UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS, II

By Hideharu Ueda

0. Introduction. Let f and g be meromorphic functions. If f and g have the same a-points with the same multiplicities, we denote this by $f=a \rightleftarrows g=a$ for simplicity's sake. And we denote the order of f by ρ_{f}.

In [5] Ozawa proved the following result.
Theorem A. Let f and g be entire functions. Assume that $\rho_{f}, \rho_{g}<\infty$, $f=0 \rightleftarrows g=0, f=1 \rightleftarrows g=1$ and $\delta(0, f)>1 / 2$. Then $f g \equiv 1$ unless $f \equiv g$.

It is natural to ask whether the order restriction of f and g in Theorem A can be removed or not. In our previous paper [6] we showed the following fact.

Theorem B. Let f and g be entire functions. Assume that $f=0 \leftrightarrows g=0$, $f=1 \rightleftarrows g=1$ and $\delta(0, f)>5 / 6$. Then $f g \equiv 1$ unless $f \equiv g$.

In this paper we shall show first that in Theorem A the order restriction of f and g can be removed perfectly.

Theorem 1. Let f and g be enture functions. Assume that $f=0 \rightleftarrows g=0$, $f=1 \rightleftarrows g=1$ and $\delta(0, f)>1 / 2$. Then $f g \equiv 1$ unless $f \equiv g$.

In Theorem 1, the estimate " $\delta(0, f)>1 / 2$ " is best possible. In fact, consider $f=e^{\alpha}\left(1-e^{\alpha}\right), g=e^{-\alpha}\left(1-e^{-\alpha}\right)$ with a nonconstant entire function α. Then $f=$ $-g e^{3 \alpha}, f-1=(g-1) e^{2 \alpha}$ and $\delta(0, f)=1 / 2 . \quad f \not \equiv g$ and $f g \not \equiv 1$ are evident.

In place of Theorem 1, we prove more generally the following
ThEOREM 2. Let f and g be meromorphic functıons satzsfying $f=0 \leftrightarrows g=0$, $f=1 \rightleftarrows g=1$ and $f=\infty \rightleftarrows g=\infty$. If

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r, 0, f)+N(r, \infty, f)}{T(r, f)}<1 / 2,
$$

then $f \equiv g$ or $f g \equiv 1$.
In order to state our second result, we introduce a notation: If k is a positive integer or ∞, let

$$
E(a, k, f)=\{z \in \mathbf{C}, z \text { is a zero of } f-a \text { of order } \leqq k .\}
$$

where \mathbf{C} is the complex plane.
In [7], we showed the following
THEOREM C. Let f and g be nonconstant entire functions such that $f=0 \rightleftarrows$ $g=0$ and $f=1 \rightleftarrows g=1$. Further assume that there exists a complex number a $(\neq 0,1)$ satısfying $E(a, k, f)=E(a, k, g)$, where k is a positive integer $(\geqq 2)$ or ∞. Then f and g must satisfy one of the following four relations:
(i) $f \equiv g, \quad($ ii $)(f-1 / 2)(g-1 / 2) \equiv 1 / 4$ (This occurs only for $a=1 / 2$.),
(iii) $f g \equiv 1(a=-1), \quad($ iv $)(f-1)(g-1) \equiv 1 \quad(a=2)$,

We shall extend this result for meromorphic functions.
THEOREM 3. Suppose that f and g are nonconstant meromorphic in \mathbf{C} such that $f=0 \rightleftarrows g=0, f=1 \rightleftarrows g=1$ and $f=\infty \leftrightarrows g=\infty$. Further assume that there exists a complex number $a(\neq 0,1)$ satisfying $E(a, k, f)=E(a, k, g)$, where k is a positive integer $(\geqq 2)$ or ∞. Then f and g must satrsfy one of the following seven relations.
(i) $f \equiv g$, (ii) $f+g \equiv 1$ (This occurs only for $a=1 / 2$.),
(iii) $f g \equiv 1(a=-1)$, (iv) $f+g \equiv 2(a=2), \quad(\mathrm{v})(f-1)(g-1) \equiv 1 \quad(a=2)$,
(vi) $f+g \equiv 0(a=-1)$, (vii) $(f-1 / 2)(g-1 / 2) \equiv 1 / 4(a=1 / 2)$.

We remark that Theorem 3 has been proved by Gundersen [1] for the case $k=\infty$. Theorem 3 is an improvement of a well known theorem of Nevanlinna [3, p 122].

1. Lemmas. In this section we state three lemmas. The first lemma is due to Niino and Ozawa [4].

Lemma 1. Let $\left\{\alpha_{j}\right\}_{1}^{p}$ be a set of non-zero constants and $\left\{g_{j}\right\}_{1}^{p}$ a set of enture functions satisfyung

$$
\sum_{j=1}^{p} \alpha_{j} g_{j} \equiv 1
$$

Then

$$
\sum_{j=1}^{p} \delta\left(0, g_{\jmath}\right) \leqq p-1
$$

The second lemma is very straightforward, but important for the proof of Theorem 2.

Lemma 2. Let f be a nonconstant meromorphic function. Put

$$
F=f^{\prime \prime} / f-2\left(f^{\prime} / f\right)^{2}
$$

Then

$$
N(r, \infty, F) \leqq 2 N(r, 0, f)+N(r, \infty, f) .
$$

Proof. Let a be a pole of F. Then it is clear that a is a zero or a pole of f.

Case 1. Assume that a is a zero of f with multiplicity $n \geqq 1$. In this case we have

$$
f(z)=g(z)(z-a)^{n}
$$

with a meromorphic function $g(z)$ satisfying $g(a) \neq 0, \infty$. Hence

$$
F(z)=-\frac{n(n+1)}{(z-a)^{2}}-2 \frac{n}{z-a} \frac{g^{\prime}(z)}{g(z)}+\frac{g^{\prime \prime}(z)}{g(z)}-2\left(\frac{g^{\prime}(z)}{g(z)}\right)^{2} .
$$

Case 2. Assume that a is a pole of f with multiplicity $n \geqq 1$. Then we have

$$
f(z)=g(z)(z-a)^{-n}
$$

with a meromorphic function $g(z)$ satisfying $g(a) \neq 0, \infty$. Hence

$$
F(z)=-\frac{n(n-1)}{(z-a)^{2}}+2 \frac{n}{z-a} \frac{g^{\prime}(z)}{g(z)}+\frac{g^{\prime \prime}(z)}{g(z)}-2\left(\frac{g^{\prime}(z)}{g(z)}\right)^{2} .
$$

The above two simple computations combine to show that

$$
N(r, \infty, F) \leqq 2 N(r, 0, f)+N(r, \infty, f) .
$$

The third lemma, which is due to Hiromi and Ozawa [2], plays an important role for the proof of Theorem 3.

Lemma 3. Let $h_{0}, h_{1}, \cdots, h_{m}$ be meromorphic functions and $k_{1}, k_{2}, \cdots, k_{m}$ be entire functions. Suppose that

$$
T\left(r, h_{j}\right)=o\left(\sum_{n=1}^{m} T\left(r, e^{k_{n}}\right)\right) \quad j=0,1, \cdots, m
$$

holds outside a set of finte linear measure. If an identity

$$
\sum_{n=1}^{m} h_{n}(z) e^{k_{n}(z)} \equiv h_{0}(z)
$$

holds, then for surtable constants $\left\{C_{n}\right\}_{1}^{m}$, not all zero,

$$
\sum_{n=1}^{m} C_{n} h_{n}(z) e^{k_{n}(2)} \equiv 0 .
$$

2. Proof of Theorem 2. By assumption, we have

$$
\begin{equation*}
f=e^{\alpha} g, \quad f-1=e^{\beta}(g-1) \tag{2.1}
\end{equation*}
$$

with two entire functions α and β.
(A) Suppose that $e^{\beta} \equiv c(\neq 0)$. If f has at least one zero, (2.1) implies $c=1$, i.e. $f \equiv g$. If f has no zeros and $c \neq 1$, we have

$$
f-c g=1-c \neq 0 .
$$

Put $f_{1}=f^{-1}, g_{1}=g^{-1}$. Then f_{1}, g_{1} are entire functions satisfying

$$
g_{1}=\frac{c f_{1}}{1-(1-c) f_{1}} .
$$

Since g_{1} is an entire function, $1-(1-c) f_{1}=e^{\gamma}$, where γ is entire. Hence

$$
f=f_{1}^{-1}=\frac{1-c}{1-e^{\gamma}} .
$$

Thus

$$
\begin{aligned}
N(r, \infty, f)=N\left(r, 1, e^{r}\right)=(1+o(1)) T\left(r, e^{r}\right)= & (1+o(1))(T(r, f) \\
& (r \notin E, r \rightarrow \infty) .
\end{aligned}
$$

(Here and throughout this paper, the letter E will denote sets of finite linear measure which will not necessarily be the same at each occurrence.)

This is impossible.
(B) Suppose that $e^{\alpha-\beta} \equiv c(\neq 0)$. If $c=1$, we have $f \equiv g$. If $c \neq 1$, (2.1) gives

$$
f=\frac{-c\left(e^{\beta}-1\right)}{c-1}
$$

Thus

$$
\begin{aligned}
N(r, 0, f)=N\left(r, 1, e^{\beta}\right)=(1+o(1)) T\left(r, e^{\beta}\right)= & (1+o(1)) T(r, f) \\
& (r \notin E, r \rightarrow \infty) .
\end{aligned}
$$

This is untenable.
(C) Suppose neither e^{β} nor $e^{\alpha-\beta}$ are constants. In this case, we have from (2.1)

$$
\begin{equation*}
f=\frac{1-e^{\beta}}{1-e^{\beta-\alpha}}, \quad g=\frac{1-e^{\beta}}{1-e^{\beta-\alpha}} e^{-\alpha} \tag{2.2}
\end{equation*}
$$

Now, we use the argument of impossibility of Borel's identity. (cf. [3]) Put $\varphi_{1}=f, \varphi_{2}=-f e^{\beta-\alpha}$ and $\varphi_{3}=e^{\beta}$. Then by (2.2)

$$
\begin{equation*}
\varphi_{1}+\varphi_{2}+\varphi_{3} \equiv 1, \quad \varphi_{1}^{(n)}+\varphi_{2}^{(n)}+\varphi_{3}^{(n)} \equiv 0 \quad(n=1,2) . \tag{2.3}
\end{equation*}
$$

Further put

$$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \tag{2.4}\\
\varphi_{1}^{\prime} / \varphi_{1} & \varphi_{2}^{\prime} / \varphi_{2} & \varphi_{3}^{\prime} / \varphi_{3} \\
\varphi_{1}^{\prime \prime} / \varphi_{1} & \varphi_{2}^{\prime \prime} / \varphi_{2} & \varphi_{3}^{\prime \prime} / \varphi_{3}
\end{array}\right|, \quad \Delta^{\prime}=\left|\begin{array}{cc}
\varphi_{2}^{\prime} / \varphi_{2} & \varphi_{3}^{\prime} / \varphi_{3} \\
\varphi_{2}^{\prime \prime} / \varphi_{2} & \varphi_{3}^{\prime \prime} / \varphi_{3}
\end{array}\right|
$$

Assume first that $\Delta \equiv 0$. Then by (2.3)

$$
0=\left|\begin{array}{lll}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
\varphi_{1}^{\prime} & \varphi_{2}^{\prime} & \varphi_{3}^{\prime} \\
\varphi_{1}^{\prime \prime} & \varphi_{2}^{\prime \prime} & \varphi_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{lll}
\varphi_{1} & \varphi_{2} & 1 \\
\varphi_{1}^{\prime} & \varphi_{2}^{\prime} & 0 \\
\varphi_{1}^{\prime \prime} & \varphi_{2}^{\prime \prime} & 0
\end{array}\right|=\left|\begin{array}{cc}
\varphi_{1}^{\prime} & \varphi_{2}^{\prime} \\
\varphi_{1}^{\prime \prime} & \varphi_{2}^{\prime \prime}
\end{array}\right| .
$$

This implies $\varphi_{2}=C \varphi_{1}+D(C, D$: constants $)$, i. e. $-f e^{\beta-\alpha}=C f+D$. If $C \neq 0$, we have

$$
f=\frac{-D}{C+e^{\beta-\alpha}} .
$$

so that $N(r, \infty, f)=(1+o(1)) T(r, f)(r \notin E, r \rightarrow \infty)$, a contradiction. Hence C must vanish, i.e. $f=-D e^{\alpha-\beta}$. Substituting this into (2.3), we have

$$
-D e^{\alpha-\beta}+e^{\beta}=1-D .
$$

Using Lemma 1, we have $D=1$ and $e^{\beta}=e^{\alpha-\beta}$. It follows from these and (2.2) that $f g \equiv 1$.

Assume next that $\Delta \not \equiv 0$. Then by (2.4) $\varphi_{1}=f=\Delta^{\prime} / \Delta$. Thus

$$
\begin{align*}
m(r, f) & \leqq m\left(r, \Delta^{\prime}\right)+m\left(r, \Delta^{-1}\right) \tag{2.5}\\
& \leqq m\left(r, \Delta^{\prime}\right)+m(r, \Delta)+N(r, \infty, \Delta)+O(1)
\end{align*}
$$

Here we estimate $m\left(r, \Delta^{\prime}\right)$ and $m(r, \Delta)$. By (2.1)

$$
\begin{aligned}
& T\left(r, e^{\beta}\right) \leqq T(r, f)+T(r, g)+O(1) \\
& T\left(r, e^{\beta-\alpha}\right) \leqq T\left(r, e^{\beta}\right)+T\left(r, e^{-\alpha}\right) \\
& \leqq 2 T(r, f)+2 T(r, g)+O(1)
\end{aligned}
$$

By the second fundamental theorem,

$$
\begin{aligned}
(1-o(1)) T(r, g) & \leqq N(r, 0, g)+N(r, 1, g)+N(r, \infty, g) \\
& \leqq N(r, 0, f)+N(r, 1, f)+N(r, \infty, f) \\
& \leqq(3+o(1)) T(r, f) \quad(r \notin E, r \rightarrow \infty) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& T\left(r, \varphi_{3}\right)=T\left(r, e^{\hat{\beta}}\right) \leqq(4+o(1)) T(r, f) \quad(r \notin E, r \rightarrow \infty), \\
& T\left(r, \varphi_{2}\right) \leqq T(r, f)+T\left(r, e^{\beta-a}\right) \leqq(9+o(1)) T(r, f) \quad(r \notin E, r \rightarrow \infty),
\end{aligned}
$$

Therefore

$$
m\left(r, \Delta^{\prime}\right), m(r, \Delta)=O(\log r T(r, f)) \quad(r \in E, r \rightarrow \infty)
$$

Substituting these into (2.5), we have

$$
\begin{equation*}
m(r, f) \leqq N(r, \infty, \Delta)+O(\log r T(r, f)) \quad(r \notin E, r \rightarrow \infty) . \tag{2.6}
\end{equation*}
$$

Also, a direct computation shows that

$$
\begin{aligned}
\Delta= & {\left[f^{\prime \prime} / f-2\left(f^{\prime} / f\right)^{2}\right]\left(\beta^{\prime}-\alpha^{\prime}\right)+\left(f^{\prime} / f\right)\left[\left(\beta^{\prime}\right)^{2}-\left(\alpha^{\prime}\right)^{2}-2\left(\beta^{\prime}-\alpha^{\prime}\right)\right.} \\
& \left.-\left(\beta^{\prime \prime}-\alpha^{\prime \prime}\right)\right]+\beta^{\prime}\left(\beta^{\prime \prime}-\alpha^{\prime \prime}\right)+\beta^{\prime}\left(\beta^{\prime}-\alpha^{\prime}\right)-\left(\beta^{\prime}-\alpha^{\prime}\right)\left[\beta^{\prime \prime}+\left(\beta^{\prime}\right)^{2}\right] .
\end{aligned}
$$

It follows from this and Lemma 2 that

$$
\begin{equation*}
N(r, \infty, \Delta) \leqq 2 N(r, 0, f)+N(r, \infty, f) \tag{2.7}
\end{equation*}
$$

Combining (2.6) and (2.7), we have

$$
T(r, f) \leqq 2[N(r, 0, f)+N(r, \infty, f)]+O(\log r T(r, f)) \quad(r \notin E, r \rightarrow \infty)
$$

Hence,

$$
\varlimsup_{r \rightarrow \infty} N(r, 0, f)+N(r, \infty, f) \frac{}{T(r, f)} \geqq 1 / 2
$$

This is a contradiction.
This completes the proof of Theorem 2
3. Proof of Theorem 3. By assumption we have with two entire functions α and β

$$
\begin{equation*}
f=e^{\alpha} g, \quad f-1=e^{\beta}(g-1) \tag{3.1}
\end{equation*}
$$

We divide our argument into the following five cases.
(A) $\beta(z)$ is a constant. (B) $\alpha(z)-\beta(z)$ is a constant.
(C) $\alpha(z)$ is a constant.
(D) $\beta(z)-a(\beta(z)-\alpha(z))$ is a constant.
(E) None of $\beta(z), \alpha(z)-\beta(z), \alpha(z)$ and $\beta(z)-a(\beta(z)-\alpha(z))$ are constants.
(A) Suppose that $e^{\beta} \equiv c(\neq 0)$. If f has a zero, $c=1$. Hence $f \equiv g$. If f has no zeros and $c \neq 1$, (3.1) implies

$$
\begin{equation*}
f=\frac{1-c}{1-e^{r}}, \quad g=\frac{f-(1-c)}{c} \tag{3.2}
\end{equation*}
$$

where γ is a nonconstant entire function. Assume first that $a=1-c$. In this case, $f=a$ has no roots, so that $E(a, k, g)=0(k \geqq 2)$. By (3.2)

$$
g=\frac{a}{1-a} \cdot \frac{1}{e^{-r}-1} .
$$

Hence, if $a \neq 2, g=a$ has infinitely many simple roots, a contradiction. On the other hand, if $a=2, g=a$ has no roots, and we have from (3.2)

$$
g \equiv 2-f, \quad f=\frac{2}{1-e^{\gamma}} .
$$

Next, assume that $a \neq 1-c$. In this case, $f=a$ has infinitely many simple roots. Hence by (3.2)

$$
a=\frac{a-(1-c)}{c},
$$

which implies $a=1$, a contradiction.
(B) Suppose that $e^{\alpha-\beta} \equiv c(\neq 0)$. If $c=1$, we have $f \equiv g$. If $c \neq 1$, (3.1) gives

$$
\begin{equation*}
g=\frac{f}{(1-c) f+c}, \quad f=\frac{c\left(1-e^{\beta}\right)}{c-1}, \quad g=\frac{e^{-\beta}-1}{c-1} . \tag{3.3}
\end{equation*}
$$

By the same reasoning as in (A), we deduce from (3.3) that $c=-1, a=1 / 2$, and

$$
g \equiv \frac{f}{2 f-1}, \quad f=\frac{1-e^{\beta}}{2} .
$$

(C) Suppose that $e^{\alpha} \equiv c(\neq 0)$. If $c=1$, we have $f \equiv g$. If $c \neq 1$, (3.1) gives

$$
\begin{equation*}
g=\frac{f}{c}, \quad f=\frac{c\left(1-e^{\beta}\right)}{c-e^{\beta}}, \quad g=\frac{1-e^{\beta}}{c-e^{\beta}} . \tag{3.4}
\end{equation*}
$$

By the same reasoning as in (A), we deduce from (3.4) that $c=-1, a=-1$, and

$$
g \equiv-f, \quad f=\frac{1-e^{\beta}}{1+e^{\beta}} .
$$

(D) Suppose that $\beta(z)=a(\beta(z)-\alpha(z))+C$, where C is a constant. By (3.1)

$$
\begin{equation*}
f=\frac{1-e^{\beta}}{1-e^{\gamma}}, \quad g=\frac{1-e^{\beta}}{1-e^{\gamma}} e^{\gamma-\beta}=\frac{1-e^{-\beta}}{1-e^{-\gamma}}, \tag{3.5}
\end{equation*}
$$

where $\gamma \equiv \beta-\alpha$.
Assume first that there exists a sequence $\left\{w_{n}\right\}$ satisfying

$$
\begin{equation*}
f\left(w_{n}\right)=a, \quad e^{\gamma\left(w_{n}\right) \neq 1} . \tag{3.6}
\end{equation*}
$$

Let w be an element of $\left\{w_{n}\right\}$. Clearly

$$
\begin{equation*}
e^{\beta(w)} \neq 1, \quad e^{\beta(w)} \neq e^{\gamma(w)} . \tag{3.7}
\end{equation*}
$$

By (3.5), (3.6) and (3.7), $g(w) \neq a$. Hence, by assumption, w is a zero of $f-a$ with multiplicity $\geqq k+1(\geqq 3)$. Then an elementary calculation shows that

$$
\gamma^{\prime}(w)=\gamma^{\prime \prime}(w)=\cdots=\gamma^{(k)}(w)=0 .
$$

Here, we show that

$$
\begin{equation*}
\#\left\{\gamma\left(w_{n}\right)\right\}=1 . \tag{3.8}
\end{equation*}
$$

If the set $\left\{\gamma\left(w_{n}\right)\right\}$ contains γ_{1} and $\gamma_{2}\left(\gamma_{1} \neq \gamma_{2}\right)$, all the roots of $\gamma(z)=\gamma_{,}(j=1,2)$ satisfy $f(z)=a, e^{r(z)} \neq 1$. Then the above reasoning shows that $\gamma^{(i)}(z)=0, i=$ $1,2, \cdots, k$. Hence

$$
\Theta\left(\gamma_{j}, \gamma\right)=1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \gamma_{j}, \gamma\right)}{T(r, \gamma)} \geqq \frac{k}{k+1} \quad(j=1,2),
$$

and so

$$
\sum_{c} \Theta(c, \gamma) \geqq \Theta\left(\gamma_{1}, \gamma\right)+\Theta\left(\gamma_{2}, \gamma\right)+\Theta(\infty, \gamma)>2
$$

This is a contradiction. Thus (3.8) holds.
Let $\left\{z_{n}\right\}$ be the sequence satisfying

$$
\begin{equation*}
e^{\gamma\left(z_{n}\right)}=e^{\beta\left(z_{n}\right)}=1 . \tag{3.9}
\end{equation*}
$$

We claim here that

$$
\begin{equation*}
\#\left\{\gamma\left(z_{n}\right)\right\} \leqq 1 . \tag{3.10}
\end{equation*}
$$

If $\gamma_{1}, \gamma_{2}\left(\gamma_{1} \neq \gamma_{2}\right) \in\left\{\gamma\left(z_{n}\right)\right\}$, then by (3.9)

$$
\gamma_{j}=2 l_{j} \pi \imath, \quad a \gamma_{j}+C=2 s_{j} \pi \imath \quad(\jmath=1,2),
$$

where $l_{1}, l_{2}, s_{1}, s_{2}$ are integers such that $l_{1} \neq l_{2}, s_{1} \neq s_{2}$. Hence

$$
a=\frac{s_{1}-s_{2}}{l_{1}-l_{2}}
$$

is a rational number. $\operatorname{By}(3.8)\left\{\gamma\left(w_{n}\right)\right\}=\left\{\delta_{1}\right\}$, where δ_{1} is a complex number. Since $\gamma(z)$ is a nonconstant entire function, $\gamma(z)$ omits at most one finite value. Hence $\gamma(z)=\delta_{1}+2\left(l_{1}-l_{2}\right) \pi i$ or $\gamma(z)=\delta_{1}-2\left(l_{1}-l_{2}\right) \pi \imath$ has roots. This implies that $\delta_{1}+2\left(l_{1}-l_{2}\right) \pi \imath \in\left\{\gamma\left(w_{n}\right)\right\}$ or $\delta_{1}-2\left(l_{1}-l_{2}\right) \pi \imath \in\left\{\gamma\left(w_{n}\right)\right\}$. This is a contradiction.

Now, consider the function

$$
\begin{equation*}
F(z) \equiv 1-a-e^{\beta}+a e^{r}=(f-a)\left(1-e^{r}\right) . \tag{3.11}
\end{equation*}
$$

By the second fundamental theorem

$$
\begin{aligned}
N(r, 1-a, F) \leqq & T(r, F) \leqq N(r, 0, F)+N(r, \infty, F)+N(r, 1-a, F)-N\left(r, 0, F^{\prime}\right) \\
& +o(T(r, F))=N(r, 0, F)+N\left(r, a, e^{\beta-r}\right)-N\left(r, 0, e^{\beta-r}-1\right) \\
& +o(T(r, F))=N(r, 0, F)+o\left(T\left(r, e^{\beta-r}\right)\right)+o(T(r, F)) \\
& (r \notin E, r \rightarrow \infty) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
N(r, 0, F) \geqq(1-o(1)) T(r, F) \geqq(1-o(1)) T\left(r, e^{\beta-r}\right) \quad(r \notin E, r \rightarrow \infty) \tag{3.12}
\end{equation*}
$$

Let $\left\{x_{n}\right\}$ be the roots of $F(z)=0$ with multiplicity $\geqq 3$. Then x_{n} is a root of $F^{\prime}(z)=e^{r}\left\{a \gamma^{\prime}-\beta^{\prime} e^{\beta-r}\right\}=\beta^{\prime} e^{r}\left\{1-e^{\beta-r}\right\}=0$ with multiplicity $\geqq 2$. Applying the second fundamental theorem to $G=\beta^{\prime}\left(1-e^{\beta-r}\right)$, we have

$$
\begin{aligned}
(1+o(1)) T(r, G) & \leqq \bar{N}(r, 0, G)+\bar{N}(r, \infty, G)+\bar{N}\left(r, 0, \beta^{\prime} e^{\beta-r}\right) \\
& =\bar{N}(r, 0, G)+o\left(T\left(r, e^{\beta-r}\right)\right) \\
& =\bar{N}(r, 0, G)+o(T(r, G)) \quad(r \notin E, r \rightarrow \infty),
\end{aligned}
$$

which implies

$$
T(r, G)=(1+o(1)) N(r, 0, G)=(1+o(1)) \bar{N}(r, 0, G) \quad(r \notin E, r \rightarrow \infty) .
$$

Hence

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{N_{1}(r, 0, G)}{N(r, 0, F)}=\lim _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{N_{1}(r, 0, G)}{T\left(r, e^{\beta-r)}\right.}=\lim _{\substack{r \rightarrow \infty \\ r \rightarrow E}} \frac{N_{1}(r, 0, G)}{T(r, G)}=0 . \tag{3.13}
\end{equation*}
$$

Combining (3.12) and (3.13), we have

$$
\begin{array}{r}
\bar{N}(r, 0, F) \geqq \frac{1}{2}\left\{N(r, 0, F)-N_{1}(r, 0, G)\right\}=(1 / 2-o(1)) T\left(r, e^{\beta-r}\right) \tag{3.14}\\
(r \notin E, r \rightarrow \infty) .
\end{array}
$$

Further, we claim that

$$
\begin{equation*}
\{z: F(z)=0\}=\left\{w_{n}\right\} \cup\left\{z_{n}\right\} . \tag{3.15}
\end{equation*}
$$

By (3.6) and (3.11) $F\left(w_{n}\right)=0$. By (3.9) and (3.11) $F\left(z_{n}\right)=0$. Hence $\left\{w_{n}\right\} \cup\left\{z_{n}\right\} \subset$ $\{z: F(z)=0\}$. Conversely, assume that $F(z)=0$. If $e^{\gamma(z)} \neq 1$, then $f(z)=a$, i. e. $z \in\left\{w_{n}\right\}$. If $e^{\gamma(z)}=1$, then $e^{\beta(2)}=1$, i. e. $z \in\left\{z_{n}\right\}$. Hence $\{z: F(z)=0\} \subset\left\{w_{n}\right\} \cup\left\{z_{n}\right\}$.

Now, by (3.8) and (3.10)

$$
\begin{equation*}
N\left(r,\left\{w_{n}\right\}\right)+N\left(r,\left\{z_{n}\right\}\right) \leqq 2 T(r, \gamma)=o\left(T\left(r, e^{\beta-r}\right)\right) \quad(r \notin E, r \rightarrow \infty) . \tag{3.16}
\end{equation*}
$$

On the other hand, by (3.15) and (3.14)

$$
N\left(r,\left\{w_{n}\right\}\right)+N\left(r,\left\{z_{n}\right\}\right)=\bar{N}(r, 0, F) \geqq(1 / 2-o(1)) T\left(r, e^{\beta-r}\right) \quad(r \notin E, r \rightarrow \infty),
$$

which contradicts (3.16). This implies that if $f(w)=a$, then $e^{r(w)}=1$. Then by (3.11) $e^{\beta(w)}=1$, hence by $(3.5) g(w)=a$.

Now, we show that $f=a$ has at least one root. If not, by (3.11) $F(w)=0$ implies $e^{\gamma(w)}=e^{\beta(w)}=1$, so that $F^{\prime}(w)=\beta^{\prime}(w)\left(e^{\gamma(w)}-e^{\beta(w)}\right)=0$. Hence all the zeros of $F(z)$ has multiplicities $\geqq 2$. Thus by (3.11) and (3.14)

$$
\begin{array}{r}
N\left(r, 0, r^{\prime}\right) \geqq N_{1}\left(r, 1, e^{r}\right) \geqq N_{1}(r, 0, F) \geqq \bar{N}(r, 0, F) \geqq(1 / 2-o(1)) T\left(r, e^{\left.\beta-r^{\prime}\right)}\right. \\
(r \notin E, r \rightarrow \infty) .
\end{array}
$$

This is impossible.
It the same way, we conclude that $g=a$ has at least one root, and if $g=a$, then $e^{-\gamma(w)}=1$, so that by (3.5) $e^{-\beta(w)}=1, f(w)=a$. Therefore $E(a, \infty, f)=$ $E(a, \infty, g) \neq \emptyset$. In this case, by a result of Gundersen [1, Theorem 1],

$$
g=S(f),
$$

where S is a linear transformation which fixes a, a_{1} and permutes a_{2}, a_{3}, and the cross ratio $\left(a_{2}, a_{3}, a, a_{1}\right)=-1$, where $\left\{a_{1}, a_{2}, a_{3}\right\}=\{0,1, \infty\}$. From this we obtain one of the following three relations:

$$
g \equiv 1-f \quad\left(a=1 / 2, a_{1}=\infty\right),
$$

$$
g \equiv f^{-1} \quad\left(a=-1, a_{1}=1\right)
$$

or

$$
g \equiv f /(f-1) \quad\left(a=2, a_{1}=0\right) .
$$

(E) Suppose that $\beta, \alpha-\beta, \alpha, \beta-a \gamma \not \equiv$ constant, where $\gamma \equiv \beta-\alpha$. Consider the function $F(z)$ (defined by (3.11)) and its logarithmic derivative $H(z)$:

$$
\begin{equation*}
H(z)=\frac{F^{\prime}(z)}{F(z)} \tag{3.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
T(r, H)=o(T(r, F))+\bar{N}(r, 0, F) \quad(r \in E, r \rightarrow \infty) . \tag{3.18}
\end{equation*}
$$

By (3.11) $F(w)=0$ implies (i) $f(w)=a, e^{r(w)} \neq 1$ or (ii) $e^{r(w)}=e^{\beta(w)}=1$. First, consider the case (i). In this case, $g(w) \neq a$, so that w is a zero of $F(z)$ with multiplicity $\geqq k+1 \geqq 3$. Then w is a zero of $G(z) \equiv a \gamma^{\prime}-\beta^{\prime} e^{\beta-\gamma}$ with multiplicity $\geqq k \geqq 2$. Hence, by the second fundamental theorem

$$
\begin{equation*}
N(r,\{w\}) \leqq N_{1}(r, 0, G)=o\left(T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right)\right) \quad(r \oplus E, r \rightarrow \infty) . \tag{3.19}
\end{equation*}
$$

Next, consider the case (ii). In this case, $f(w)=g(w)$. In particular we note that $e^{\gamma(w)}=e^{\beta(w)}=1$ and $f(w)=g(w)=0,1, \infty, a$ imply $\beta^{\prime}(w)=0, \alpha^{\prime}(w)=0, \gamma^{\prime}(w)=0$, $\beta^{\prime}(w)-a \gamma^{\prime}(w)=0$, respectively. Hence by (3.18), (3.19) and (3.11)

$$
\begin{align*}
T(r, H)= & o\left(T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right)\right)+\bar{N}\left(r, 0, \beta^{\prime}-a \gamma^{\prime}\right)+\bar{N}\left(r, 0, \beta^{\prime}\right) \tag{3.20}\\
& +\bar{N}\left(r, 0, \alpha^{\prime}\right)+\bar{N}\left(r, 0, \gamma^{\prime}\right)+N_{2}(r, 0, f-g),
\end{align*}
$$

where N_{2} counts only those points of N where $f(z)=g(z) \neq 0,1, \infty, a$.
Here we estimate $N_{2}(r, 0, f-g)$. By the second fundamental theorem

$$
\begin{array}{r}
2 T(r, f) \leqq \bar{N}(r, 0, f)+\bar{N}(r, 1, f)+\bar{N}(r, \infty, f)+\bar{N}(r, a, f)+o(T(r, f)) \tag{3.21}\\
(r \notin E, r \rightarrow \infty),
\end{array}
$$

and similarly for g. Let $N(r, a ; f, g)$ denote the counting function of the number of common roots of $f=a$ and $g=a$. Then by (3.21) and (3.19)

$$
\begin{aligned}
& N_{2}(r, 0, f-g)+\bar{N}(r, 0, f)+\bar{N}(r, 1, f)+\bar{N}(r, \infty, f)+N(r, a ; f, g) \\
& \leqq N(r, 0, f-g) \leqq T(r, f-g) \leqq T(r, f)+T(r, g) \leqq \bar{N}(r, 0, f) \\
& \quad+\bar{N}(r, 1, f)+\bar{N}(r, \infty, f)+\bar{N}(r, a ; f, g)+o\left(T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right)\right) \\
& \quad+o(T(r, f)+T(r, g)) \quad(r \notin E, r \rightarrow \infty), \quad \text { i. e. }
\end{aligned}
$$

$$
\begin{equation*}
N_{2}(r, 0, f-g)=o\left(T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right)\right) \quad(r \notin E, r \rightarrow \infty) \tag{3.22}
\end{equation*}
$$

Substituting (3.22) into (3.20), we have

$$
\begin{equation*}
T(r, H)=o\left(T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right)\right) \quad(r \notin E, r \rightarrow \infty) \tag{3.23}
\end{equation*}
$$

Now, by (3.11) and (3.17)

$$
\begin{equation*}
\left(\beta^{\prime}-H\right) e^{\beta}+a\left(H-\gamma^{\prime}\right) e^{\gamma}=(a-1) H . \tag{3.24}
\end{equation*}
$$

Case 1. Assume that $\beta^{\prime} \equiv H$. In this case $F(z)=D e^{\beta}$, where D is a non-zero constant. Hence by (3.11)

$$
(D+1) e^{\beta}-a e^{r}=1-a \neq 0 .
$$

Using Lemma 1 , we have $D+1=0$. Then $e^{r} \equiv(a-1) / a$, a contradiction.
Case 2. Assume that $H \equiv \gamma^{\prime}$. In this case $F(z)=D e^{\gamma}$, where D is a non-zero constant. Hence by (3.9)

$$
e^{\beta}+(D-a) e^{\gamma}=1-a \neq 0 .
$$

Using Lemma 1 , we have $D-a=0$. Then $e^{\beta} \equiv 1-a$, a contradiction.
Case 3. Assume that $\beta^{\prime}-H \not \equiv 0$ and $H-\gamma^{\prime} \not \equiv 0$. In this case, we use Lemma 3. Noting (3.23), we have from (3.24)

$$
\begin{equation*}
C_{1}\left(\beta^{\prime}-H\right) e^{\beta}+C_{2}\left(H-\gamma^{\prime}\right) e^{\gamma} \equiv 0, \tag{3.25}
\end{equation*}
$$

where C_{1}, C_{2} are non-zero constants. Hence

$$
e^{\beta}=\frac{C_{2}}{C_{2}-a C_{1}}-\frac{(a-1) H}{\beta^{\prime}-H}, \quad e^{\gamma}=\frac{C_{1}}{a C_{1}-C_{2}} \frac{(a-1) H}{H-\gamma^{\prime}} .
$$

Therefore by (3.23)

$$
\begin{array}{r}
T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right) \leqq 4 T(r, H)+T\left(r, \beta^{\prime}\right)+T\left(r, \gamma^{\prime}\right)+O(1)=o\left(T\left(r, e^{\beta}\right)+T\left(r, e^{r}\right)\right) \\
(r \notin E, r \rightarrow \infty),
\end{array}
$$

a contradiction.
This completes the proof of Theorem 3.

References

[1] G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc., 20 (1979), 457-466.
[2] G. Hiromi and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptic surfaces, Kōdai Math. Sem. Rep. 17 (1965), 281-306.
[3] R. Nevanlinna, Le théorème de Picard-Borel et la théorìe des fonctions meromorphes, Paris, Gauthier-Villars (1929).
[4] K. Nino and M. Ozawa, Deficiencies of an entire algebroid function, Kōdai Math. Sem. Rep. 22 (1970), 98-113.
[5] M. Ozawa, Unicity theorems for entire functions, J. Analyse Math. Vol. 30 (1976), 411-420.
[6] H. Ueda, Unicity theorems for entire functions, Kodai Math. J. Vol. 3 (1980), 212-223.
[7] H. Ueda, Unicity theorems for meromorphic or entire functions, ibid. Vol. 3 (1980), 457-471.

Department of Mathematics
Daido Institute of Technology
Daido-cho, Minami,ku, Nagoya, Jayan

