 -dimensional almost complex submanifold of S^{6}.

The above immersion ψ induces an immersion $\Psi: T^{2}=\boldsymbol{R}^{2} / \Gamma \rightarrow S^{6}$ in the natural way, where Γ denotes the lattice group in \boldsymbol{R}^{2} generated by $\{2 \sqrt{ } 2 \pi(1,0)$, $\left.2 \sqrt{\frac{2}{3}} \pi(0,1)\right\}$.

References

[1] E. Calabi, Minimal immersion of surfaces in Euclidean spheres, J. Diff. Geom., 1 (1967), 111-125.
[2] M.P. Do Carmo and N.R. Wallach, Representations of compact groups and minimal immersions into spheres, J. Diff. Geom., 4 (1970), 91-104.
[3] T. Fukami and S. Ishihara, Almost Hermitian structure on S^{6}, Tōhoku Math. J., 7 (1955), 151-156.
[4] A. Gray, Almost complex submanifolds of six sphere, Proc. Amer. Math. Soc., 20 (1969), 277-279.
[5] K. Kenmotsu, On minimal immersions of \boldsymbol{R}^{2} into S^{N}, J. Math. Soc. Japan., 28 (1976), 182-191.
[6] K. Kenmotsu, The classification of minimal surfaces with constant Gaussian curvature in a space form, to appear.
[7] M. Matsumoto, On 6-dimensional almost Tachibana spaces, Tensor N.S., 23 (1972), 250-252.
[8] H. Nakagawa, On a certain minimal immersion of a Riemannian manifold into a sphere, Kōdai Math. J., 3 (1980), 321-340.
[9] K. Takamatsu, Some properties of 6 -dimensional K-spaces, Kōdai Math. Sem. Rep., 23 (1971), 215-232.
[10] S. Sawaki and K. Sekigawa, Almost Hermitian manifold with constant holo. morphic sectional curvature, J. Diff. Geom., 9 (1974), 123-134.
[11] S. Sawaki and K. Sekigawa, σ-hypersurfaces in a locally symmetric almost Hermitian manifolds, Tōhoku Math. J., 30 (1978), 543-551.
[12] L. Vanhecke, On immersions with trivial normal connections in some almost Hermitian manifolds, Rendiconti di Matematica (I) Vol. 10, Serie VI., (1977), 75-86.
[13] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press. 1965.

Nigata University
Niggata, Japan

[^0]: Received July 8, 1982

