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SPECTRAL GEOMETRY OF CR-MINIMAL SUBMANIFOLDS

IN THE COMPLEX PROJECTIVE SPACE

BY ANTONIO ROS

Introduction. In the first part of this paper we will study an isometric
imbedding of the complex projective space in the Euclidean space, see [7].

In the second part we use this imbedding and the total mean curvature
theory, see [4], in order to obtain certain boundaries of the volume and the
first eigenvalue of the spectrum of Ci?-minimal closed submanifolds of the
complex projective space, such as certain characterizations of some of these
submanifolds, in function of these geometric invariants. We give a /^-charac-
terization of totally geodesic complex submanifolds, a spectral reduction of
codimension theorem for totally real submanifolds and some other results.

Manifolds are assumed to be connected and dimension n ^ 2 unless mentioned
otherwise. For the necessary knowledge and notations of the geometry of sub-
manifolds, see [2], and for spectral geometry, see [1].

1. An imbedding of the complex projective space in the Euclidean space.

Let HM(n)={A^gί(n, C)/Ά = A1} be the set of nxn-Hermitian matrices.
HM(n) is a ?22-dimensional linear subspace of gί(n, C). We define in HM(n)
the metric

g(A, B)=2 trace (AB) for all A, B in HM(n).

Let CPn={A^HM(n + l)/AA=A, trace .4=1} and U(n) be the unitary group.

LEMMA 1.1. CPn is a submanifold of HM(n+l) diffeomorphic to
U(n+l)/U(l)xU(n).

Proof. Let A be in CPn. Since A is a Hermitian matrix, there exists P
in U(n+1) such that

Ao

Λ»

As PAP-'MPAP-1)2, ht=hΐ, so that hι=0 or ht=l, but trace
therefore there exists an index ι0 such that hlQ=l and ht—Q for ail tΦιQ.
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Hence, we see that there exists P in U(n+1) such that

1
0

0

We will say that Ao is the origin of CPn. Moreover CPn is the orbit of
Ao for the action of f/(n+l) over HM(n+l) given by (P, A)-*PAP-\ where P
is in U(n+1) and A is in i/M(n+l). The isotropy subgroup of Ao is U(l)xU(n).
Therefore CPn^U(n+l)/U(l)Xϋ(n). (Q.E.D.)

For any A in CPn, we denote by TA(CPn) the tanget space of CPn at /I
identified by means of the immersion with a subspace of HM(n + l). In the
same way we denote by T\(CPn) the normal space of CPn in HM(n + l) at
the point A.

LEMMA 1.2. For αn y jtonί A in CPn, we have

(1.1) TΛ(CPn)=

(1.2)

Let α: Γ->CPn be a curve such that α(0)=A and a'(0) = A; where
.Γ will denote an open interval of real numbers which contains 0. Then from
a(ΐ)a(t)=a(t) we obtain XA+AX=X. Therefore we have one inclusion. Since
the applications Lp: HM(n+l)->HM(n+l) given by A^PAP~\ where P is in
[/(n+1), are isometries, it is enough to establish this equalities at the origin.
Now we will compute the dimension of the subspace {X^HM(n + l
A0X=X}.

For any X^HM(n+l) we put

/ a b\
X=\ where a^R, b^Cn and ct=HM(n).

U* c I
Then XA0-\-A0X=X if and only if a=0 and c=0, so that

°
, with Z?e

0 /

The real dimension of this subspace is 2n=aim TΛ(CPn) = aim U(n-j-l)/U(l)
χU(n) and so we have (1.1).

A vector Z is in Tio(CPn) if and only if 2 trace (XZ)=0 for all X(ΞTAO(CPΊI).
Let

' x y
Z=\
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Then, 2 trace (ZZ)=4 Real trace (by'). Therefore g(X, Z)=0 for all X in
TAo(CPn), if and only if y=0.

On the other hand, ZΛ0=Λ0Z if and only if y=0. (Q.E.D.)
Remark 1.3. The vector fields given by Λ^Λ and ̂ 4^/ (where / denotes

the identity matrix) are normal to CPn. The vector fields given by Λ^ΛQ
Λ-QA-2AQA are tangent to CPn for all Q in HM(n+l).

Hence forth, we will use the following relations which can be obtained by
direct calculus. Let A be in CPn and X, Y in TA{CPn). Then AXY=XYA,
AXA=0f X(I-2A)=-(I-2A)X, (I-2A)2=I, (I-2A)XY=XY(I-2A).

PROPOSITION 1.4. Let D be the Riemannian connection of HM(n+l), 7 the
induced connection in CPn, σ the second fundamental form of the immersion, 7 X

and A the normal connection and the Weingarten endomorphism and H the mean
curvature vector of CPn. Then

(1.3) 1XY=A(DXY)+{DXY)A-2A{DXY)A,

(1.4) σ(X, Y) = {XY+YX)(I-2A),

(1.5) 1XZ=DXZ+2A{DXZ)A-{DXZ)A-A{DXZ),

(1.6) AZX={XZ-ZX)(I-2A),

(1.7) H=-^U-(n+l)Al,

where X and Y are tangent vector fields to CPn, and Z is a normal vector field
to CPn.

Proof. Let 7 and σ be as in (1.3) and (1.4). Let X be any vector in
TA(CPn) and Y any tangent vector field to CPn. If a: Γ-±CPn is a curve
which satisfies φ)=A and α'(0)=Z, we have a(t)Y(t)+Y(t)a(t)=Y(t). There-
fore

(1.8) XY+YX+A(DXY)+{DXY)A=DXY.

On the other hand, we have a(t)Y(t)a(t)=0. Therefore

(1.9) XYA+A(DXY)A+AYX=O.

From (1.8) and (1.9), we get DxY=lxY+σ(X, Y).
A simple calculations proves that 1XY (resp. σ(X, Y)) is tangent (resp.

normal) to CPn. Then we have (1.3) and (1.4).
Let 7 1 and A be as in (1.5) and (1.6). Let Z be any normal vector field

to CPn. We have a{t)Z{t)=Z(t)a{t), then

XZ+A(DXZ)-(DXZ)A-ZX=O,

AzX=(XZ-ZX)(I-2A)=l(DxZ)A-A(DxZ)2(I-2A)

=2A(DXZ)A-(DXZ)A-A(DXZ)=VXZ-DXZ.
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From (1.1) (resp. (1.2)) we see that AZX (resp. lχZ) is tangent (resp.
normal), hence we have (1.5) and (1.6).

It is enough, to verify (1.7) at the origin.
Let {Eίf '•• En, £*, ••• E%) be an orthonormal base in TA(CPn) defined by

(k)

0 !

U I

(k)
0 1 0 0 \

(k)

0 ' 0 ••• 0 1

o :

- 1 o

A direct calculation proves that

/ — * 0

0' 1

θ!

(Q.E.D.)

LEMMA 1.5. a) Let f be the diffeomorphism obtained in lemma 1.1. Then f
is an isometry when we consider on U(n + ϊ)/U(l)xU(n) the Fubini-Study metric
with holomorphic sectional curvature c = l, and on CPn the metric induced by that
on HM(n+l).

b) The complex structure induced by the isometry f in CPn is given by

/Z=V-~T(/-2,4)X, for all X in TA{CPn).

Proof, a) Since both metrics are £/(n + l)-invariant, it is enough to see that
the differential of / at the origin is an isometry between the corresponding
tangent spaces.

Let [ P ] be the coset of P<=U(n + l) in £7(n + l)/i7(l)Xt/(w). Then /(DP])
^PAQP'1 and so

0 a

-a1 0
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The Fubini-Study metric of the constant holomorphic sectional curvature
c = l at the origin is given by

0 a \ I 0 b \\ I abι 0
, _ =2 trace

-άι 0 / \ -bι 0 // \ 0 άιb .

I 0 a \
Let a : Γ->ί/(n + l) be a curve such that α(0)=/ and α'(0)= . We

\ -*< 0 /
consider the curve β: Γ->U(n+l)/U(l)xU(n) given by β(t)=Za(t)].

0 a \ / 0 - α \
) = (fβn0)=a\Q)Λoa(0y + a(0)Λoa

/(0)t = ( , and we
- ά e 0 / \ - β f 0 /

/ / 0 a\ I 0 b \\ lab1 0 \
have ^ J (df)oi ), (df)o[ _ =2 trace . This show a).

\ \ -άι 0/ \ ^ - ^ 0 // \Q ά'b/
b) The complex structure / at the origin of U(n+l)/U(l)xU(n) is given
V 0 a \ ..__/ 0 - α \ / 0 a \

by / = V — 1 , see [6]. Let be a vector in
\ -a1 0 / \ - β έ 0 / \ άι 0 /

TAo(CPn). Therefore the complex structure induced in CPn is given by

0 a \ „ I 0 a \ I 0 -a

)=dfJ(dfo)-H = V " T

^£ 0 / \ <̂  0 / \ ά£ 0
On the other hand

/ 0 a \ _ I 0 -a \
V - K / - 2 Λ ) )=^-1\ (Q.E.D.)

\ άι 0 / \ ά« 0 /

The following proposition resumes some properties of the immersion. For
other properties, see [5], [7].

PROPOSITION 1.6. The immersion of CPn in HM(n+l) verifies the following
properties

a) It ts an isometric U{n + l)-equivarιant imbedding.
b) σ(JX, JY)=σ(X, Y) and 75— 0, that is, the second fundamental form is

parallel.

c) It is minimal in the sphere S, whose center is [l/(n + l)]7 and whose

radius is V2n/(

Proof, a) It is a consequence of lemma 1.1 and 1.5.
b) It is easy to see that σ(JX, JY)^σ{X, Y) for all X, Y^TA{CPn). Let

X, Yι, Y2 be any three vector fields tangent to CPn. Then we have

JY2)=Vxσ(JY1} JY*)-σ{lxJYu JY,)-
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Therefore we have C7σ)x(Y, JY)=0, for all Y in T A{CPn), and so from
Codazzi's equation (Vσ)γ(X, /F)=0. If we choose X=JY, we have
0=(Vσ)γ(JY, JY)=Wσ)γ(Y, Y). Hence 7α=0.

c) If A is in CPn then #(,4 | τ / , Λ \- ••/)= ^ τ . Therefore
\ n + 1 ft + 1 / n + 1

CPπ is included in 5. Let H be the mean curvature vector of CPn in HM(n + l).

H=-^~U-(n + l)A}=—----- (A — - Λ Therefore CPn is minimal in S,
In In \ n + 1 /

see [2]. (Q.E.D.)

LEMMA 1.7. Lέtf £Ί, E2 60 αn^ two vectors in TA(CPn) such that g(Eu E2)=Q
and g(Eu E^giE^ E2)=L Then

a) g(σ(EuE1\ σ(Eu E1))=

b) l/2Sg{σ{E1,E1))σ{E2j

Moreover if we have g(Elf JE2)=0, then

c) g{σ{Eu Ex), σ(E2tEt))=l/2,

d) g(σ(Eu E2), σ(Elt £2)) = l/4.

/ 0 a \ I 0 b \
Proof. Let £ 1 = and EM . Then ^(^Ί, £ !)=1 if and

W* 0 / \ M 0 / _ _
only if a^ — l/A, g(Elf E2)=0 if and only if abι = V— 1 h, where h^R. More-
over g(Elf JE2)=0 if and only if α5 ί=0. Now a), c) and d) are obvious.

/ 1/16 0 \
b) g(σ(Eu E,), σ{E2, E2))=8 trace (E\ED=8 trace _ =1/2

\ 0 V - ΐhά'b I
+8/22. But Λ 2=|α5M 2^ |αΓl^lβ=l/16. (Q.E.D.)

2. Ci?-minimal submanifolds in the complex projective space.

For Cff-submanifolds see for example [4]. In the following we write
M2n+P for a Ci?-submanifold of CPn, where 2n=dim^) and j&=dim^)1, ^ being
the holomorphic distribution and 2)L the totally real distribution of M.

LEMMA 2.1. a) Let Mn be a submanifold of CPm. Let HL be the normal
component of the mean curvature vector of Mn in HM(m+l) to CPm. Then

(2.1) (n+l)/2n^g(H\

b) Let M2n+P be a CR-submamfold of CPm. Let H1 be as m a). Then
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(2.2) g{H\ Hη=l(2n+p

Proof, a) Let {Eu ~-En} be an orthonormal base of TA(Mn) where A is
any point in Mn. Let σ be the second fundamental form of CPm in HM{m+l).

Then i / ^ - Σ f f ^ , £\). By using lemma 1.7 we have (2.1).

b) We can choose an orthonormal base of TA(M) of the type {Elf ••• En,
JEU •-• JEn, Fu ••• Fp}, where Elf JEZ are in iE> and F3 is in iD1. From lemma
1.7, we have (2.2). (Q. E. D.)

LEMMA 2.2. Let M2n+P be a CR-submanifold of CPm, σ the second funda-
mental form of CPm in HM(m+ϊ) and σM its restriction to M. Then

(2.3) g(σM, σM) = a/m2n + p)2+4n+3pl.

The proof can be obtained by using lemma 1.7. From the expresion of the
scalar curvature for submanifolds in the Euclidean space, we obtain the following

COROLLARY 2.3. Let M2n+P be a CR-submamfold of CPm. Let H be the
mean curvature vector of M2n+P in CPm, r the scalar curvature of M2n+P, and σ
the second fundamental form of M2n+P in CPm. Then

(2.4) r=ί(2?ι + p)2+4n-pyi+(2n + p)2g(H, H)-g(σ, σ).

B.Y. Chen has proved the following theorems:

THEOREM A. [2]. Let M be an n-dimensional closed submanifold of Em.
Then we have

(2.5) \ an

J M

where a=Vg(H, H) is the mean curvature of M and cn is the volume of unit
n-sphere. The equality holds if and only if M is imbedded as an ordinary n-
sphβre in an afβne (n + l)-space.

For an isometric immersion of a closed manifold M in the Euclidean space
x: M-^Em, we put x = (xlf ••• xm), where x% is the z-th coordinate function of
M in Em. We call an isometric immersion x is of order k if each coordinate
function x% of x is an eigenfunction of the Laplace Beltrami operator of M
corresponding to eigenvalue λk.

THEOREM B. [3]. Let x: M-^Em be an isometric immersion of a closed n-
dimensional Riemanman manifold M into Em. The total mean curvature of x
satisfies

(2.6) ^ α ^ ^ ( ^ ) n / 2 v o l (M),
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where vol (M) denotes the volume of (M, g) and λλ denotes the first eigenvalue
of the Laplace-Beltrami operator of (M, g) acting on differentiable functions in
C°°(M). The equality holds if and only if there is a vector c tn Em such that
x — c is an imbedding of order 1.

COROLLARY 2.4. Let Mn be a closed minimal submawfold of CPm. Then
we have
(2.7) v

Proof. Let H be the mean curvature vector of Mn in HM{m-τ-l). Let H1

be the same as in lemma 2.1. Since Mn is minimal in CPm, H^H1. Now we
use theorem A and lemma 2.1. (Q.E.D.)

COROLLARY 2.5. Let M2n+P be a closed CR-minimal submamfold of CPm.
Then we have

(2.8)

The equality holds if and only if M=CP1 is imbedded as a totally geodesic
complex submamfold in CPm.

Proof. By using theorem A and lemma 2.1 we obtain (2.8).
We suppose that the equality holds. Then M is isometric to a sphere of

radius R. We have vo\(M)=R2n+pc2n+P, and then J?2=2(2n+/07[(2n + £)2+4n + /f|.
Let c and r be the sectional curvature and the scalar curvature of M respective-
ly. Then c=l/R2 and
(2.9) r=c(2n+p-l)(2n+p).
From corollary 2.3
(2.10)

From (2.9) and (2.10) we have

But this occurs if and only if n = l and p—0. Therefore M is a unit 2-sphere
imbedded as complex submanifold in CPm. Since M and CPm have the same
holomorphic sectional curvature c = l, we get that M is totally geodesic in CPm.

The converse is trivial because CP1 is imbedded in HM{2) as a standard
sphere. (Q. E. D.)

The following corollaries can be obtained from theorem B and lemma 2.1.

COROLLARY 2.6. Let Mn be a closed minimal submanifold of CPm. Then
we have
(2.12) λ^n.

COROLLARY 2.7. Let M2n+P be a closed CR-minimal submanifold of CPm.
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Then we have
(2.13) ^ [ ( Σ

In particular, if M2n is a compact complex (resp. Mp is a closed minimal totally
real) submanifold of CPm then

(2.14)

(2.15) (resp. λ^

The following result gives a complete classification of the Cff-minimal sub-
manifolds of CPm which are minimal in some sphere of HM(m+l).

THEOREM 2.8. Let M2n+P be a CR-minimal submanifold of CPm. Then
M2n+P is minimal in some sphere of HM(m+l) if and only if one of the follow-
ing cases holds:

a) p—0 and M2n is a totally geodesic complex submanifold of CPm.
b) ft = 0 and Mp is a totally real submanifold of CPm for which there exists

a totally geodesic complex submanifold M2p of CPm, such that Mp is a totally
real submanifold of M2p.

Proof. We suppose that M2n+P is minimal in a certain sphere 5 of
HM(m+l). If Q denotes the center of S, we can suppose that Q is a diagonal
matrix (otherwise we can use an isometry of HM(m+l) of the type A^PAP'1,
where P is in U(m+1)). Let H be the mean curvature vector of Min HM(m+l).
From the minimality of M in 5 we have H—h-(A—Q), for any A in M where
h is a real number with hΦO. It is clear that Q^Ti(CPm). Therefore AQ = QA
for any A in M. That is, Mis contained in the linear subspace, L of HM(m+l\
which is defined by the equation AQ = QA. We put

Q=

Then

A2

Ar

Σ trace Λ

Since AιAι=Aι, we see that trace A% is a natural number. Hence for any A in
CPmr\L there exists an index / such that trace Aj — 1 and trace Ax=ΰ for all
iφj, which implies Aι—ΰ and
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0

trace Aj=l

Therefore M is contained in a connected component of CPmP\L. Each of these
component is evidently a totally geodesic complex submanifold of CPm (it is a
CPq, q^m), and M is a minimal submanifold of the sphere Sr\L. Consequently
the problem is reduced to the study of C7?-minimal submanifolds of CPq which
are minimal in some sphere of HM(g+l) whose center is al where a is a real
number and / is the (#+l)X(#+l)-identity matrix.

We have H=h-(A—aI). As M is contained in the sphere we know that

and since M is Cff-minimal in CPq,

g(H, H)=

Therefore

for all A in M. On the other hand,

(2.17) g(A-aI, A-aI)=g(A, A)-2ag{A, I) + a*g{I,

From (2.16) and (2.17) we obtain

Since the discriminate of this equation must ^0, we get

that is (2n+p)2^q(An + p). But q^n + p, and so

Therefore 4np^5np, which implies n—0 or p=0.
*) Suppose p=0. Then we have q—n, that is M2n is open in CPn.
*) Suppose n=0. Then ί = ^ .
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Conversely: If M2n is a totally geodesic complex submanifold of CPm,
then from proposition 1.6, M is minimal in some sphere. Let Mp be a totally
real minimal submanifold of CPP. For any i e M , let {Elf ••• Ep} be an ortho-
normal base of TA(M). Then we have that {Eu ••• Ep, JElf ••• JEP} is an
orthonormal base of TA{CPP). Hence, if H is the mean curvature vector of
Mp in HM(p + l) it is easy to see from proposition 1.6, that

and so M p is minimal in some sphere. (Q0E. D.)

COROLLARY 2.9. Let M2n+P be a closed CR-minimal submanifold of CPm.
1) // M is in the cases a) or b) of theorem 2.8, then [(2n+ί)2+4n+£]/2(2tt+£)
is in Spec (M).

2) // Λi=[(2ft + ί)2+4ft+£]/2(2ft+£), ίAen M is imbedded and is in the cases
a) or b) of theorem 2.8, where Spec (M) zs ί/ie spectrum of the Laplace-Beltrami
operator of M and Λ is the first eigenvalue of this operator.

Proof. 1) From the proof of theorem 2.8 and from a well know theorem
of Takahashi [8], if M is minimal in S then λk=dlm(M)/R2 for some λk in
Spec(M), where R is the radius of 5. Then λk=[_(2n+p)2+4nJrp']/2(2n+p).

2) From theorem B, we see, by choosing a suitable origen, that the immer-
sion is an imbedding of order 1. In particular it is minimal in some sphere,
[8]. Now from theorem 2.8, M is in the cases a) or b). (Q. E. D.)

COROLLARY 2.10. Let M2n be a complex compact submanifold of CPm.
Then we have λ^n + 1. Moreover M2n is totally geodesic in CPm if and only if

Proof. We consider corollaries 2.7 and 2.9, and Spec (CPn), see [1].

COROLLARY 2.11. Let Mp be a totally real closed minimal submanifold of
CPm. Then we have 1) // there exists M2p such that M2p is a totally^geodesic
complex submanifod of CPm and Mp is a totally real submanifold of M2p, then
(p+l)/2 belongs to Spec (Mp).

2) // λι=(p+l)/2, then there exists a totally geodesic complex submanifold
M2V of CPm such that Mp is a totally real submanifold of M2p.

Proof. We consider corollary 2.9.

The author has known that corollaries 2.7 and 2.10 has been recently
obtained by N. Ejiri.
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