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ON SUBMANIFOLDS WITH FLAT NORMAL CONNECTION

IN A CONFORMALLY FLAT SPACE

BY C. THAS

1. Introduction.

In this paper we construct Gauss maps with respect to non-degenerate
parallel normal unit vector fields on an n-dimensional submanifold N which has
flat normal connection in an ra-dimensional conformally flat space M (2^n<m).
A relation between the Riemannian curvatures of N, M and the Gauss images
of N is obtained in theorem 1. We also find a result about the metric tensors
of the Gauss images, which is in the case of a space form M closely related to
a formula of Obata.

2. Preliminaries.

We always suppose that all manifolds, vector fields, etc. are differentiable
of class C°°. Assume that 7 (resp. 7) is the Riemannian connection of M (resp.
N) and that X and Y are vector fields of N. Then

ϊxY^lxY+KX, Y),

and h is the vector valued second fundamental tensor of N in M. Let ξ be a
normal vector field on N. Decomposing 7χf in a tangent and a normal com-
ponent we find

Aξ is a self-adjoint linear map NP->NP at each point p and 7 1 is a metric con-
nection in the normal bundle N1. We have also, if g denotes the metric tensor
of M and the induced metric tensor on TV,

g{h{X,Y),ξ)=g{Aξ{X),Y).

M is said to be conformally flat if for each point p we have a neighbourhood
U and a diffeomorfism φ: U->Rm, where Rm is the euclidean 772-space, such that
the metric tensor g of φ(U) (identified with U) is obtained from the standard
metric tensor of Rm by a conformal change of this tensor. Equivalently, g is
locally of the form g—p2g', where p is a strict positive function and g' is a
flat metric tensor. The normal curvature tensor R1 of N in M is given by
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N has flat normal connection in M if RL vanishes everywhere. It is wellknown
that in this case there is in a neighbourhood of each point p of N an orthonormal
base field ηly ••• , ηm-n of A/"1 such that each η% is parallel in TV1, that is, such
that Vχϊ]ι=0 for each vector field of TV. Moreover, if M is conformally fiat,
then Rλ=0 iff all the second fundamental tensors Λζ are simultaneously diagona-
lizable ([2], theorem 4).

3. The Gauss maps of non-degenerate parallel unit normal vector fields.

Suppose that η is a parallel unit normal vector field on N with domain U,
then we say that η is non-degenerate if det ΛηΦθ everywhere in U. In this
case we define a new metric tensor g on U by g(X, Y)=g(Vχη, ^γ7]) for all
vectors X and Y at each point p of U (cf. [1]).

With this new metric tensor the differentiable manifold U becomes a new
Riemannian manifold 0 which is called the Gauss image of U with respect to
η. The Gauss map of η is then simply the natural bijection i: U-+U. In the
following we identify vector fields and tensor fields on U and ΰ, so we do not
use the Jacobian i* and the dual linear map z*.

Remark that we also have, since η is parallel, g(X, Y)—g{Anp(X), Λnp(Y)).
Recall that we always suppose that N is an n-dimensional submanifold of

the ra-dimensional conformally flat space M.

THEOREM 1. Suppose that N has flat normal connection in M and that
elf ••• , en is an orthonormal base field with domain U of N which diagonalizes
simultaneously all the second fundamental tensors Λζ. Let ηly ••• , ηm-n be an
orthonormal base field of N1 with domain U such that each ηr is parallel in N1

and non-degenerate and KXJ (resp. KtJ) and K\3 be the Riemannian curvature
of N (resp. M) and of the Gauss image Ur of ηr in the plane direction (eτ, e3)
i^j h y = l , ••• , n. If N is invariant and KιJΦθ, then

- 1 K\,
m-n 1 K—K

For a surface N we have Σ ~~tf7 — Ϊ?—
r=i K K

Proof. First let r be fixed l ^ r ^ m — n. There are non-zero real valued
functions λ\ in U such that ΛVr(eh)=λr

heh h=l, •••, n. Let ah—eh/λr

h then

fli, •••, an is an orthonormal base field of Ur. We prove that the Riemannian
connection V of Ur is given by

ΊXY~ Σ g(^x^γy]r, ^ahηr)dn for any two vector fields X and Y of UΣ
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It is not difficult to see that V is indeed a connection. It is a metric connection
for the metric tensor gr of Ur> because, if Z is an other vector field of U, then
a straightforward calculation gives

Zgr(X, Y) =

Next we prove that the torsion tensor of V vanishes

and because of the equation of Ricci, we know that if R is the curvature tensor
of M, RL the normal curvature tensor of N in M and ξ any normal vector field
on N, then

g(R(X, Y)ψ, ξ)=g(R±(Xf Y)ηr, ξ)+g(AξAVr(X)-AηrAξ(X), Y).

N has flat normal connection in M, thus Rλ=0 and since M is conformaliy flat
we have AξAVr=AVrAζ. Since N is invariant, i, e., R(X, Y)NpaNp, we get

R{X,
and thus

= Σ MIX, Yl, ah)ah=LX,Yl.
Λ = l

Next, the Riemannian curvature of Ur in the plane direction (eτ, e3) is given by

n

Σ i
ft = l

n

Λ = l

aj%aiηr, ^a^atfr)- JS g^a^atfr, ^ahηr)gΘa^a^r, ^ajjjr)
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+ g(%aι,ajtfaiηr,Va.ψ) (2)

Recall that Kτj and K%3 are connected by.

Ktj=Kij—g(<h(eι, e3), h{eτ, ej))+g(h{eι, e%), h(e3, e3))

771-n m-n

=Kτj+ Σ g(Aηq(et), eι)g(ΛVq(ej)f e3)=KtJ+ Σ λ\λ*. (3)

Next, because of the definition of ah, we have

xJahrjr— — A r ] r ( a h ) = — eh h = l, ••• , n ,

and thus, the sum of the first, the fourth and the last term of (2) is equal to

K
~g(R(aτ, aJ)eι, ej)=-~-.

λιλj

The sum of the second and the third term of (2) is given by

-g{h{aJt ex), h(at, βj))=0

and the sum of the fifth and the sixth term becomes

g(h(alf et), h(dj, βj)).

From all this we get

Kr — —3- (4)

and finally because of (3) we find

m-n

Σ λUrj

= =

^ κ\3 κl3 κl3 *
which completes the proof.
Because of (4) we have immediately the following:

COROLLARY. // KtJ=0 then each Kr

l3=0 r=l, •••, m—n. If N is m parti-
cular a flat surface then each Gauss image Ur is a flat Riemannian space.

If X and Y are vector fields, elf -•- , en is an orthonormal base field of N
and if R is the curvature tensor of N, then the Riccitensor of ./V is given by

Ric(N)(X,Y)= Σ g(R(eh,X)Y,eh).
h=i

Define a new symmetric two-covariant tensor RΊcN(M) on Â  by (R is again the
curvature tensor of M):
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RΊcN(M)(X, Y)= Λ Σ g{R{ehy X)Y, eh).

This is independent of the choice of the orthonormal base field elf •••, en of N

and for a unit vector e of Np, RicN(M)(e, e) is equal to the sum of the Rieman-

nian curvatures of M in n—1 mutually orthogonal plane directions of Np con-

taining e. If N is a surface, then Rio, (N)=Kg and Ric;v(M)=/fg .

T H E O R E M 2. Assume that N, ηr> 0r are such as in the statement of theorem

1 and that gr denotes the metric tensor of Ur r—1, ••• , m—n. If H is the mean

curvature vector field of N, we have

m-n

Σ gr=ng{H, A)-Ric (iV)+RiciV(M). (5)
r=l

Proof. Let elf ••• , en be such as in theorem 1. Because of the definition

(1) we have if

n n

X= Σ Xiβτ and Y— Σ y%eτ are vector fields of N,

n n

Next we find

(spAηr)g(Vr,h(X,Y))=^_^

n

— gr\Λ, I )-\- 2J A%AjX%yi . \Ό)

ΊΦ]

Finally, we have

Because of the equation of Gauss this becomes

= Σ g(R(eJf X)Y, ej)+ Σ (g(h(e>, e3), h(X, Y))-g{h{eJ} Y), h(X} βj)))
J=l 3=1

m-n/ n \

RicίV(M)(Z, Y)+ Σ ( Σ KXlXxyi). (7)
r = l \ι,j = l '

Since Σ (spAηr)ηr=nH, formula (5) follows from (6) and (7). This completes

the proof.
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Remarks.
m-n

1. For a surface Λτ, (5) becomes Σ gr=2g(H, h)-(K-K)g.
r=i

2. About theorem 1: if TV is a submanifold of the euclidean ?n-space Rm, we

have Σ ffr =1 and in this case the spaces Ur are locally isometric with the

Gauss images ηr(N) of TV which are generated by the endpoint of ηr after a
parallel displacement of ηr in Rm to a fixed point 0. The submanifolds ηr(N)
r=l, •••, m—n form a so-called "rectangular configuration,, in the unit hyper-
sphere with centre 0 ([4]). If TV is a submanifold of a complete simply connected

1 k
elliptic space Em of curvature k (>0), then we have Σ ^ \--jir- = l and we
can in a somewhat analogous way also associate m—n Gauss images of Â  which
are locally isometric to Ur and which form together with Â  a rectangular con-
figuration in Em ([4], [6]).

3. About theorem 2: if M is a space of constant curvature k, then (5)
becomes

m-n
Σ gr=ng(H, A)-Ric (iV)+*(n —1)^. (8)
r=i

In [3] M. Obata constructed a generalized Gauss map / : N->Q, where Q is the
set of all the totally geodesic n-spaces in the complete simply connected space
form M and he introduced a quadratic differential form dΣ2 on Q, with respect
to which Q (or in the euclidean case the natural projection of Q onto the
Grassmann manifold Gn>m) becomes a symmetric (pseudo—if &<0) Riemannian
space. From (8) and the formula of Obata ([3]): f*(dΣ2)=ng(H, lι)-Ric(N)

m-n

+ k{n — l)g, we get at once in this case Σ gr—f*(dΣ2).
r=l
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