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1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two
typical classes: one is the class of almost complex submanifolds, and the other
is the class of totally real submanifolds. A Riemannian submanifold (M, φ) (or
briefly M) of an almost Hermitian manifold (M, /, < , » (or briefly M) is called
an almost complex submanifold provided that Jψ{V)((dψ)p(X))^(dφ)v(Tv{M)) for
any X^TP(M), p^M. The most typical example of nearly Kaehlerian manifolds
is a β-dimensional sphere SG. In fact, Fukami and Ishihara [3] proved that there
exists a nearly Kaehlerian structure on a β-dimensional sphere S6 by making use
of the properties of the Cayley division algebra. We shall call it the canonical
nearly Kaehlerian structure on S6. In this paper, we shall study almost complex
submanifolds of a β-dimensional unit sphere S6 with the canonical nearly Kaehlerian
structure. First of all, Gray [1] proved that with respect to the canonical nearly
Kaehlerian structure, S6 has no 4-dimensional almost complex submanifolds.
We shall prove the following Theorems and some related results. In the follow-
ing Theorems, we assume that M—(M, φ) is an almost complex submanifold of SG.
Then it follows that dimΛf=2. We denote by K the Gaussian curvature of M.

THEOREM A. // (M, φ) is not totally geodesic, then the degree of φ is 3.

THEOREM B. // K is constant on M, then K=l or 1/6 or 0.

THEOREM C. Assume that M is compact. If K>l/6 on M, then K=l on M,
and if 1/6^K<1 on M, then #=1/6 on M.

In the last section of this paper, we shall give some examples of almost
complex submanifolds of S6 corresponding to the cases, K=l, 1/6 and 0 in
Theorem B. We note that the result of Theorem B is a special case of the
result obtained by Kenmotsu under more general situation ([β]).
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2. Riemannian submanifolds

Let (M, < , » (or briefly M) be a Riemannian manifold and (M, ψ) (or brieflv
M) be a Riemannian submanifold of M with isometric immersion ψ. Let V (resp.
7) be the Riemannian connection on M (resp. M) and R (resp. /?) be the cur-
vature tensor of M (resp. M). We denote by σ the second fundamental form
of M in M. Since </> is locally an imbedding, we may identify p^M with
Ψ(P)EΞM locally, and TP(M) with the subspace (dψ)p(Tp(M)) of Tφiv){M). Then,
the Gauss formula, Weingarten formula are given respectively by

(2.1) σ(X, Y)=lxY-lχY,

(2.2) Vxξ=-AξX+Vxξ, X,

where ξ is a local field of normal vector to M and —AξX (resp. Vi-f) denotes
the tangential part (resp. normal part) of lxξ.

The tangential part AξX is related to the second fundamental form a as
follows:

(2.3) <σ(X, Y\ ξ>=<AξX, Y>, X, Y<ΞX(M) .

We denote by R1 the curvature tensor of the normal connection, i.e., Rλ(X, Y)=
[Vi, Vy]—VCX.F]. Then, the Gauss, Codazzi and Ricci equations are given re-
spectively by

(2.4) <R(X, Y)Z, Z'> = <R(X, Y)Z, Z'> + <σ(X, Z'), σ(Y, Z

-<σ(Z, Z), σ(F, Z7)>,

(2.5) (^(Z, Y)Zy = φ'xσ)(Y, Z)-{Ψγσ){X, Z),

(2.6) (R{X, Y)ξ, V} = <R^(X, Y)ξ, η>-<LAζ, Aη^X, Y>,

for Z, Y, Z, Z7e3e(M), where (7iσ)(r, Z)=lxσ{Y, Z)-σ{lxY, Z)-σ{Y, 1XZ)
and ξ, rj are local fields of normal vectors to M.

In the sequel, the following convention for the notations will be used unless
otherwise specified:

x , γy z , -., G Ξ * ( M ) , U, v, w, •••, ^ae(M)

and 36(M) (resp. 36(M)) denotes the set of all tangential vector fields to M (resp.
M).

For the definition of the degree of the isometric immersion ψ, we refere to
[8].
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3. 6-dimensional nearly Kaehlerian manifolds

In this section, for the sake of later uses, we shall recall some elementary
formulas in a β-dimensional nearly Kaehlerian manifold and furthermore the
canonical nearly Kaehlerian structure on a β-dimensional unit sphere S6. Let M
be an almost Hermitian manifold with the almost Hermitian structure (/, <,» .
We denote by N the Nijienhuis tensor of / and by V the Riemannian connection
of M. It is known that the tensor field N satisfies

(3.1) N(JUf V)=N(U, JV)=-JN(U, V), U, FGE36(M) .

Especially, if M is a nearly Kaehlerian manifold (i.e., ΦuJ)U=ΰ, for any
then the tensor field N is written in the following form (cf. [13]):

(3.2) N{U,V)=-±jφuJ)V, U,V

From (3.2), we get

(3.3) (N(U, V), Wy = -<N(U, W), Vy, U, V,
/•v

An almost complex submanifold M of an almost Hermitian manifold M is
called to be a σ-submanifold if the second fundamental form σ is complex linear,
i.e.,

(3.4) σ{JX, Y)^σ{X, JY)=Jσ(X, Y), for X, 7e3E(M),

(cf. [12]). From (3.4), any ί7-submanifold is necessarily minimal. Vanhecke [12]
proved that if M is a nearly Kaehlerian manifold, any almost complex submani-
fold is a σ -submanifold and is also a nearly Kaehlerian manifold. W now assume
that M is a β-dimensional non-Kaehlerian, nearly Kaehlerian manifold. Then the
followings hold in M (cf. [7], [9]):

(3.5) %{( u

, w>u),

(3.6) (%J)$vJW=-^«U, V>W-<U, W}V

+<ju,vyjw-<ju,wyjv),

U, V, W(=X(M), where S denotes the scalar curvature of M.
From (3.2), (3.5) and (3.6), we get

(3.7) (%N)(V, w)=~«ju, vyjw-iju, wyjv+uv, wyju ,

(3.8) N(U, N(V, W))=
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= -=r«u, v>w-<u, wyv+iju, -iju, wyjv),

(3.9) <N(U, V), N(U', V')> =

an

=fs«u, u'xv, , ufy

+</£/, u'xjv, vy-<ju, vxju', v»,
U, £/', V, V,

We shall now recall the canonical nearly Kaehlerian structure on a β-dimen-
sional sphere S6. Let C be the Cayley division algebra generated by {eo=l,
eι(l^ι^7)} over real number field R and C+ be the subspace of C consisting of
all purely imaginary Cayley numbers. We may identify C+ with a 7-dimensional
Euclidean space RΊ with the canonical inner product (,) (i.e., (elt e3)—δij, l:gz,
y^7). The automorphism group of C is the compact simple Lie group G2 and
the inner product (,) is invariant under the action of the group G2 A vector
cross product for the vectors in C+=R7 is defined by

(3.10) xXy = (x, y)e0

J

Γxy,

Then the multiplication table is given by the following:
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2
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Considering S6 as {χ(ΞC+; (X, X)=Ϊ\, the canonical almost complex structure

/ on S6 is defined by

(3.11) jxu=χχu,

where X G 5 6 and U^TX(S6) (the tangent space of S6 at x).
The above almost complex structure / together with the induced Riemannian

metric <,> on SQ from the inner product ( ,) on C+—R7 gives rise to a nearly
Kaehlerian structure on SG. The group G2 acts on S6 transitively as the group
of automorphisms of the nearly Kaehlerian structure (/, <,» (cf. [3]). It is
well known that S6 does not admit any Kaehlerian structures.
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4. Proofs of Theorems A, B and C

Let M be an almost complex submanifold of a β-dimensional unit sphere
M=S6 with the canonical nearly Kaehlerian structure (/, <,». Then it follows
that dimM=2 and hence M is a Kaehlerian manifold of complex dimension 1
with respect to the induced structure from SG. We denote by K the Gaussian
curvature of M. Then, from (2.4) and (3.4), we get

(4.1) K=l-Hf-,

where ||σ|| denotes the length of the second fundamental form σ.
Codazzi equation (2.5) implies in particular

(4.2) (Ψ*σ)(Y, Z) = {lf

γσ){X, Z).

From (2.1), (2.2) and (3.2), we get

(4.3) %z(Jσ(X, Y))=jJN(Z, σ{X, Y))+J(-Aσ(X,Y)Z+^zσ(X, Y)),

. JY).

From (4.3), taking account of (3.1), (3.3) and (3.4), we get

(4.4) jMZ9 σ(X, Y))={Ψzσ)(X, JY)-J(Ψzσ)(X, Y).

Since dimM=2, from (3.1) and (3.4), we get easily

(4.5) N(Z, σ(X, Y))=N{Y, σ{X, Z)).

Let M'={p^M; σΦO at p). Then M' is an open set of M.
We now assume that M'Φ® (i.e., M is not totally geodesic in S6). Let

{Xlf X2=JXi\ be a local field of orthonormal frame on a neighborhood of a point
J G M ' in M. If we put

(4.6) !XιXj=ΈBιjkXk,

then we get

(4.7) Bl}k = -Bxh),

Taking account of (3.1), (3.3), (3.4) and (3.9), we may put

(4.8) (V^σXX,, X1)=aσ{Xι, X1)+bσ(X1, Xt)

jMXt, σ(Xlt X,)),
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πx*σ)(Xl9 Xί) = a'σ(Xl9 X1)+bfσ(Xl9 X2)

+ -^N(Xl9 σ(Xl9 XM+^NiX* σ(Xί} X,)).

Then, from (4.8), taking account of (2.5), (3.1), (3.4) and (4.4), we get

(4.9) α'=-6, b'=a, c'=d, d'=-c-l.

Thus, from (4.8), taking account of (3.3), (3.4) and (4.9), we get

(4.10) a=-^τX1\\σ\\ , b=- / | Γ X 2 | k l | .
lltfll II oil

From (4.6), (4.7) and (4.10), we get

ίXlf X2]\\σ\\ = X1(X2\\σ\\)-X2(X1\\σ\\)

= -X1(b\\σ\\)-X2(a\\σ\\)

= -(X1b+Xia)\\σ\\>

and hence

(4.11) X2a+Xib+aB121+bB212=0.

Taking account of (3.4), (4.6) and (4.7), we get easily

(4.12) Σ
1 = 1

From (4.8) with (4.9), taking account of (2.5), (3.1), (3.3)~(3.6) and (4.12), we get

(4.13) IIV^II2- Σ <(ΨXiσ)(XJ9 Xk), {rXίσ){X3, Xk)>
lύlj k£2

From (4.10) and (4.13), we get

(4.14) α 2 +6 2 =||grad(log| |σ | | ) | | 2 ,

(4.15) c 2 +c+ίί 2 =- 2 - |^ 2 -( | |V' ( 7

We put

F=|igrad(log||σ||)| |2

and
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Then, from (4.15), we have easily

LEMMA 4.1. G^ — — on M'.

From (2.6), taking account of (2.1), (2,2), (3.1)~(3.4), (3.7), (3.8), (4.1), (4.5)-
(4.9), we get

~\\σr=<R^Xlf X2)σ(Xu Xx\ σ(Xl9 X2)>

'^-{X1a-X2b-bB121+aB212-2G-l

2 12))

and hence

(4.16) X1a-X2b-bB121

J

raB212=2G+3K.

Similarly, we get

(4.17) X1d-X2c=3(2c+l)B121-6dB212-2ad-(2c+l)b,

(4.18) X1c+X2d = -6dB121-3(2c+l)B21i+2bd-(2c+l)a.

LEMMA 4.2. Δ(log||σ||)=2G+3A: on M'.

Proof. From (4.6), (4.7), (4.10) and (4.16), we get

= ||(j||(F+2G+3/JO,

and hence

Δ(log||σ||)=(l/||σ||)Δ|k||-||grad(log|k||)||8

Q.E.D.

Let {Elf E2—JEι) be an orthonormal basis of TP(M), p^Mf and γι=γι(tι)
^z^2) be the geodesies in M' such that

U0)=p and ^(0)=Et9

Then, we may easily see that there exists an orthonormal frame field {Xly X2—
JXλ) near p in M' such that
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(4.19) Xι=Eι ( lg*^2) at p,

and

Xi=-^ along n , X ^ ^ along r 2 .

From (4.19), we get

(4.20) £121=0 along γί and B 2 1 2 =0 along γ2.

From (4.17) and (4.18), taking account of (4.19) and (4.20), we get

(4.21) E1(X1d)-E1(X2c)=-(2c+l)E1d-2dE1a

-6dE1B212-2bE1c-2aE1d,

-6dE2B121-2aE2c+2bE2d .

From (4.21), taking account of (4.11), (4.16) and (4.20), we get

(4.22) d=-4dG-2aE1d
Jr2bE2d-2bE1c-2aE2c.

Similarly, we get

(4.23) c=-2(2c+l)G+2bE1d+2aE2d-2aE1c+2bE2c.

On one hand, from (4.17), (4.18) and (4.20), we get

(4.24) (E1c)2=-(E1c)(E2d)-(2c+l)aE1c
J

Γ2bdE1c,

(E1d)2=(E2c)(E1d)-2adE1d-(2cJrl)bE1d}

{E2d)2=-{E1c){E2d)-{2cJrl)aE2d-\-2bdE2d.

From (4.17), (4.18) and (4.24), we get

(4.25) 2((E2c)(E1d)-(E1c)(E2d))

Thus, from (4.21)^(4.25), we get

(4.26) Δ G = 2 ( - ( F

LEMMA 3. The following holds on M'.

(4.27) J(4G + l) 3-24(4G+l)(-(4G + l)2G+6||grad G\\2).
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Proof. By the definition of the function G, we get

(4.28) EiG=(2c+l)Eic+2dEίd,

From (4.17), (4.18) and (4.28), we get

(4.29)

(4GJ

Γl)Eίd--=2dE1G-s

Γ(2c+l)E2G-(2c+l)b(4G+l)y

From (4.29), taking account of the definitions of the functions F and G, we get

(4.30)

1G-b(4:G+ΐ)E2G).

Thus, from (4.26) and (4.30), we have finally (4.27). Q.E.D.
We are now in a position to prove Theorems A, B and C. First, we shall

prove Theorem A. We denote by v% the &-th normal space and by σ% the &-th
fundamental form of the isometric immersion ψ at p^M'. Then from (4.8) with
(4.9), we see that v\ and v\ are generated respectively by {a\(Ely Eχ)=σ(Ely EJ,
σl(Ely E2)=σ(Ely E2)} and {σ\{El9 Eu E1)=(c/4t)N(El9 σ(Ely E1))+{d/A)N(E2y

σ{Ely E1))f σ
3

p(E2y Ely E1)=(d/4)N(Elf σ(Ely E1))-{{c+l)/A)N{E2y σ(Ely EJ)}, where
Ei=JE1.

If G(p)Φθ, then it follows that d i m ^ = 2 , dim^|=2, and hence the degree
of the immersion ψ is 3. So, we assume that G=0 on M'. Let p be any point
of M' and define E by

\\C7Έσ)(E, E)\\= Max | | (V»(X, X)\\ .

Let {Xly X2=JX1} be an orthonormal frame field near p satisfying the condi-
tion (4.19) for the basis {E1=E, E2=JE} at p. Then, we may easily see that
d = 0 (and hence c2Jrc=0) at p. We may assume that c ——l at p. We put

ζ=-jN(Xly σ(Xl9 X1))+jN(X2, σ(Xl9 X1)) near p .

Then, taking account of (3.1), (3.7), (3.8), (4.2), (4.8), (4.9), (4.20) and (4.29), we
get

(4.31) aA

p(El9 El9 El9 E1) = - (
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Similarly, we get

(A 19) rr4(F F F F ) — 0

Thus, from (4.31) and (4.32), taking account of (4.12) and the symmetricity
of <7p, we have finally σ^—0, and hence the degree of φ is 3. This completes
the proof of Theorem A. Next, we shall prove Theorem B. We assume that
the Gaussian curvature K of M is constant and KΦl. From (4.1), we get
\\σ\\2=2(l-Kl and hence from (4.10) and (4.14)

(4.33) F=0 o n M - M ' .

Thus, from (4.33) and Lemma 4.2, we get

(4.34) G=—JK on M.

From (4.34) and Lemma 4.3, it follows that G(4G+l)=0. If 4G+l=0, then,
from (4.34), we have K—l/Q, and otherwise, we have K—Q. This completes the
proof of Theorem B.

Lastly, we shall prove Theorem C. We suppose that M is compact and
M'^0. Then ||σ|| takes its maximum at some point p^M\ Then, from (4.10),
we have F(p)=0. Thus, from Lemmas 4.1 and 4.2, we have

(4.35) 0^(Δlog|k| |)(/))^--i-
l

and hence
Thus, if M is compact and K>l/6 on M, from (4.35), it follows that M'=0,

and hence the first half of Theorem C is proved. The latter half of Theorem C
is immediately followed by using Lemmas 4.1 and 4.2, and Green's theorem.
From Lemmas 4.2 and 4.3, taking account of Green's theorem and Gauss-Bonnet
theorem, we have the following

THEOREM D. Assume that M ts compact and K<1 on M. If the function G
satisfies the inequality —l/4^G^0 on M, then G=0 or —1/4 on M, and fur-
thermore M is dijfeomorphic to a 2-dimensionaί torus (resp. a 2-dimensιonal sphere)
in the case where G=0 on M {resp. G ——1/A on M).

We remark that the equality G=0 (resp. G = —1/4) on M' is equivalent to

(4.36) Δlog(l-ΐO=6tf, on M'

(resp. (4.37) Δlog( l-/ ίO=-l+6tf on M)
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5. Some examples

EXAMPLE 1. Let M = { X G S 6 ; x = x2e2+X4e4-\-x6e6}f and c be the inclusion
map from M into SG. Then, we may easily see that (M, c) is a 2-dimensional
almost complex and totally geodesic submanifold of S6.

EXAMPLE 2. Let M=S2

1/6={(y1} y2, ys)^R3; yϊ+yϊ+yί=6} and ψ0 be a C°°
map from M into S6 defined by

(5.1) φQ(ylf y2, ys)

\ y y y ψ for

Then, we may easily check that (5f/6, ψ0) is a 2-dimensional almost complex
submanifold of S6 and furthermore, any almost complex submanifold (5?/6, ψ) of
5 6 is obtained by ψ=a-ψ0 for some a<=G2.

EXAMPLE 3. Let M—R2 be a 2-dimensional Euclidean space with the can-
onical metric and φ be a C°° map from /22 into S6 defined by

(5.2) ^(w,i;)

+ V 3 (sin V y w)((sin V 2 t;)fl2-(cos

y cos V 2" M)α8+(Vy sin V2M)() 8 ,

for (M, V)^R2, where aιy b^C^—R1 such that (αt, a3)=diJ} (aιy bj)=O, (bίf b3)—δip

l^i, 7^3, and

2 - b1xb2— —

For example, (α1 ? α2, α3, b1} b2, b3) — (e3, —e2, e5y —eΊ, e6, eA) satisfies the rela-
tions in (5.2). We may easily check that (R2, ψ) is a 2-dimensional almost com-
plex submanifold of S\
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The above immersion ψ induces an immersion Ψ: T2=R2/Γ-*SG in the

natural way, where Γ denotes the lattice group in R2 generated by hV 2 π(l, 0),

2<Jξ-π{0, 1)}.
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