H. UEDA KODAI MATH. J. 6 (1983), 26-36

UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS, II

By Hideharu Ueda

0. Introduction. Let f and g be meromorphic functions. If f and g have the same *a*-points with the same multiplicities, we denote this by $f=a \rightleftharpoons g=a$ for simplicity's sake. And we denote the order of f by ρ_f .

In [5] Ozawa proved the following result.

THEOREM A. Let f and g be entire functions. Assume that ρ_f , $\rho_g < \infty$, $f=0 \rightleftharpoons g=0$, $f=1 \rightleftharpoons g=1$ and $\delta(0, f) > 1/2$. Then $fg\equiv 1$ unless $f\equiv g$.

It is natural to ask whether the order restriction of f and g in Theorem A can be removed or not. In our previous paper [6] we showed the following fact.

THEOREM B. Let f and g be entire functions. Assume that $f=0 \rightleftharpoons g=0$, $f=1 \rightleftharpoons g=1$ and $\delta(0, f) > 5/6$. Then $fg\equiv 1$ unless $f\equiv g$.

In this paper we shall show first that in Theorem A the order restriction of f and g can be removed perfectly.

THEOREM 1. Let f and g be entire functions. Assume that $f=0 \rightleftharpoons g=0$, $f=1 \rightleftharpoons g=1$ and $\delta(0, f) > 1/2$. Then $fg \equiv 1$ unless $f \equiv g$.

In Theorem 1, the estimate " $\delta(0, f) > 1/2$ " is best possible. In fact, consider $f = e^{\alpha}(1-e^{\alpha}), g = e^{-\alpha}(1-e^{-\alpha})$ with a nonconstant entire function α . Then $f = -ge^{3\alpha}, f - 1 = (g-1)e^{2\alpha}$ and $\delta(0, f) = 1/2$. $f \neq g$ and $fg \neq 1$ are evident.

In place of Theorem 1, we prove more generally the following

THEOREM 2. Let f and g be meromorphic functions satisfying $f=0 \rightleftharpoons g=0$, $f=1 \rightrightarrows g=1$ and $f=\infty \rightrightarrows g=\infty$. If

$$\overline{\lim_{r\to\infty}} \frac{N(r, 0, f) + N(r, \infty, f)}{T(r, f)} < 1/2,$$

then $f \equiv g$ or $fg \equiv 1$.

In order to state our second result, we introduce a notation: If k is a positive integer or ∞ , let

Received July 14, 1981

 $E(a, k, f) = \{z \in \mathbb{C}, z \text{ is a zero of } f - a \text{ of order} \leq k.\},\$

where C is the complex plane.

In [7], we showed the following

THEOREM C. Let f and g be nonconstant entire functions such that $f=0 \rightleftharpoons g=0$ and $f=1 \rightleftharpoons g=1$. Further assume that there exists a complex number a $(\neq 0, 1)$ satisfying E(a, k, f)=E(a, k, g), where k is a positive integer (≥ 2) or ∞ . Then f and g must satisfy one of the following four relations:

(i) $f \equiv g$, (ii) $(f-1/2)(g-1/2) \equiv 1/4$ (This occurs only for a=1/2.), (iii) $fg \equiv 1$ (a=-1), (iv) $(f-1)(g-1) \equiv 1$ (a=2),

We shall extend this result for meromorphic functions.

THEOREM 3. Suppose that f and g are nonconstant meromorphic in \mathbb{C} such that $f=0 \rightleftharpoons g=0$, $f=1 \rightrightarrows g=1$ and $f=\infty \rightrightarrows g=\infty$. Further assume that there exists a complex number $a \ (\neq 0, 1)$ satisfying E(a, k, f)=E(a, k, g), where k is a positive integer (≥ 2) or ∞ . Then f and g must satisfy one of the following seven relations \cdot

(i) $f \equiv g$, (ii) $f+g \equiv 1$ (This occurs only for a=1/2.), (iii) $fg \equiv 1$ (a=-1), (iv) $f+g \equiv 2$ (a=2), (v) $(f-1)(g-1) \equiv 1$ (a=2), (vi) $f+g \equiv 0$ (a=-1), (vii) $(f-1/2)(g-1/2) \equiv 1/4$ (a=1/2).

We remark that Theorem 3 has been proved by Gundersen [1] for the case $k=\infty$. Theorem 3 is an improvement of a well known theorem of Nevanlinna [3, p 122].

1. Lemmas. In this section we state three lemmas. The first lemma is due to Niino and Ozawa [4].

LEMMA 1. Let $\{\alpha_j\}_1^p$ be a set of non-zero constants and $\{g_j\}_1^p$ a set of entire functions satisfying

$$\sum_{j=1}^p \alpha_j g_j \equiv 1$$
.

Then

$$\sum_{j=1}^p \delta(0, g_j) \leq p - 1.$$

The second lemma is very straightforward, but important for the proof of Theorem 2.

LEMMA 2. Let f be a nonconstant meromorphic function. Put

$$F = f''/f - 2(f'/f)^2$$
.

Then

$$N(r, \infty, F) \leq 2N(r, 0, f) + N(r, \infty, f).$$

Proof. Let a be a pole of F. Then it is clear that a is a zero or a pole of f.

Case 1. Assume that a is a zero of f with multiplicity $n \ge 1$. In this case we have

$$f(z) = g(z)(z-a)^n$$

with a meromorphic function g(z) satisfying $g(a) \neq 0$, ∞ . Hence

$$F(z) = -\frac{n(n+1)}{(z-a)^2} - 2\frac{n}{z-a}\frac{g'(z)}{g(z)} + \frac{g''(z)}{g(z)} - 2\left(\frac{g'(z)}{g(z)}\right)^2.$$

Case 2. Assume that a is a pole of f with multiplicity $n \ge 1$. Then we have

$$f(z) = g(z)(z-a)^{-n}$$

with a meromorphic function g(z) satisfying $g(a) \neq 0, \infty$. Hence

$$F(z) = -\frac{n(n-1)}{(z-a)^2} + 2\frac{n}{z-a} \frac{g'(z)}{g(z)} + \frac{g''(z)}{g(z)} - 2\left(\frac{g'(z)}{g(z)}\right)^2.$$

The above two simple computations combine to show that

$$N(r, \infty, F) \leq 2N(r, 0, f) + N(r, \infty, f)$$
.

The third lemma, which is due to Hiromi and Ozawa [2], plays an important role for the proof of Theorem 3.

LEMMA 3. Let h_0 , h_1 , \cdots , h_m be meromorphic functions and k_1 , k_2 , \cdots , k_m be entire functions. Suppose that

$$T(r, h_j) = o\left(\sum_{n=1}^{m} T(r, e^{k_n})\right) \quad j = 0, 1, \cdots, m$$

holds outside a set of finite linear measure. If an identity

$$\sum_{n=1}^{m} h_{n}(z) e^{k_{n}(z)} \equiv h_{0}(z)$$

holds, then for suitable constants $\{C_n\}_{1}^{m}$, not all zero,

$$\sum_{n=1}^m C_n h_n(z) e^{k_n(z)} \equiv 0.$$

2. Proof of Theorem 2. By assumption, we have

(2.1)
$$f = e^{\alpha}g, \quad f - 1 = e^{\beta}(g-1)$$

with two entire functions α and β .

(A) Suppose that $e^{\beta} \equiv c(\neq 0)$. If f has at least one zero, (2.1) implies c=1, i.e. $f \equiv g$. If f has no zeros and $c \neq 1$, we have

$$f-cg=1-c\neq 0$$
.

Put $f_1 = f^{-1}$, $g_1 = g^{-1}$. Then f_1 , g_1 are entire functions satisfying

$$g_1 = \frac{cf_1}{1 - (1 - c)f_1} \,.$$

Since g_1 is an entire function, $1-(1-c)f_1=e^{\gamma}$, where γ is entire. Hence

$$f = f_1^{-1} = \frac{1 - c}{1 - e^{\gamma}}.$$

Thus

$$\begin{split} N(r, \, \infty, \, f) = N(r, \, 1, \, e^{r}) = & (1 + o(1))T(r, \, e^{r}) = (1 + o(1))(T(r, \, f)) \\ & (r \oplus E, \, r \to \infty) \,. \end{split}$$

(Here and throughout this paper, the letter E will denote sets of finite linear measure which will not necessarily be the same at each occurrence.)

This is impossible.

(B) Suppose that $e^{\alpha-\beta} \equiv c(\neq 0)$. If c=1, we have $f \equiv g$. If $c \neq 1$, (2.1) gives

$$f = \frac{-c(e^{\beta}-1)}{c-1}.$$

Thus

$$N(r, 0, f) = N(r, 1, e^{\beta}) = (1+o(1))T(r, e^{\beta}) = (1+o(1))T(r, f)$$
$$(r \in E, r \to \infty).$$

This is untenable.

(C) Suppose neither e^{β} nor $e^{\alpha-\beta}$ are constants. In this case, we have from (2.1)

(2.2)
$$f = \frac{1 - e^{\beta}}{1 - e^{\beta - \alpha}}, \quad g = \frac{1 - e^{\beta}}{1 - e^{\beta - \alpha}} e^{-\alpha}.$$

Now, we use the argument of impossibility of Borel's identity. (cf. [3]) Put $\varphi_1 = f$, $\varphi_2 = -fe^{\beta - \alpha}$ and $\varphi_3 = e^{\beta}$. Then by (2.2)

(2.3)
$$\varphi_1 + \varphi_2 + \varphi_3 \equiv 1$$
, $\varphi_1^{(n)} + \varphi_2^{(n)} + \varphi_3^{(n)} \equiv 0$ $(n=1, 2)$.

Further put

(2.4)
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ \varphi_1'/\varphi_1 & \varphi_2'/\varphi_2 & \varphi_3'/\varphi_3 \\ \varphi_1''/\varphi_1 & \varphi_2''/\varphi_2 & \varphi_3''/\varphi_3 \end{vmatrix}, \qquad \Delta' = \begin{vmatrix} \varphi_2'/\varphi_2 & \varphi_3'/\varphi_3 \\ \varphi_2''/\varphi_2 & \varphi_3''/\varphi_3 \\ \varphi_1''/\varphi_1 & \varphi_2''/\varphi_2 & \varphi_3''/\varphi_3 \end{vmatrix}.$$

Assume first that $\Delta \equiv 0$. Then by (2.3)

$$0 = \begin{vmatrix} \varphi_1 & \varphi_2 & \varphi_3 \\ \varphi_1' & \varphi_2' & \varphi_3' \\ \varphi_1'' & \varphi_2'' & \varphi_3'' \end{vmatrix} = \begin{vmatrix} \varphi_1 & \varphi_2 & 1 \\ \varphi_1' & \varphi_2' & 0 \\ \varphi_1'' & \varphi_2'' & 0 \end{vmatrix} = \begin{vmatrix} \varphi_1' & \varphi_2' \\ \varphi_1'' & \varphi_2'' \\ \varphi_1'' & \varphi_2'' \end{vmatrix}.$$

This implies $\varphi_2 = C\varphi_1 + D$ (C, D: constants), i.e. $-fe^{\beta - \alpha} = Cf + D$. If $C \neq 0$, we have

$$f=\frac{-D}{C+e^{\beta-\alpha}}.$$

so that $N(r, \infty, f) = (1+o(1))T(r, f)$ $(r \in E, r \to \infty)$, a contradiction. Hence C must vanish, i.e. $f = -De^{\alpha - \beta}$. Substituting this into (2.3), we have

$$-De^{\alpha-\beta}+e^{\beta}=1-D$$
.

Using Lemma 1, we have D=1 and $e^{\beta}=e^{\alpha-\beta}$. It follows from these and (2.2) that $fg\equiv 1$.

Assume next that $\varDelta \not\equiv 0$. Then by (2.4) $\varphi_1 = f = \varDelta' / \varDelta$. Thus

(2.5)
$$m(r, f) \leq m(r, \Delta') + m(r, \Delta^{-1})$$
$$\leq m(r, \Delta') + m(r, \Delta) + N(r, \infty, \Delta) + O(1).$$

Here we estimate $m(r, \Delta')$ and $m(r, \Delta)$. By (2.1)

$$T(r, e^{\beta}) \leq T(r, f) + T(r, g) + O(1)$$
$$T(r, e^{\beta - \alpha}) \leq T(r, e^{\beta}) + T(r, e^{-\alpha})$$
$$\leq 2T(r, f) + 2T(r, g) + O(1)$$

By the second fundamental theorem,

$$\begin{aligned} (1-o(1))T(r, g) &\leq N(r, 0, g) + N(r, 1, g) + N(r, \infty, g) \\ &\leq N(r, 0, f) + N(r, 1, f) + N(r, \infty, f) \\ &\leq (3+o(1))T(r, f) \qquad (r \in E, r \to \infty). \end{aligned}$$

Hence

$$T(r, \varphi_3) = T(r, e^{\beta}) \leq (4 + o(1))T(r, f) \qquad (r \in E, r \to \infty),$$

$$T(r, \varphi_2) \leq T(r, f) + T(r, e^{\beta - \alpha}) \leq (9 + o(1))T(r, f) \qquad (r \in E, r \to \infty),$$

Therefore

$$m(r, \Delta'), m(r, \Delta) = O(\log rT(r, f)) \qquad (r \in E, r \to \infty).$$

Substituting these into (2.5), we have

(2.6)
$$m(r, f) \leq N(r, \infty, \varDelta) + O(\log rT(r, f)) \qquad (r \in E, r \to \infty).$$

Also, a direct computation shows that

UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS, II 31

$$\begin{aligned} \mathcal{\Delta} = & \left[f''/f - 2(f'/f)^2 \right] (\beta' - \alpha') + (f'/f) \left[(\beta')^2 - (\alpha')^2 - 2(\beta' - \alpha') \right] \\ & - (\beta'' - \alpha'') \right] + \beta'(\beta'' - \alpha'') + \beta'(\beta' - \alpha') - (\beta' - \alpha') \left[\beta'' + (\beta')^2 \right] \end{aligned}$$

It follows from this and Lemma 2 that

(2.7)
$$N(r, \infty, \Delta) \leq 2N(r, 0, f) + N(r, \infty, f).$$

Combining (2.6) and (2.7), we have

$$T(r, f) \leq 2[N(r, 0, f) + N(r, \infty, f)] + O(\log rT(r, f)) \qquad (r \in E, r \to \infty).$$

Hence,

$$\overline{\lim_{r\to\infty}} \frac{N(r, 0, f) + N(r, \infty, f)}{T(r, f)} \ge 1/2.$$

This is a contradiction.

This completes the proof of Theorem 2

3. Proof of Theorem 3. By assumption we have with two entire functions α and β

(3.1)
$$f = e^{\alpha}g, \quad f - 1 = e^{\beta}(g-1).$$

We divide our argument into the following five cases.

- (A) $\beta(z)$ is a constant. (B) $\alpha(z) \beta(z)$ is a constant.
- (C) $\alpha(z)$ is a constant. (D) $\beta(z) \alpha(\beta(z) \alpha(z))$ is a constant.
- (E) None of $\beta(z)$, $\alpha(z) \beta(z)$, $\alpha(z)$ and $\beta(z) \alpha(\beta(z) \alpha(z))$ are constants.

(A) Suppose that $e^{g} \equiv c(\neq 0)$. If f has a zero, c=1. Hence $f \equiv g$. If f has no zeros and $c \neq 1$, (3.1) implies

(3.2)
$$f = \frac{1-c}{1-e^{\tau}}, \quad g = \frac{f-(1-c)}{c},$$

where γ is a nonconstant entire function. Assume first that a=1-c. In this case, f=a has no roots, so that $E(a, k, g)=\emptyset$ $(k\geq 2)$. By (3.2)

$$g = \frac{a}{1-a} \cdot \frac{1}{e^{-r}-1} \, .$$

Hence, if $a \neq 2$, g=a has infinitely many simple roots, a contradiction. On the other hand, if a=2, g=a has no roots, and we have from (3.2)

$$g\equiv 2-f$$
, $f=\frac{2}{1-e^r}$.

Next, assume that $a \neq 1-c$. In this case, f=a has infinitely many simple roots. Hence by (3.2)

$$a = \frac{a - (1 - c)}{c},$$

which implies a=1, a contradiction.

(B) Suppose that $e^{\alpha-\beta} \equiv c(\neq 0)$. If c=1, we have $f \equiv g$. If $c\neq 1$, (3.1) gives

(3.3)
$$g = \frac{f}{(1-c)f+c}$$
, $f = \frac{c(1-e^{\beta})}{c-1}$, $g = \frac{e^{-\beta}-1}{c-1}$.

By the same reasoning as in (A), we deduce from (3.3) that c=-1, a=1/2, and

$$g \equiv \frac{f}{2f-1}$$
, $f = \frac{1-e^{\beta}}{2}$.

(C) Suppose that $e^{\alpha} \equiv c(\neq 0)$. If c=1, we have $f \equiv g$. If $c\neq 1$, (3.1) gives

(3.4)
$$g = \frac{f}{c}$$
, $f = \frac{c(1-e^{\beta})}{c-e^{\beta}}$, $g = \frac{1-e^{\beta}}{c-e^{\beta}}$.

By the same reasoning as in (A), we deduce from (3.4) that c=-1, a=-1, and

$$g \equiv -f$$
, $f = \frac{1-e^{\beta}}{1+e^{\beta}}$.

(D) Suppose that $\beta(z) = a(\beta(z) - \alpha(z)) + C$, where C is a constant. By (3.1)

(3.5)
$$f = \frac{1 - e^{\beta}}{1 - e^{r}}, \qquad g = \frac{1 - e^{\beta}}{1 - e^{r}} e^{r - \beta} = \frac{1 - e^{-\beta}}{1 - e^{-r}},$$

where $\gamma \equiv \beta - \alpha$.

Assume first that there exists a sequence $\{w_n\}$ satisfying

(3.6)
$$f(w_n) = a, \quad e^{\gamma(w_n)} \neq 1.$$

Let w be an element of $\{w_n\}$. Clearly

(3.7)
$$e^{\beta(w)} \neq 1$$
, $e^{\beta(w)} \neq e^{\gamma(w)}$

By (3.5), (3.6) and (3.7), $g(w) \neq a$. Hence, by assumption, w is a zero of f-a with multiplicity $\geq k+1$ (≥ 3). Then an elementary calculation shows that

$$\gamma'(w) = \gamma''(w) = \cdots = \gamma^{(k)}(w) = 0$$

Here, we show that

(3.8)
$$\#\{\gamma(w_n)\}=1.$$

If the set $\{\gamma(w_n)\}$ contains γ_1 and γ_2 $(\gamma_1 \neq \gamma_2)$, all the roots of $\gamma(z) = \gamma_1$ (j=1, 2) satisfy f(z) = a, $e^{\gamma(z)} \neq 1$. Then the above reasoning shows that $\gamma^{(i)}(z) = 0$, $i = 1, 2, \dots, k$. Hence

$$\Theta(\gamma_{j}, \gamma) = 1 - \overline{\lim_{r \to \infty}} \frac{\bar{N}(r, \gamma_{j}, \gamma)}{T(r, \gamma)} \ge \frac{k}{k+1} \qquad (j=1, 2),$$

and so

$$\sum_{c} \Theta(c, \gamma) \ge \Theta(\gamma_1, \gamma) + \Theta(\gamma_2, \gamma) + \Theta(\infty, \gamma) > 2.$$

This is a contradiction. Thus (3.8) holds.

Let $\{z_n\}$ be the sequence satisfying

 $e^{\gamma(z_n)} = e^{\beta(z_n)} = 1.$

We claim here that

$$(3.10) \qquad \qquad \#\{\gamma(z_n)\} \leq 1.$$

If $\gamma_1, \gamma_2 \ (\gamma_1 \neq \gamma_2) \in \{\gamma(z_n)\}$, then by (3.9)

$$\gamma_j = 2l_j \pi i$$
, $a \gamma_j + C = 2s_j \pi i$ $(j=1, 2)$,

where l_1 , l_2 , s_1 , s_2 are integers such that $l_1 \neq l_2$, $s_1 \neq s_2$. Hence

$$a = \frac{s_1 - s_2}{l_1 - l_2}$$

is a rational number. By (3.8) $\{\gamma(w_n)\} = \{\delta_1\}$, where δ_1 is a complex number. Since $\gamma(z)$ is a nonconstant entire function, $\gamma(z)$ omits at most one finite value. Hence $\gamma(z) = \delta_1 + 2(l_1 - l_2)\pi i$ or $\gamma(z) = \delta_1 - 2(l_1 - l_2)\pi i$ has roots. This implies that $\delta_1 + 2(l_1 - l_2)\pi i \in \{\gamma(w_n)\}$ or $\delta_1 - 2(l_1 - l_2)\pi i \in \{\gamma(w_n)\}$. This is a contradiction.

Now, consider the function

(3.11)
$$F(z) \equiv 1 - a - e^{\beta} + a e^{\gamma} = (f - a)(1 - e^{\gamma}).$$

By the second fundamental theorem

$$\begin{split} N(r, 1-a, F) &\leq T(r, F) \leq N(r, 0, F) + N(r, \infty, F) + N(r, 1-a, F) - N(r, 0, F') \\ &+ o(T(r, F)) = N(r, 0, F) + N(r, a, e^{\beta - r}) - N(r, 0, e^{\beta - r} - 1) \\ &+ o(T(r, F)) = N(r, 0, F) + o(T(r, e^{\beta - r})) + o(T(r, F)) \\ &\qquad (r \in E, r \to \infty) \,. \end{split}$$

Hence

$$(3.12) N(r, 0, F) \ge (1 - o(1))T(r, F) \ge (1 - o(1))T(r, e^{\beta - \gamma}) (r \in E, r \to \infty).$$

Let $\{x_n\}$ be the roots of F(z)=0 with multiplicity ≥ 3 . Then x_n is a root of $F'(z)=e^{\gamma}\{a\gamma'-\beta'e^{\beta-\gamma}\}=\beta'e^{\gamma}\{1-e^{\beta-\gamma}\}=0$ with multiplicity ≥ 2 . Applying the second fundamental theorem to $G=\beta'(1-e^{\beta-\gamma})$, we have

$$\begin{aligned} (1+o(1))T(r, G) &\leq \bar{N}(r, 0, G) + \bar{N}(r, \infty, G) + \bar{N}(r, 0, \beta' e^{\beta - \gamma}) \\ &= \bar{N}(r, 0, G) + o(T(r, e^{\beta - \gamma})) \\ &= \bar{N}(r, 0, G) + o(T(r, G)) \qquad (r \in E, r \to \infty) , \end{aligned}$$

which implies

$$T(r, G) = (1+o(1))N(r, 0, G) = (1+o(1))\overline{N}(r, 0, G) \qquad (r \in E, r \to \infty).$$

Hence

(3.13)
$$\lim_{\substack{r \to \infty \\ r \notin E}} \frac{N_1(r, 0, G)}{N(r, 0, F)} = \lim_{\substack{r \to \infty \\ r \notin E}} \frac{N_1(r, 0, G)}{T(r, e^{\beta - r})} = \lim_{\substack{r \to \infty \\ r \notin E}} \frac{N_1(r, 0, G)}{T(r, G)} = 0.$$

Combining (3.12) and (3.13), we have

(3.14)
$$\overline{N}(r, 0, F) \ge \frac{1}{2} \{ N(r, 0, F) - N_1(r, 0, G) \} = (1/2 - o(1))T(r, e^{\beta - r})$$

 $(r \in E, r \to \infty).$

Further, we claim that

(3.15)
$$\{z: F(z)=0\} = \{w_n\} \cup \{z_n\}.$$

By (3.6) and (3.11) $F(w_n)=0$. By (3.9) and (3.11) $F(z_n)=0$. Hence $\{w_n\} \cup \{z_n\} \subset \{z: F(z)=0\}$. Conversely, assume that F(z)=0. If $e^{r(z)} \neq 1$, then f(z)=a, i.e. $z \in \{w_n\}$. If $e^{r(z)}=1$, then $e^{\beta(z)}=1$, i.e. $z \in \{z_n\}$. Hence $\{z: F(z)=0\} \subset \{w_n\} \cup \{z_n\}$. Now, by (3.8) and (3.10)

$$(3.16) \qquad N(r, \{w_n\}) + N(r, \{z_n\}) \leq 2T(r, \gamma) = o(T(r, e^{\beta - \gamma})) \qquad (r \in E, r \to \infty).$$

On the other hand, by (3.15) and (3.14)

$$N(r, \{w_n\}) + N(r, \{z_n\}) = \overline{N}(r, 0, F) \ge (1/2 - o(1))T(r, e^{\beta - \gamma}) \qquad (r \in E, r \to \infty),$$

which contradicts (3.16). This implies that if f(w)=a, then $e^{\gamma(w)}=1$. Then by (3.11) $e^{\beta(w)}=1$, hence by (3.5) g(w)=a.

Now, we show that f=a has at least one root. If not, by (3.11) F(w)=0 implies $e^{\gamma(w)}=e^{\beta(w)}=1$, so that $F'(w)=\beta'(w)(e^{\gamma(w)}-e^{\beta(w)})=0$. Hence all the zeros of F(z) has multiplicities ≥ 2 . Thus by (3.11) and (3.14)

$$N(r, 0, \gamma') \ge N_1(r, 1, e^{\gamma}) \ge N_1(r, 0, F) \ge \overline{N}(r, 0, F) \ge (1/2 - o(1))T(r, e^{\beta - \gamma})$$

$$(r \oplus E, r \to \infty)$$

This is impossible.

It the same way, we conclude that g=a has at least one root, and if g=a, then $e^{-\gamma(w)}=1$, so that by (3.5) $e^{-\beta(w)}=1$, f(w)=a. Therefore $E(a, \infty, f)=E(a, \infty, g)\neq \emptyset$. In this case, by a result of Gundersen [1, Theorem 1],

$$g = S(f)$$
,

where S is a linear transformation which fixes a, a_1 and permutes a_2 , a_3 , and the cross ratio $(a_2, a_3, a, a_1) = -1$, where $\{a_1, a_2, a_3\} = \{0, 1, \infty\}$. From this we obtain one of the following three relations:

$$g \equiv 1 - f$$
 $(a = 1/2, a_1 = \infty),$

or

$$g \equiv f/(f-1)$$
 (a=2, a₁=0).

(E) Suppose that β , $\alpha - \beta$, α , $\beta - a\gamma \neq \text{constant}$, where $\gamma \equiv \beta - \alpha$. Consider the function F(z) (defined by (3.11)) and its logarithmic derivative H(z):

 $g \equiv f^{-1}$ (a=-1, a₁=1),

(3.17)
$$H(z) = \frac{F'(z)}{F(z)}$$
.

Then

(3.18)
$$T(r, H) = o(T(r, F)) + \overline{N}(r, 0, F) \quad (r \in E, r \to \infty).$$

By (3.11) F(w)=0 implies (i) f(w)=a, $e^{r(w)}\neq 1$ or (ii) $e^{r(w)}=e^{\beta(w)}=1$. First, consider the case (i). In this case, $g(w)\neq a$, so that w is a zero of F(z) with multiplicity $\geq k+1\geq 3$. Then w is a zero of $G(z)\equiv a\gamma'-\beta'e^{\beta-\gamma}$ with multiplicity $\geq k\geq 2$. Hence, by the second fundamental theorem

(3.19)
$$N(r, \{w\}) \leq N_1(r, 0, G) = o(T(r, e^\beta) + T(r, e^\gamma)) \quad (r \in E, r \to \infty).$$

Next, consider the case (ii). In this case, f(w)=g(w). In particular we note that $e^{\gamma(w)}=e^{\beta(w)}=1$ and $f(w)=g(w)=0, 1, \infty, a$ imply $\beta'(w)=0, \alpha'(w)=0, \gamma'(w)=0, \beta'(w)=a\gamma'(w)=0$, respectively. Hence by (3.18), (3.19) and (3.11)

(3.20)
$$T(r, H) = o(T(r, e^{\beta}) + T(r, e^{\gamma})) + \overline{N}(r, 0, \beta' - a\gamma') + \overline{N}(r, 0, \beta') + \overline{N}(r, 0, \alpha') + \overline{N}(r, 0, \gamma') + N_2(r, 0, f - g),$$

where N_2 counts only those points of N where $f(z)=g(z)\neq 0, 1, \infty, a$. Here we estimate $N_2(r, 0, f-g)$. By the second fundamental theorem

$$(3.21) \quad 2T(r, f) \leq \overline{N}(r, 0, f) + \overline{N}(r, 1, f) + \overline{N}(r, \infty, f) + \overline{N}(r, a, f) + o(T(r, f)) \\ (r \in E, r \to \infty),$$

and similarly for g. Let N(r, a; f, g) denote the counting function of the number of common roots of f=a and g=a. Then by (3.21) and (3.19)

$$\begin{split} &N_2(r, 0, f-g) + \bar{N}(r, 0, f) + N(r, 1, f) + N(r, \infty, f) + N(r, a; f, g) \\ &\leq N(r, 0, f-g) \leq T(r, f-g) \leq T(r, f) + T(r, g) \leq \bar{N}(r, 0, f) \\ &+ \bar{N}(r, 1, f) + \bar{N}(r, \infty, f) + \bar{N}(r, a; f, g) + o(T(r, e^\beta) + T(r, e^\gamma)) \\ &+ o(T(r, f) + T(r, g)) \qquad (r \notin E, r \to \infty), \text{ i.e.} \end{split}$$

 $(3.22) N_2(r, 0, f-g) = o(T(r, e^{\beta}) + T(r, e^{\gamma})) (r \in E, r \to \infty).$

Substituting (3.22) into (3.20), we have

$$(3.23) T(r, H) = o(T(r, e^{\beta}) + T(r, e^{r})) (r \in E, r \to \infty).$$

Now, by (3.11) and (3.17)

(3.24)
$$(\beta'-H)e^{\beta} + a(H-\gamma')e^{\gamma} = (a-1)H.$$

Case 1. Assume that $\beta' \equiv H$. In this case $F(z) = De^{\beta}$, where D is a non-zero constant. Hence by (3.11)

$$(D+1)e^{\beta}-ae^{\gamma}=1-a\neq 0$$
.

Using Lemma 1, we have D+1=0. Then $e^{\gamma} \equiv (a-1)/a$, a contradiction.

Case 2. Assume that $H \equiv \gamma'$. In this case $F(z) = De^{\gamma}$, where D is a non-zero constant. Hence by (3.9)

$$e^{\beta} + (D-a)e^{\gamma} = 1 - a \neq 0$$

Using Lemma 1, we have D-a=0. Then $e^{\beta} \equiv 1-a$, a contradiction.

Case 3. Assume that $\beta' - H \neq 0$ and $H - \gamma' \neq 0$. In this case, we use Lemma 3. Noting (3.23), we have from (3.24)

(3.25)
$$C_{1}(\beta'-H)e^{\beta}+C_{2}(H-\gamma')e^{\gamma}\equiv 0,$$

where C_1 , C_2 are non-zero constants. Hence

$$e^{\beta} = \frac{C_2}{C_2 - aC_1} \frac{(a-1)H}{\beta' - H}, \quad e^{\gamma} = \frac{C_1}{aC_1 - C_2} \frac{(a-1)H}{H - \gamma'}.$$

Therefore by (3.23)

$$\begin{split} T(r, e^{\beta}) + T(r, e^{r}) &\leq 4T(r, H) + T(r, \beta') + T(r, \gamma') + O(1) = o(T(r, e^{\beta}) + T(r, e^{r})) \\ (r \in E, r \to \infty), \end{split}$$

a contradiction.

This completes the proof of Theorem 3.

References

- [1] G. GUNDERSEN, Meromorphic functions that share three or four values, J. London Math. Soc., 20 (1979), 457-466.
- [2] G. HIROMI AND M. OZAWA, On the existence of analytic mappings between two ultrahyperelliptic surfaces, Kōdai Math. Sem. Rep. 17 (1965), 281-306.
- [3] R. NEVANLINNA, Le théorème de Picard-Borel et la théorie des fonctions meromorphes, Paris, Gauthier-Villars (1929).
- [4] K. NIINO AND M. OZAWA, Deficiencies of an entire algebroid function, Kōdai Math. Sem. Rep. 22 (1970), 98-113.
- [5] M. OZAWA, Unicity theorems for entire functions, J. Analyse Math. Vol. 30 (1976), 411-420.
- [6] H. UEDA, Unicity theorems for entire functions, Kodai Math. J. Vol. 3 (1980), 212-223.
- [7] H. UEDA, Unicity theorems for meromorphic or entire functions, ibid. Vol. 3 (1980), 457-471.

Department of Mathematics Daido Institute of Technology Daido-cho, Minami,ku, Nagoya, Jayan