SPECTRAL GEOMETRY OF CR-MINIMAL SUBMANIFOLDS IN THE COMPLEX PROJECTIVE SPACE

By Antonio Ros

Introduction. In the first part of this paper we will study an isometric imbedding of the complex projective space in the Euclidean space, see [7].

In the second part we use this imbedding and the total mean curvature theory, see [4], in order to obtain certain boundaries of the volume and the first eigenvalue of the spectrum of $C R$-minimal closed submanifolds of the complex projective space, such as certain characterizations of some of these submanifolds, in function of these geometric invariants. We give a λ_{1}-characterization of totally geodesic complex submanifolds, a spectral reduction of codimension theorem for totally real submanifolds and some other results.

Manifolds are assumed to be connected and dimension $n \geqq 2$ unless mentioned otherwise. For the necessary knowledge and notations of the geometry of submanifolds, see [2], and for spectral geometry, see [1].

1. An imbedding of the complex projective space in the Euclidean space.

Let $H M(n)=\left\{A \in g l(n, C) / \bar{A}=A^{t}\right\}$ be the set of $n \times n$-Hermitian matrices. $H M(n)$ is a n^{2}-dimensional linear subspace of $g l(n, \boldsymbol{C})$. We define in $H M(n)$ the metric

$$
g(A, B)=2 \operatorname{trace}(A B) \quad \text { for all } A, B \text { in } H M(n)
$$

Let $\boldsymbol{C} P^{n}=\{A \in H M(n+1) / A A=A$, trace $A=1\}$ and $U(n)$ be the unitary group.
LEMMA 1.1. $\boldsymbol{C} P^{n}$ is a submanıfold of $H M(n+1)$ diffeomorphic to $U(n+1) / U(1) \times U(n)$.

Proof. Let A be in $\boldsymbol{C} P^{n}$. Since A is a Hermitian matrix, there exists P in $U(n+1)$ such that

$$
P A P^{-1}=\left(\begin{array}{lll}
h_{0} & & \\
& \ddots & \\
& & \\
& & h_{n}
\end{array}\right)
$$

As $P A P^{-1}=\left(P A P^{-1}\right)^{2}, h_{\imath}=h_{\imath}^{2}$, so that $h_{\imath}=0$ or $h_{\imath}=1$, but $\operatorname{trace}\left(P A P^{-1}\right)=1$, therefore there exists an index \imath_{0} such that $h_{\imath_{0}}=1$ and $h_{\imath}=0$ for all $\imath \neq \imath_{0}$.

Hence, we see that there exists P in $U(n+1)$ such that

$$
P A P^{-1}=\left(\begin{array}{cccc}
1 & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right)=A_{0} .
$$

We will say that A_{0} is the origin of $\boldsymbol{C P}{ }^{n}$. Moreover $\boldsymbol{C} P^{n}$ is the orbit of A_{0} for the action of $U(n+1)$ over $H M(n+1)$ given by $(P, A) \mapsto P A P^{-1}$, where P is in $U(n+1)$ and A is in $H M(n+1)$. The isotropy subgroup of A_{0} is $U(1) \times U(n)$. Therefore $\boldsymbol{C} P^{n} \cong U(n+1) / U(1) \times U(n)$.
(Q.E.D.)

For any A in $\boldsymbol{C} P^{n}$, we denote by $T_{A}\left(\boldsymbol{C} P^{n}\right)$ the tanget space of $\boldsymbol{C} P^{n}$ at A identified by means of the immersion with a subspace of $H M(n+1)$. In the same way we denote by $T_{A}^{\perp}\left(\boldsymbol{C} P^{n}\right)$ the normal space of $\boldsymbol{C} P^{n}$ in $H M(n+1)$ at the point A.

Lemma 1.2. For any point A in $\boldsymbol{C} P^{n}$, we have

$$
\begin{gather*}
T_{A}\left(\boldsymbol{C} P^{n}\right)=\{X \in H M(n+1) / X A+A X=X\}, \tag{1.1}\\
T_{A}^{1}\left(\boldsymbol{C} P^{n}\right)=\{Z \in H M(n+1) / A Z=Z A\} . \tag{1.2}
\end{gather*}
$$

Proof. Let $\alpha: \Gamma \rightarrow \boldsymbol{C} P^{n}$ be a curve such that $\alpha(0)=A$ and $\alpha^{\prime}(0)=X$, where Γ will denote an open interval of real numbers which contains 0 . Then from $\alpha(t) \alpha(t)=\alpha(t)$ we obtain $X A+A X=X$. Therefore we have one inclusion. Since the applications $L_{p}: H M(n+1) \rightarrow H M(n+1)$ given by $A \mapsto P A P^{-1}$, where P is in $U(n+1)$, are isometries, it is enough to establish this equalities at the origin. Now we will compute the dimension of the subspace $\left\{X \in H M(n+1) / X A_{0}+\right.$ $\left.A_{0} X=X\right\}$.

For any $X \in H M(n+1)$ we put

$$
X=\left(\begin{array}{cc}
a & b \\
\tilde{b}^{t} & c
\end{array}\right) \quad \text { where } \quad a \in \boldsymbol{R}, b \in \boldsymbol{C}^{n} \quad \text { and } \quad c \in H M(n) .
$$

Then $X A_{0}+A_{0} X=X$ if and only if $a=0$ and $c=0$, so that

$$
X=\left(\begin{array}{cc}
0 & b \\
\bar{b}^{t} & 0
\end{array}\right), \quad \text { with } \quad b \in \boldsymbol{C}^{n}
$$

The real dimension of this subspace is $2 n=\operatorname{dim} T_{A}\left(\boldsymbol{C} P^{n}\right)=\operatorname{dim} U(n+1) / U(1)$ $\times U(n)$ and so we have (1.1).

A vector Z is in $T_{A_{0}}^{\perp}\left(\boldsymbol{C P} P^{n}\right)$ if and only if 2 trace $(X Z)=0$ for all $X \in T_{A_{0}}\left(C P^{n}\right)$. Let

$$
Z=\left(\begin{array}{cc}
x & y \\
\bar{y}^{t} & z
\end{array}\right)
$$

Then, 2 trace $(X Z)=4$ Real trace $\left(b \bar{y}^{t}\right)$. Therefore $g(X, Z)=0$ for all X in $T_{A_{0}}\left(\boldsymbol{C P} P^{n}\right)$, if and only if $y=0$.

On the other hand, $Z A_{0}=A_{0} Z$ if and only if $y=0$. (Q.E.D.)
Remark 1.3. The vector fields given by $A \mapsto A$ and $A \mapsto I$ (where I denotes the identity matrix) are normal to $C P^{n}$. The vector fields given by $A \mapsto A Q$ $+Q A-2 A Q A$ are tangent to $C P^{n}$ for all Q in $H M(n+1)$.

Hence forth, we will use the following relations which can be obtained by direct calculus. Let A be in $\boldsymbol{C P} P^{n}$ and X, Y in $T_{A}\left(\boldsymbol{C} P^{n}\right)$. Then $A X Y=X Y A$, $A X A=0, X(I-2 A)=-(I-2 A) X,(I-2 A)^{2}=I,(I-2 A) X Y=X Y(I-2 A)$.

Proposition 1.4. Let D be the Riemannaan connection of $H M(n+1), \nabla$ the induced connection in $\boldsymbol{C} P^{n}$, $\tilde{\sigma}$ the second fundamental form of the immersion, ∇^{\perp} and \boldsymbol{A} the normal connection and the Weingarten endomorphism and \widetilde{H} the mean curvature vector of $\boldsymbol{C P}{ }^{n}$. Then

$$
\begin{gather*}
\nabla_{X} Y=A\left(D_{X} Y\right)+\left(D_{X} Y\right) A-2 A\left(D_{X} Y\right) A \tag{1.3}\\
\tilde{\sigma}(X, Y)=(X Y+Y X)(I-2 A), \tag{1.4}\\
\nabla_{X}^{\frac{1}{X}} Z=D_{X} Z+2 A\left(D_{X} Z\right) A-\left(D_{X} Z\right) A-A\left(D_{X} Z\right), \tag{1.5}\\
A_{Z} X=(X Z-Z X)(I-2 A), \tag{1.6}\\
\tilde{H}=\frac{1}{2 n}[I-(n+1) A] \tag{1.7}
\end{gather*}
$$

where X and Y are tangent vector fields to $C P^{n}$, and Z is a normal vector field to $\boldsymbol{C P}{ }^{n}$.

Proof. Let ∇ and $\tilde{\sigma}$ be as in (1.3) and (1.4). Let X be any vector in $T_{A}\left(\boldsymbol{C} P^{n}\right)$ and Y any tangent vector field to $\boldsymbol{C} P^{n}$. If $\alpha: \Gamma \rightarrow \boldsymbol{C} P^{n}$ is a curve which satısfies $\alpha(0)=A$ and $\alpha^{\prime}(0)=X$, we have $\alpha(t) Y(t)+Y(t) \alpha(t)=Y(t)$. Therefore

$$
\begin{equation*}
X Y+Y X+A\left(D_{X} Y\right)+\left(D_{X} Y\right) A=D_{X} Y \tag{1.8}
\end{equation*}
$$

On the other hand, we have $\alpha(t) Y(t) \alpha(t)=0$. Therefore

$$
\begin{equation*}
X Y A+A\left(D_{X} Y\right) A+A Y X=0 \tag{1.9}
\end{equation*}
$$

From (1.8) and (1.9), we get $D_{X} Y=\nabla_{X} Y+\tilde{\sigma}(X, Y)$.
A simple calculations proves that $\nabla_{X} Y$ (resp. $\tilde{\sigma}(X, Y)$) is tangent (resp. normal) to $\boldsymbol{C} P^{n}$. Then we have (1.3) and (1.4).

Let ∇^{+}and \boldsymbol{A} be as in (1.5) and (1.6). Let Z be any normal vector field to $\boldsymbol{C} P^{n}$. We have $\alpha(t) Z(t)=Z(t) \alpha(t)$, then

$$
\begin{gathered}
X Z+A\left(D_{X} Z\right)-\left(D_{X} Z\right) A-Z X=0, \\
A_{Z} X=(X Z-Z X)(I-2 A)=\left[\left(D_{X} Z\right) A-A\left(D_{X} Z\right)\right](I-2 A) \\
=2 A\left(D_{X} Z\right) A-\left(D_{X} Z\right) A-A\left(D_{X} Z\right)=\nabla \frac{1}{X} Z-D_{X} Z .
\end{gathered}
$$

From (1.1) (resp. (1.2)) we see that $\boldsymbol{A}_{Z} X$ (resp. $\nabla_{X}^{\frac{1}{X}} Z$) is tangent (resp. normal), hence we have (1.5) and (1.6).

It is enough, to verify (1.7) at the origin.
Let $\left\{E_{1}, \cdots E_{n}, E_{1}^{*}, \cdots E_{n}^{*}\right\}$ be an orthonormal base in $T_{A}\left(\boldsymbol{C} P^{n}\right)$ defined by

$$
\begin{aligned}
& \text { (k) } \\
& E_{k}=\frac{1}{2}(k)\left(\begin{array}{c:ccccccc}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
\hdashline 0 & & & & & & & \\
\vdots & & & & & & \\
1 & & & & 0 & & & \\
\vdots & & & & & & & \\
0 & & & & & & &
\end{array}\right), \\
& \text { (k) } \\
& E_{k}^{*}=\frac{\sqrt{ }-1}{2}(k)\left(\begin{array}{c:cccccc}
0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\
\hdashline 0 & & & & & & \\
\vdots & & & & & \\
-1 & & & 0 & & \\
\vdots & & & & & \\
0 & & & & &
\end{array}\right) .
\end{aligned}
$$

A direct calculation proves that

$$
\widetilde{H}_{A_{0}}=\frac{1}{2 n}\left(\begin{array}{c|ccc}
-n & 0 & \cdots & 0 \\
\hline 0 & 1 & & \\
\vdots & & \ddots & \\
0 & & & 1
\end{array}\right)=\frac{1}{2 n}\left[I-(n+1) A_{0}\right] \text {. (Q.E. D.) }
$$

Lemma 1.5. a) Let f be the diffeomorphism obtained in lemma 1.1. Then f is an isometry when we consider on $U(n+1) / U(1) \times U(n)$ the Fubini-Study metric with holomorphic sectional curvature $c=1$, and on $\boldsymbol{C} P^{n}$ the metric induced by that on $H M(n+1)$.
b) The complex structure induced by the isometry f in $\boldsymbol{C} P^{n}$ is given by $J X=\sqrt{-1}(I-2 A) X$, for all X in $T_{A}\left(\boldsymbol{C} P^{n}\right)$.

Proof. a) Since both metrics are $U(n+1)$-invariant, it is enough to see that the differential of f at the origin is an isometry between the corresponding tangent spaces.

Let $[P]$ be the coset of $P \in U(n+1)$ in $U(n+1) / U(1) \times U(n)$. Then $f([P])$ $=P A_{0} P^{-1}$ and so

$$
T_{0}(U(n+1) / U(1) \times U(n))=\left\{\left(\begin{array}{rr}
0 & a \\
-\bar{a}^{t} & 0
\end{array}\right) / a \in \boldsymbol{C}^{n}\right\}, \quad 0=[I] .
$$

The Fubini-Study metric of the constant holomorphic sectional curvature $c=1$ at the origin is given by

$$
g_{0}\left(\left(\begin{array}{cc}
0 & a \\
-\bar{a}^{t} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & b \\
-\bar{b}^{t} & 0
\end{array}\right)\right)=2 \operatorname{trace}\left(\begin{array}{cc}
a \bar{b}^{t} & 0 \\
0 & \bar{a}^{t} b
\end{array}\right) .
$$

Let $\alpha: \Gamma \rightarrow U(n+1)$ be a curve such that $\alpha(0)=I$ and $\alpha^{\prime}(0)=\left(\begin{array}{cc}0 & a \\ -\bar{a}^{t} & 0\end{array}\right)$. We consider the curve $\beta: \Gamma \rightarrow U(n+1) / U(1) \times U(n)$ given by $\beta(t)=[\alpha(t)]$. $d f_{0}\left(\begin{array}{cc}0 & a \\ -\bar{a}^{t} & 0\end{array}\right)=(f \beta)^{\prime}(0)=\alpha^{\prime}(0) A_{0} \overline{\alpha(0)}^{t}+\alpha(0) A_{0}{\overline{\alpha^{\prime}(0)}}^{t}=\left(\begin{array}{cc}0 & -a \\ -\bar{a}^{t} & 0\end{array}\right)$, and we have $g_{A_{0}}\left((d f)_{0}\left(\begin{array}{cc}0 & a \\ -\bar{a}^{t} & 0\end{array}\right),(d f)_{0}\left(\begin{array}{rr}0 & b \\ -\bar{b}^{t} & 0\end{array}\right)\right)=2 \operatorname{trace}\left(\begin{array}{cc}a \bar{b}^{t} & 0 \\ 0 & \bar{a}^{t} b\end{array}\right)$. This show a).
b) The complex structure \tilde{J} at the origin of $U(n+1) / U(1) \times U(n)$ is given by $\tilde{J}\left(\begin{array}{cc}0 & a \\ -\bar{a}^{t} & 0\end{array}\right)=\sqrt{ }-1\left(\begin{array}{rr}0 & -a \\ -\bar{a}^{t} & 0\end{array}\right)$, see [6]. Let $\left(\begin{array}{cc}0 & a \\ \bar{a}^{t} & 0\end{array}\right)$ be a vector in $T_{A_{0}}\left(\boldsymbol{C} P^{n}\right)$. Therefore the complex structure induced in $\boldsymbol{C} P^{n}$ is given by

$$
J\left(\begin{array}{cc}
0 & a \\
\bar{a}^{t} & 0
\end{array}\right)=d f_{0} \tilde{J}\left(d f_{0}\right)^{-1}\left(\begin{array}{cc}
0 & a \\
\bar{a}^{t} & 0
\end{array}\right)=\sqrt{ }-1\left(\begin{array}{cc}
0 & -a \\
\bar{a}^{t} & 0
\end{array}\right) .
$$

On the other hand

$$
\sqrt{-1}\left(I-2 A_{0}\right)\left(\begin{array}{cc}
0 & a \\
\bar{a}^{t} & 0
\end{array}\right)=\sqrt{-1}\left(\begin{array}{cc}
0 & -a \\
\bar{a}^{t} & 0
\end{array}\right) . \quad \text { (Q.E. D.) }
$$

The following proposition resumes some properties of the immersion. For other properties, see [5], [7].

Proposition 1.6. The immersion of $\boldsymbol{C P}{ }^{n}$ in $H M(n+1)$ verafies the following properties.
a) It is an isometric $U(n+1)$-equivariant imbedding.
b) $\tilde{\sigma}(J X, J Y)=\tilde{\sigma}(X, Y)$ and $\nabla \tilde{\sigma}=0$, that $\imath s$, the second fundamental form is parallel.
c) It is minimal in the sphere S, whose center is $[1 /(n+1)] I$ and whose radius is $\sqrt{ } 2 n /(n+1)$.

Proof. a) It is a consequence of lemma 1.1 and 1.5 .
b) It is easy to see that $\tilde{\sigma}(J X, J Y)=\tilde{\sigma}(X, Y)$ for all $X, Y \in T_{A}\left(\boldsymbol{C} P^{n}\right)$. Let X, Y_{1}, Y_{2} be any three vector fields tangent to $C P^{n}$. Then we have

$$
\begin{aligned}
(\nabla \tilde{\sigma})_{X}\left(J Y_{1}, J Y_{2}\right) & =\nabla_{X} \tilde{\sigma}\left(J Y_{1}, J Y_{2}\right)-\tilde{\sigma}\left(\nabla_{X} J Y_{1}, J Y_{2}\right)-\tilde{\sigma}\left(J Y_{1}, \nabla_{X} J Y_{2}\right) \\
& =\nabla_{X} \tilde{\sigma}\left(Y_{1}, Y_{2}\right)-\tilde{\sigma}\left(\nabla_{X} Y_{1}, Y_{2}\right)-\tilde{\sigma}\left(Y_{1}, \nabla_{X} Y_{2}\right)
\end{aligned}
$$

$$
=(\nabla \tilde{\sigma})_{X}\left(Y_{1}, Y_{2}\right)
$$

Therefore we have $(\nabla \tilde{\sigma})_{X}(Y, J Y)=0$, for all Y in $T_{A}\left(\boldsymbol{C} P^{n}\right)$, and so from Codazzi's equation $(\nabla \tilde{\sigma})_{Y}(X, J Y)=0$. If we choose $X=J Y$, we have $0=(\nabla \tilde{\sigma})_{Y}(J Y, J Y)=(\nabla \tilde{\sigma})_{Y}(Y, Y)$. Hence $\nabla \tilde{\sigma}=0$.
c) If A is in $\boldsymbol{C} P^{n}$ then $g\left(A-\frac{1}{n+1} I, A-\frac{1}{n+1} I\right)=\frac{2 n}{n+1}$. Therefore $\boldsymbol{C} P^{n}$ is included in S. Let \widetilde{H} be the mean curvature vector of $\boldsymbol{C} P^{n}$ in $H M(n+1)$. $\tilde{H}=\frac{1}{2 n}[I-(n+1) A]=-\frac{n+1}{2 n}\left(A-\frac{1}{n+1} I\right)$. Therefore $\boldsymbol{C} P^{n}$ is minimal in S, see [2].
(Q.E.D.)

Lemma 1.7. Let E_{1}, E_{2} be any two vectors in $T_{A}\left(\boldsymbol{C} P^{n}\right)$ such that $g\left(E_{1}, E_{2}\right)=0$ and $g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=1$. Then
a) $g\left(\tilde{\sigma}\left(E_{1}, E_{1}\right), \tilde{\sigma}\left(E_{1}, E_{1}\right)\right)=1$,
b) $1 / 2 \leqq g\left(\tilde{\sigma}\left(E_{1}, E_{1}\right), \tilde{\sigma}\left(E_{2}, E_{2}\right)\right) \leqq 1$.

Moreover if we have $g\left(E_{1}, J E_{2}\right)=0$, then
c) $g\left(\tilde{\sigma}\left(E_{1}, E_{1}\right), \tilde{\sigma}\left(E_{2}, E_{2}\right)\right)=1 / 2$,
d) $g\left(\tilde{\sigma}\left(E_{1}, E_{2}\right), \tilde{\sigma}\left(E_{1}, E_{2}\right)\right)=1 / 4$.

Proof. Let $E_{1}=\left(\begin{array}{cc}0 & a \\ \bar{a}^{t} & 0\end{array}\right)$ and $E_{2}=\left(\begin{array}{cc}0 & b \\ \bar{b}^{t} & 0\end{array}\right)$. Then $g\left(E_{1}, E_{1}\right)=1$ if and only if $a \bar{a}^{t}=1 / 4, g\left(E_{1}, E_{2}\right)=0$ if and only if $a \bar{b}^{t}=\sqrt{-1} h$, where $h \in \boldsymbol{R}$. Moreover $g\left(E_{1}, J E_{2}\right)=0$ if and only if $a \bar{b}^{t}=0$. Now a), c) and d) are obvious.
b) $g\left(\tilde{\sigma}\left(E_{1}, E_{1}\right), \tilde{\sigma}\left(E_{2}, E_{2}\right)\right)=8 \operatorname{trace}\left(E_{1}^{2} E_{2}^{2}\right)=8 \operatorname{trace}\left(\begin{array}{cc}1 / 16 & 0 \\ 0 & \sqrt{-1} h \bar{a}^{t} b\end{array}\right)=1 / 2$ $+8 h^{2}$. But $h^{2}=\left|a \bar{b}^{t}\right|^{2} \leqq|a|^{2}|b|^{2}=1 / 16$.
(Q.E.D.)

2. $C R$-minimal submanifolds in the complex projective space.

For $C R$-submanifolds see for example [4]. In the following we write $M^{2 n+p}$ for a $C R$-submanifold of $\boldsymbol{C} P^{n}$, where $2 n=\operatorname{dim} \mathscr{D}$ and $p=\operatorname{dim} \mathscr{D}^{\perp}, \mathscr{D}$ being the holomorphic distribution and \mathscr{D}^{\perp} the totally real distribution of M.

Lemma 2.1. a) Let M^{n} be a submanafold of $\boldsymbol{C P}{ }^{m}$. Let H^{\perp} be the normal component of the mean curvature vector of M^{n} in $H M(m+1)$ to $\boldsymbol{C P}{ }^{m}$. Then

$$
\begin{equation*}
(n+1) / 2 n \leqq g\left(H^{\perp}, H^{\perp}\right) \leqq 1 \tag{2.1}
\end{equation*}
$$

b) Let $M^{2 n+p}$ be a $C R$-submanafold of $C P^{m}$. Let H^{\perp} be as in a). Then

$$
\begin{equation*}
g\left(H^{\perp}, H^{\perp}\right)=\left[(2 n+p)^{2}+4 n+p\right] / 2(2 n+p)^{2} . \tag{2.2}
\end{equation*}
$$

Proof. a) Let $\left\{E_{1}, \cdots E_{n}\right\}$ be an orthonormal base of $T_{A}\left(M^{n}\right)$ where A is any point in M^{n}. Let $\tilde{\sigma}$ be the second fundamental form of $\boldsymbol{C} P^{m}$ in $H M(m+1)$. Then $H^{\perp}=\frac{1}{n} \sum_{\imath} \tilde{\sigma}\left(E_{\imath}, E_{\imath}\right)$. By using lemma 1.7 we have (2.1).
b) We can choose an orthonormal base of $T_{A}(M)$ of the type $\left\{E_{1}, \cdots E_{n}\right.$, $\left.J E_{1}, \cdots J E_{n}, F_{1}, \cdots F_{p}\right\}$, where $E_{\imath}, J E_{\imath}$ are in \mathscr{D} and F_{\jmath} is in \mathscr{D}^{\perp}. From lemma 1.7, we have (2.2).
(Q.E.D.)

Lemma 2.2. Let $M^{2 n+p}$ be a $C R$-submanıfold of $\boldsymbol{C P}{ }^{m}$, $\tilde{\sigma}$ the second fundamental form of $\boldsymbol{C} P^{m}$ in $H M(m+1)$ and $\tilde{\sigma}_{M}$ its restriction to M. Then

$$
\begin{equation*}
g\left(\tilde{\sigma}_{M}, \tilde{\sigma}_{M}\right)=(1 / 4)\left[(2 n+p)^{2}+4 n+3 p\right] . \tag{2.3}
\end{equation*}
$$

The proof can be obtained by using lemma 1.7. From the expresion of the scalar curvature for submanifolds in the Euclidean space, we obtain the following

Corollary 2.3. Let $M^{2 n+p}$ be a $C R$-submanifold of $\boldsymbol{C P}{ }^{m}$. Let H be the mean curvature vector of $M^{2 n+p}$ in $C P^{m}, r$ the scalar curvature of $M^{2 n+p}$, and σ the second fundamental form of $M^{2 n+p}$ in $\boldsymbol{C P}{ }^{m}$. Then

$$
\begin{equation*}
r=\left[(2 n+p)^{2}+4 n-p\right] / 4+(2 n+p)^{2} g(H, H)-g(\sigma, \sigma) . \tag{2.4}
\end{equation*}
$$

B. Y. Chen has proved the following theorems:

Theorem A. [2]. Let M be an n-dimensional closed submanafold of E^{m}. Then we have

$$
\begin{equation*}
\int_{M} \alpha^{n} d v \geqq c_{n} \tag{2.5}
\end{equation*}
$$

where $\alpha=\sqrt{ } g(\bar{H}, H)$ is the mean curvature of M and c_{n} is the volume of unit n-sphere. The equality holds if and only if M is imbedded as an ordinary n sphere in an affine ($n+1$)-space.

For an isometric immersion of a closed manifold M in the Euclidean space $x: M \rightarrow E^{m}$, we put $x=\left(x_{1}, \cdots x_{m}\right)$, where x_{\imath} is the i-th coordinate function of M in E^{m}. We call an isometric immersion x is of order k if each coordinate function x_{\imath} of x is an eigenfunction of the Laplace Beltrami operator of M corresponding to eigenvalue λ_{k}.

Theorem B. [3]. Let $x: M \rightarrow E^{m}$ be an isometric immersion of a closed n dimensional Riemannaan manrfold M into E^{m}. The total mean curvature of x satısfies

$$
\begin{equation*}
\int_{M} \alpha^{n} d v \geqq\left(\frac{\lambda_{1}}{n}\right)^{n / 2} \operatorname{vol}(M), \tag{2.6}
\end{equation*}
$$

where $\operatorname{vol}(M)$ denotes the volume of (M, g) and λ_{1} denotes the first ergenvalue of the Laplace-Beltrami operator of (M, g) acting on differentiable functions in $C^{\infty}(M)$. The equality holds if and only if there is a vector c in E^{m} such that $x-c$ is an rmbedding of order 1.

Corollary 2.4. Let M^{n} be a closed minmal submamfold of $C P^{m}$. Then we have

$$
\begin{equation*}
\operatorname{vol}(M) \geqq c_{n} . \tag{2.7}
\end{equation*}
$$

Proof. Let H be the mean curvature vector of M^{n} in $H M(m+1)$. Let H^{\perp} be the same as in lemma 2.1. Since M^{n} is minimal in $\boldsymbol{C} P^{m}, H=H^{\perp}$. Now we use theorem A and lemma 2.1.
(Q.E.D.)

Corollary 2.5. Let $M^{2 n+p}$ be a closed CR-minimal submanıfold of $C P^{m}$. Then we have

$$
\begin{equation*}
\left[\frac{(2 n+p)^{2}+4 n+p}{2(2 n+p)^{2}}\right]^{n+p / 2} \operatorname{vol}(M) \geqq c_{2 n+p} . \tag{2.8}
\end{equation*}
$$

The equality holds if and only if $M=\boldsymbol{C} P^{1}$ is imbedded as a totally geodesic complex submanafold in $\boldsymbol{C} P^{m}$.

Proof. By using theorem A and lemma 2.1 we obtain (2.8).
We suppose that the equality holds. Then M is isometric to a sphere of radius R. We have $\operatorname{vol}(M)=R^{2 n+p} c_{2 n+p}$, and then $R^{2}=2(2 n+p)^{2} /\left[(2 n+p)^{2}+4 n+p\right]$. Let c and r be the sectional curvature and the scalar curvature of M respectively. Then $c=1 / R^{2}$ and

$$
\begin{equation*}
r=c(2 n+p-1)(2 n+p) . \tag{2.9}
\end{equation*}
$$

From corollary 2.3

$$
\begin{equation*}
r \leqq(1 / 4)\left[(2 n+p)^{2}+4 n-p\right] . \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) we have

$$
\left[(2 n+p)^{2}+4 n\right](2 n+p-2)+p(6 n+3 p-2) \leqq 0 .
$$

But this occurs if and only if $n=1$ and $p=0$. Therefore M is a unit 2 -sphere imbedded as complex submanifold in $\boldsymbol{C} P^{m}$. Since M and $\boldsymbol{C} P^{m}$ have the same holomorphic sectional curvature $c=1$, we get that M is totally geodesic in $\boldsymbol{C} P^{m}$.

The converse is trivial because $\boldsymbol{C} P^{1}$ is imbedded in $H M(2)$ as a standard sphere.
(Q.E.D.)

The following corollaries can be obtained from theorem B and lemma 2.1.
Corollary 2.6. Let M^{n} be a closed minimal submanifold of $\boldsymbol{C P}{ }^{m}$. Then we have

$$
\begin{equation*}
\lambda_{1} \leqq n \tag{2.12}
\end{equation*}
$$

Corollary 2.7. Let $M^{2 n+p}$ be a closed $C R$-minimal submanifold of $\boldsymbol{C} P^{m}$.

Then we have

$$
\begin{equation*}
\lambda_{1} \leqq\left[(2 n+p)^{2}+4 n+p\right] / 2(2 n+p) . \tag{2.13}
\end{equation*}
$$

In partıcular, if $M^{2 n}$ is a compact complex (resp. M^{p} is a closed minmmal totally real) submanifold of $\boldsymbol{C} P^{m}$ then

$$
\begin{equation*}
\lambda_{1} \leqq n+1 \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\text { (resp. } \left.\lambda_{1} \leqq(p+1) / 2\right) \tag{2.15}
\end{equation*}
$$

The following result gives a complete classification of the $C R$-minimal submanifolds of $\boldsymbol{C} P^{m}$ which are minimal in some sphere of $H M(m+1)$.

THEOREM 2.8. Let $M^{2 n+p}$ be a $C R$-minimal submanıfold of $\boldsymbol{C P} P^{m}$. Then $M^{2 n+p}$ is minimal in some sphere of $H M(m+1)$ if and only if one of the following cases holds:
a) $\quad p=0$ and $M^{2 n}$ is a totally geodesic complex submannfold of $\boldsymbol{C} \boldsymbol{P}^{m}$.
b) $n=0$ and M^{p} is a totally real submanifold of $\boldsymbol{C} P^{m}$ for which there exists a totally geodesic complex submanfold $\bar{M}^{2 p}$ of $C P^{m}$, such that M^{p} is a totally real submamfold of $\bar{M}^{2 p}$.

Proof. We suppose that $M^{2 n+p}$ is minimal in a certain sphere S of $H M(m+1)$. If Q denotes the center of S, we can suppose that Q is a diagonal matrix (otherwise we can use an isometry of $H M(m+1)$ of the type $A \mapsto P A P^{-1}$, where P is in $U(m+1)$). Let H be the mean curvature vector of M in $H M(m+1)$. From the minimality of M in S we have $H=h \cdot(A-Q)$, for any A in M where h is a real number with $h \neq 0$. It is clear that $Q \in T_{A}^{1}\left(\boldsymbol{C} P^{m}\right)$. Therefore $A Q=Q A$ for any A in M. That is, M is contained in the linear subspace, L of $H M(m+1)$, which is defined by the equation $A Q=Q A$. We put

$$
Q=\left(\begin{array}{llllll}
a_{1} & & & & & \\
& \ddots & & & & \\
& & a_{1} & & & \\
\\
& & & \ddots & & \\
\\
& & & & a_{r} & \\
& & & & \ddots & \\
& & & & & \\
& \\
& & & \\
& &
\end{array}\right)
$$

Then

$$
\boldsymbol{C} P^{m} \cap L=\left\{\left(\begin{array}{cccc}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{r}
\end{array}\right) / \begin{array}{l}
A_{2} A_{2}=A_{2} \\
\sum_{2} \operatorname{trace} A_{2}=1
\end{array}\right\}
$$

Since $A_{\imath} A_{\imath}=A_{\imath}$, we see that trace A_{\imath} is a natural number. Hence for any A in $\boldsymbol{C} P^{m} \cap L$ there exists an index j such that trace $A_{\nu}=1$ and trace $A_{\imath}=0$ for all $\imath \neq \jmath$, which implies $A_{\imath}=0$ and

$$
\left.\boldsymbol{C} P^{m} \cap L=\left\{\begin{array}{lllll}
0 & & & & \\
& \ddots & & & \\
& & A_{j} & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right) / \begin{array}{l}
A_{j} A_{j}=A_{0} \\
\operatorname{trace} A_{j}=1
\end{array}\right\}
$$

Therefore M is contained in a connected component of $\boldsymbol{C} P^{m} \cap L$. Each of these component is evidently a totally geodesic complex submanifold of $\boldsymbol{C} P^{m}$ (it is a $\boldsymbol{C} P^{q}, q \leqq m$), and M is a minimal submanifold of the sphere $S \cap L$. Consequently the problem is reduced to the study of $C R$-minimal submanifolds of $\boldsymbol{C} P^{q}$ which are minimal in some sphere of $H M(q+1)$ whose center is $a I$ where a is a real number and I is the $(q+1) \times(q+1)$-identity matrix.

We have $H=h \cdot(A-a I)$. As M is contained in the sphere we know that

$$
g(H, A-a I)=-1
$$

and since M is $C R$-minimal in $\boldsymbol{C P}$,

$$
g(H, H)=\frac{(2 n+p)^{2}+4 n+p}{2(2 n+p)^{2}}
$$

Therefore

$$
\begin{gather*}
h=-\frac{(2 n+p)^{2}+4 n+p}{2(2 n+p)^{2}} \\
g(A-a I, A-a I)=\frac{2(2 n+p)^{2}}{(2 n+p)^{2}+4 n+p} \tag{2.16}
\end{gather*}
$$

for all A in M. On the other hand,

$$
\begin{align*}
g(A-a I, A-a I) & =g(A, A)-2 a g(A, I)+a^{2} g(I, I) \tag{2.17}\\
& =2(q+1) a^{2}-4 a+2 .
\end{align*}
$$

From (2.16) and (2.17) we obtain

$$
(q+1)\left[(2 n+p)^{2}+4 n+p\right] a^{2}-2\left[(2 n+p)^{2}+4 n+p\right] a+4 n+p=0 .
$$

Since the discriminate of this equation must $\geqq 0$, we get

$$
(2 n+p)^{2}+4 n+p-(q+1)(4 n+p) \geqq 0
$$

that is $(2 n+p)^{2} \geqq q(4 n+p)$. But $q \geqq n+p$, and so

$$
(2 n+p)^{2} \geqq(4 n+p)(n+p) .
$$

Therefore $4 n p \geqq 5 n p$, which implies $n=0$ or $p=0$.
*) Suppose $p=0$. Then we have $q=n$, that is $M^{2 n}$ is open in $\boldsymbol{C P}{ }^{n}$.
*) Suppose $n=0$. Then $p=q$.

Conversely: If $M^{2 n}$ is a totally geodesic complex submanifold of $\boldsymbol{C} P^{m}$, then from proposition 1.6, M is minimal in some sphere. Let M^{p} be a totally real minimal submanifold of $\boldsymbol{C} P^{p}$. For any $A \in M$, let $\left\{E_{1}, \cdots E_{p}\right\}$ be an orthonormal base of $T_{A}(M)$. Then we have that $\left\{E_{1}, \cdots E_{p}, J E_{1}, \cdots J E_{p}\right\}$ is an orthonormal base of $T_{A}\left(\boldsymbol{C} P^{p}\right)$. Hence, if H is the mean curvature vector of M^{p} in $H M(p+1)$ it is easy to see from proposition 1.6, that

$$
\begin{equation*}
H=\frac{1}{2 p}[I-(p+1) A], \tag{Q.E.D.}
\end{equation*}
$$

and so M^{p} is minimal in some sphere.
Corollary 2.9. Let $M^{2 n+p}$ be a closed $C R$-minimal submanifold of $\boldsymbol{C} P^{m}$. 1) If M is in the cases a) or b) of theorem 2.8 , then $\left[(2 n+p)^{2}+4 n+p\right] / 2(2 n+p)$ ${ }^{2}$ in $\operatorname{Spec}(M)$.
2) If $\lambda_{1}=\left[(2 n+p)^{2}+4 n+p\right] / 2(2 n+p)$, then M is imbedded and is in the cases a) or b) of theorem 2.8, where $\operatorname{Spec}(M)$ is the spectrum of the Laplace-Beltrami operator of M and λ_{1} is the first elgenvalue of this operator.

Proof. 1) From the proof of theorem 2.8 and from a well know theorem of Takahashi [8], if M is minimal in S then $\lambda_{k}=\operatorname{dim}(M) / R^{2}$ for some λ_{k} in $\operatorname{Spec}(M)$, where R is the radius of S. Then $\lambda_{k}=\left[(2 n+p)^{2}+4 n+p\right] / 2(2 n+p)$.
2) From theorem B, we see, by choosing a suitable origen, that the immersion is an imbedding of order 1 . In particular it is minimal in some sphere, [8]. Now from theorem 2.8, M is in the cases a) or b).
(Q.E.D.)

Corollary 2.10. Let $M^{2 n}$ be a complex compact submanifold of $\boldsymbol{C} \boldsymbol{P}^{m}$. Then we have $\lambda_{1} \leqq n+1$. Moreover $M^{2 n}$ is totally geodesic in $\boldsymbol{C P}{ }^{m}$ if and only if $\lambda_{1}=n+1$.

Proof. We consider corollaries 2.7 and 2.9, and $\operatorname{Spec}\left(\boldsymbol{C} P^{n}\right)$, see [1].
Corollary 2.11. Let M^{p} be a totally real closed minimal submanifold of $C P^{m}$. Then we have 1) If there exists $\bar{M}^{2 p}$ such that $\bar{M}^{2 p}$ is a totally geodesic complex submanıfod of $\boldsymbol{C} P^{m}$ and M^{p} is a totally real submanifold of $\bar{M}^{2 p}$, then $(p+1) / 2$ belongs to $\operatorname{Spec}\left(M^{p}\right)$.
2) If $\lambda_{1}=(p+1) / 2$, then there exists a totally geodesic complex submanifold $\bar{M}^{2 p}$ of $\boldsymbol{C} P^{m}$ such that M^{p} is a totally real submanifold of $\bar{M}^{2 p}$.

Proof. We consider corollary 2.9.
The author has known that corollaries 2.7 and 2.10 has been recently obtained by N. Ejiri.

References

[1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une varıété Riemanniene. Lecture Notes in Math. No. 194, Sprınger-Verlag, Berlin 1971.
[2] B. Y. Chen, Geometry of submanifolds. M. Dekker, New-York 1973.
[3] B. Y. CHEN, On the total curvature of immersed manifolds, IV: Spectrum and total mean curvature. Bull. Math. Acad. Sinıca, vol. 7 No. 3, 1979, 301-311.
[4] B. Y. CHEN, Geometry of submanifolds and its applications. Science University of Tokyo, 1981.
[5] J. A. Little, Manıfold with planar geodesic. J. Differential Geometry, 11, 1976, 265-285.
[6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. WileyInterscience, New-York 1963.
[7] S.S. Tar, Minimum imbedding of compact symmetric spaces of rank one. J. Differential Geometry 2, 1968, 55-66.
[8] T. Takahashi, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 18, 1966, 380-385.

Departamento de Geometria y Topologia
Facultad de Ciencias
Universidad de Granada
Granada (Spain)

