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ON SUBMANIFOLDS WITH FLAT NORMAL CONNECTION
IN A CONFORMALLY FLAT SPACE

By C. THaASs

1. Introduction.

In this paper we construct Gauss maps with respect to non-degenerate
parallel normal unit vector fields on an n-dimensional submanifold N which has
flat normal connection in an m-dimensional conformally flat space M (2=n<m).
A relation between the Riemannian curvatures of N, M and the Gauss images
of N is obtained in theorem 1. We also find a result about the metric tensors
of the Gauss images, which is in the case of a space form M closely related to
a formula of Obata.

2. Preliminaries.

We always suppose thzli_: all manifolds, vector fields, etc. are differentiable
of class C*. Assume that V (resp. V) is the Riemannian connection of M (resp.
N) and that X and Y are vector fields of N. Then

VxV =YY +h(X,Y),

and h is the vector valued second fundamental tensor of N in M. Let £ be a
normal vector field on N. Decomposing Vx& in a tangent and a normal com-
ponent we find

Vxb=—AgX)+V%E.

Ag is a self-adjoint linear map N,—N, at each point p and V*is a metric con-
nection in the normal bundle N*. We have also, if g denotes the metric tensor
of M and the induced metric tensor on N,

g(h(X, ), §)=g(A«X), ).

M is said to be conformally flat if for each point p we have a neighbourhood
U and a diffeomorfism ¢: U—R™, where R™ is the euclidean m-space, such that
the metric tensor g of ¢(U) (identified with U) is obtained from the standard
metric tensor of R™ by a conformal change of this tensor. Equivalently, g is
locally of the form g=p?®g’, where p is a strict positive function and g’ is a
flat metric tensor. The normal curvature tensor R* of N in M is given by
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RY(X, V)=ViVs—VVx—Vix,v1.

N has flat normal connection in M if R* vanishes everywhere. It is wellknown
that in this case there is in a neighbourhood of each point » of N an orthonormal
base fleld i, -, Pm-» of N* such that each y, is parallel in N*, that is, such
that V¥»,=0 for each vector fleld of N. Moreover, if M is conformally flat,
then R+=0 iff all the second fundamental tensors A, are simultaneously diagona-
lizable ([2], theorem 4).

3. The Gauss maps of non-degenerate parallel unit normal vector fields.

Suppose that » is a parallel unit normal vector field on N with domain U,
then we say that 7 is non-degenerate if det A,#0 everywhere in U. In this
case we define a new metric tensor § on U by Z(X, Y):g(vxn, Vyy]) for all
vectors X and Y at each point p of U (cf. [1]).

With this new metric tensor the differentiable manifold U becomes a new
Riemannian manifold 7 which is called the Gauss image of U with respect to
». The Gauss map of » is then simply the natural bijection 7: U—U. In the
following we identify vector fields and tensor fields on U and {J, so we do not
use the Jacobian 74 and the dual linear map 7*.

Remark that we also have, since % is parallel, g(X, Y):g(Anp(X), Anp(Y)).

Recall that we always suppose that N is an n-dimensional submanifold of
the m-dimensional conformally flat space M.

THEOREM 1. Suppose that N has flat normal connection in M and that
e, *+, ey 1S an orthonormal base field with domain U of N which diagonalizes
sumultaneously all the second fundamental tensors As Let 91, -+, Ym-n be an
orthonormal base field of N* with domain U such that each %, is parallel in N*
and non-degenerate and K,, (resp. K.) and }?IJ be the Riemannian curvature
of N (resp. M) and of the Gauss 1mage U, of nr in the plane dirvection (e, e;)
i#7 1, j=1, -, n. If N 1s invariant and K,,#0, then

mep 1 K,—K
S =
T=1 KI] K”
For a surface N we have min*]%: :*K*}l(
r=1

Proof. First let » be fixed 1=<r<m—mn. There are non-zero real valued
functions A3 in U such that A,]T(eh):/mgh h=1, ---, n. Let a,=e,/A} then
a,, -+, G, is an orthonormal base field of U,. We prove that the Riemannian
connection V of I/, is given by

VeV = i g(VxVyn,, Vo, p)an  for any two vector fields X and ¥ of U .
h=1
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It is not difficult to see that V is indeed a connection. It is a metric connection
for the metric tensor &, of U,, because, if Z is an other vector field of U, then
a straightforward calculation gives

28X, Y\=Z g xnr, Ven)=g x5, Vo) +a T xnr, V207,
=&V X, V)+8.X, V,Y).

Next we prove that the torsion tensor of V vanishes:
ﬁXY“ﬁyX: 7;1 g(vaYﬁr—vY_V_Xyi” va;ﬂ?r)ah 4

and because of the equation of Ricci, we know that if R is the curvature tensor
of M, R*the normal curvature tensor of N in M and & any normal vector field
on N, then

g(R(X, Y., ©)=g(R*(X, YV)1r, )+ g(AeA, (X)— A, A(X), ¥).

N has flat normal connection in M, thus R*=0 and slince M is conformally flat
we have A:A, =A, A:; Since N is invariant, i, e, R(X, Y)N,CN,, we get

E(X’ Y)ﬂT:vaYﬂT'—vaXvr—vE.Y,Yﬁ?r:O:
and thus

ﬁXY'—ﬁYX: hZQI g(vu’,yﬂ]n va,ﬂ?rﬂln

= 3 (X, Y], ae=LX, V1.

Next, the Riemannian curvature of {7, in the plane direction (e,, ¢,) is given by

2
2
4
2
4

~

K:]:—gf(vtl va-ai_vajvalai_vtal.a]]azy a])
:—-Clig(va]vai‘y]ry Vajﬂr)+ El g(va]vaim, Vahm)grr(ah, ﬁaiaj)

+ajg(valvai7]n vajnr)- él g(valvaiﬂr: vahﬂr)gr(ahr ﬁa]aj)

"I‘g(v[al,a]{lvaﬂ]r, Va]ﬂr)
:_g(valva]vai‘/]n vajvr)_’g(va]_v-aﬂ?n va;iajﬂr)

+ }LZ:)I g(va]vaiﬂn va;ﬂ?r)g(valvaj'/]n vahﬁr)+g(va1valvai7]r: vaﬂ'}r)

+g(valvai77n Va]va.j"]r)“' hgl g(valvaﬂ?r; vahnr)g(va]va]]}n vahﬁr)
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+g(vfaz.aj]vai7]ry vaj7]r> (2)

Recall that K,, and K,, are connected by .
K, =K.;—g(he., e,), hle, e))-+g(hles, e.), hle,, e,))

=K.+ ’Zg:l"gm,,q(el), e)g(Ay fey), ej>:f?l,+’:§"xgzg. 3)

Next, because of the definition of a,, we have
Vo, pr=—A,(a)=—ex h=1, -, n,
and thus, the sum of the first, the fourth and the last term of (2) is equal to

—g(R(a,, a,)e,, e,)= g};

The sum of the second and the third term of (2) is given by
—g(h(a,, e,), h(a,, ¢;))=0

and the sum of the fifth and the sixth term becomes

g(h(a,, e,), h(a,, ej).
From all this we get

o _.KU,
Ki,= P (4)
and finally because of (3) we find
S _
mp 1o K=Ky
= ]%;] K, K, °’

which completes the proof.
Because of (4) we have immediately the following:

COROLLARY. If K,,=0 then each I?LZO r=1, -, m—n. If N is in parti-
cular a flat surface then each Gauss vmage U, 1s a flat Riemanman space.

If X and Y are vector fields, e, -+, ¢, is an orthonormal base field of N
and if R is the curvature tensor of N, then the Riccitensor of N is given by

Ric (N)(X, ¥)= hzl g(Rex, X)Y, en).

Define a new symmetric two-covariant tensor Ricy(M) on N by (R is again the
curvature tensor of M):
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Ricy(MYX, YV)= é g(Rlen, X)Y, e4).

This is independent of the choice of the orthonormal base field e;, -, e, of N
and for a unit vector e of N,, Ricy(M)(e, ¢) is equal to the sum of the Rieman-
nian curvatures of M in n—1 mutually orthogonal plane directions of N, con-
taining e. If N is a surface, then Ric (N)=Kg and RicN(M):K_g.

THEOREM 2. Assume that N, -, U. are such as in the statement of theorem
1 and that g, denotes the metric tensor of U, r=1, ---, m—n. If H 1s the mean
curvature vector field of N, we have

S &,=ng(H, h)—Ric (N)+Ricy(M). (5)

r=1
Proof. Let ey, -+, e, be such as in theorem 1. Because of the definition
(1) we have if

X= 2 xie, and Y= % y.e, are vector fields of N,
1=1

=1

X, V)= 2

k2

xzng(AnT<e1.)r Ar],.(ej)): ‘é (/H)leyl .

1

Next we find

(spA45,)800n, hX, V)=( 3 B)( 5 eAs e, e)x.y)

=X, )+ 3 Bxx.. (6)
V)

Finally, we have
Ric (N)(X, V)= ng g(R(e,, X)Y, ¢j).

Because of the equation of Gauss this becomes

= é} g(R(e,, X)Y, e;)+ é (g(hle,, e5), KX, Y))—g(h(e,, V), M(X, e;)))

—Ricy(M)(X, Y>+’:§'1"( ]2 ]i];xzyl). @

1,7=1
1#)

Since mi}n(spA,/T)man, formula (5) follows from (6) and (7). This completes
=1
the proof.
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Remarks. .
1. For a surface N, (5) becomes 21 g.=2g(H, h)—(K—K)g.

2. About theorem 1: if N is a submanifold of the euclidean m-space R™, we

1 . . ~ . . .
have E'X;:l and in this case the spaces U, are locally isometric with the
1)
Gauss images 7.(N) of N which are generated by the endpoint of 7, after a
parallel displacement of 7, in R™ to a fixed point 0. The submanifolds 7,(N)
r=1, -, m—n form a so-called “rectangular configuration,, in the unit hyper-
sphere with centre 0 ([4]). If N is a submanifold of a complete simply connected
elliptic space E™ of curvature & (>0), then we have Z}}l—r»—f—»}g—zl and we
1) 2
can in a somewhat analogous way also associate m—mn Gauss images of N which
are locally isometric to U/, and which form together with N a rectangular con-
figuration in E™ ([4], [6]).
3. About theorem 2: if M is a space of constant curvature %, then (5)
becomes

In [3] M. Obata constructed a generalized Gauss map f: N—@Q, where Q is the
set of all the totally geodesic n-spaces in the complete simply connected space
form M and he introduced a quadratic differential form 422 on Q, with respect
to which @ (or in the euclidean case the natural projection of Q onto the
Grassmann manifold G,, ) becomes a symmetric (pseudo—if £2<0) Riemannian
space. From (8) and the formula of Obata ([3]): f*(d2*)=ng(H, h)—Ric (N)

+k(n—1)g, we get at once in this case mz—)n,g?,:f*(dfz)‘
=1
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