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ROTATIONALLY INVARIANT CYLINDRICAL MEASURES I

BY MICHIE MAEDA

§ 0. Introduction.

Since Gross [4, 1962] introduced the concept of measurable norm, it has
been extensively studied by many researchers (see for example [3, 4, 5, 6, 7]).

In a real separable Hubert space H there is a finitely additive cylindrical
measure γ, say the canonical Gaussian cylindrical measure, which is analogous
to the normal distribution in the finite dimensional case. Gross [5] showed that
if H is completed with respect to any of his measurable semi-norms, as defined
in [4], then γ gives rise to a countably additive Borel measure on the Banach
space obtained from H by means of the semi-norm. Dudley [2] showed that if
the polar of the closed unit semi-ball is a compact GC-set, then the semi-norm
is measurable in Gross' sense. Furthermore, using Dudley's result just above
mentioned, Dudley-Feldman-Le Cam [3] proved the converse of Gross' result.

Here we shall generalize the above result for the rotationally invariant
cylindrical measures. There are some inequalities for Gaussian cylindrical
measures, known from Gross [4], which play an important role in the present
circle of ideas. In this paper we shall begin to prove the similar inequalities
concerning rotationally invariant cylindrical measures instead of Gaussian cylin-
drical measures.

On the other hand, Dudley-Feldman-Le Cam [3] introduced another measur-
ability for semi-norms. They denoted Gross' definition by "measurable by pro-
jections" and the latter by "measurable". We shall use their expression. Badrikian-
Chevet [1] have offered the problem whether these two concepts of measurability
coincide exactly with each other. Our result will answer partially this problem.

Finally we add that this report contains [9] and improves the main result.

§ 1. Cylindrical measures.

Let E be a real separable Banach space, E* its topological dual and J@(E)
the Borel σ-algebra of E. We use ( , •) to denote the natural pairing between
£ * and E.

D E F I N I T I O N 1. Let {ξu ••• , ξn} be a finite system of elements of £ * . Then
by B we denote the operator : x<=E^{{ξu x), ••• , {ζn, x))^Rn. A set ZdE is
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ROTATIONALLY INVARIANT CYLINDRICAL MEASURES I 15

said to be a cylindrical set if there are ξu ••• , ζn^E* and B^B{Rn) such that
Z—B~\B), Let CE denote the collection of all cylindrical sets of E.

DEFINITION 2. A map μ from the algebra of all cylindrical sets into [0, 1]
is called a cylindrical measure if it satisfies the two following conditions:

(1) μ{E) = l;
(2) Restrict μ to the σ-algebra of cylindrical sets which are generated by

a fixed finite system in £*. Then each such restriction is countably additive.

Let H be a real separable Hubert space with an inner product < , •> and

the induced norm | | = V < , •>.

DEFINITION 3. The Gaussian cylindrical measure γι on H with parameter
t^R is the cylindrical measure defined as follows:

KC) = W2πt)n[ exp(-\x\2/2t2)dx
JD

for C= {x^H: Px^D), where P is a finite dimensional orthogonal projection
of H, n=dim PH, D<=<B(PH) and dx is the Lebesgue measure on PH. Especially,
γ1 is called the canonical Gaussian cylindrical measure and simply denoted by γ.

DEFINITION 4. Let μ be a cylindrical measure on H. If μ(C)=μ(u(C)) for
C^CH and unitary operator u of H, μ is called a rotahonally invariant cylindrical
measure.

Obviously γι is rotationally invariant, but it is not necessarily countably
additive on (H, CH).

Let (Ω, m) be a probability measure space, and L°(Ω, m R) be the linear space
of all real valued random variables. Given any cylindrical measure μ on E,
there exist a probability measure space (Ω, m) and a linear map A: £*->
L\Ω, m R) such that μ o f - i = m o (/l(f))"1 for every f e E * . We call Λt the
random function associated with μ. Conversely, for any linear random function
A: E*—>L°(Ω, m; R), there exists uniquely a cylindrical measure μ on E satis-
fying that μoξ-1 = mo(Λ(ξ))-1 for every ξ^E*.

Let X\Ω> m; R) be the family of all m-measurable real valued functions,
and φ be the canonical map of X°(Ω, m R) into L°(Ω, m R). We call a subset
DcE* a continuity set of Λ if there exists a map Λ: E*-+£\Ω, m; R) such
that y ί=^o^ and a map I G D ^ ( I , ω)eJ? is continuous for all ω(=Ω\N, where
N is an m-null set. A subset ^4cL°(β, m; R) is said to be bounded in L° if
there exists g^L°(Ω,m;R) such that | / | ^ # for all / G A A subset DaE*
is called a bounded set of Λl if the set {A(x)\ X G D } is bounded in L° (cf. [1]).

Given a cylindrical measure μ on H, there exists a linear random function
A associated with μ. A subset DdH is said to be a μ-continuity set (resp. a
μ-bounded set) if D is a continuity set (resp. a bounded set) of A. Usually a
^-continuity set is called a GC-set and a ^-bounded set is called a GB-set.
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§ 2. Two measurabilities of semi-norms and main results.

First of all, we shall present two definitions of measurability which are

interpreted in the introduction.

Let H be a real separable Hubert space, FD(H) the family of all finite

dimensional subspaces of H, μ a cylindrical measure on H and p(-) be a con-

tinuous semi-norm on H.

DEFINITION 5([4]). We say that p(-) is μ-measurable by projections if for

every ε>0, there exists G^FD(H) such that μ(Nεr\FJ

ΓF
1)^l — ε whenever

FΪΞFD(H) and F I G , where N6={x^H: p(x)<ε} and F 1 is the orthogonal

complement of F.

DEFINITION β([3]). A continuous semi-norm p(-) is said to be μ-measurable

if for every ε>0, there exists G^FD(H) such that μ(PF(Ne)+F±)'^l — ε when-

ever FΪΞFD(H) and F [ G, where PF is the orthogonal projection of H onto F.

If p(') is μ-measurable by projections, then it is //-measurable. However,

the converse is still open. Dudley-Feldman-Le Cam showed in [3] that the

above two measurabilities are equivalent with respect to γ.

T H E O R E M A. Let p(-) be a continuous semi-norm on H, E be the Banach

space obtained from H by means of p(-) and i be the canonical map of H into E.

The following statements are equivalent

(1) p{ ) is γ-measurable

(2) y°rλ is count ably additive on (F, CE);

(3) The polar of the closed unit semi-ball of p is a compact GC-set

(4) p( ) is γ-measurable by projections.

The conditions (1) and (2) in Theorem A are equivalent for every cylindrical

measure as well as γ.

The purpose of this paper is a generalization of Theorem A. Here we shall

present the main theorem.

T H E O R E M 1. Let H be a real separable Hilbert space, μ be a rotatiυnally

invariant cylindrical measure on H not δQ, and p(-) be a continuous semi-norm

on H. E is the induced Banach space from p( ) and H, and i is the canonical

map from H into E. The following statements are equivalent.

(1) p(') is μ-measurable;

(2) μ°rι is countably additive on (F, CE);

(3) The polar of the set { x ε ί ί : p(x)^l} ts a compact μ-continuity set;

(4) p(') is μ-measurable by projections.

The essential part of this theorem is (3)=>(4). Therefore, we had better
prove the following theorem before Theorem 1.
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Let C be a subset of H. We denote C° the polar of C and pc°{x)
= inf{p>0: x^pC0} for XEΞH.

THEOREM 2. Lei μ be a rotationally invariant cylindrical measure on H and
C be a compact convex balanced subset of H. If C is a μ-continuity set, then the
semi-norm pc° is μ-measurable by projections.

Remark. It is easy to see that pCo is continuous.

We need several lemmas and propositions for the proof of the above two
theorems. They will be shown in successive sections.

§3. Gross' inequalities and rotationally invariant cylindrical measures.

In [4], Gross showed several inequalities for the canonical Gaussian cylin-
drical measure. These facts are basic to some results of Dudley [2] as well as
[4]. In this section we shall show the generalization of these facts for rotation-
ally invariant cylindrical measures. It will be an important tool in the proof of
Theorems 1 and 2.

We present the theorem concerning the characterization of rotationally
invariant cylindrical measures (cf. [1] and [10]).

Let γn be the canonical Gaussian measure on Rn and mn be the Lebesgue
measure on Rn. We denote by | \n the usual norm on Rn. Let {ξ1} •••, ξn}
be a finite system of H and B be the operator χeϋΓ->«?i, x>, •••, <£Λ, x})^Rn.
Put μξl...ξn(B)=μ(8-1(B)) for B<Ξ${Rn).

THEOREM B([10]). Suppose that H is an infinite dimensional real separable
Hubert space. Let μ be a rotationally invariant cylindrical measure on H. Then
there exists a Borel probability measure σμ on [0, oo) such that

δo(A)

for every A<^£B{Rn) and every finite orthonormal system {eu •••, en} of H.

Now we start with the following lemma.

LEMMA 1. Under the hypothesis of Theorem B, there exists a non-negative
function Φ(r) defined on [0, oo) such that

μev..en(A)^Φ(r)mn(Ar\Sr)dr+σμ({O})d(,(A),
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where Sr={x<=Rn: \x\nSr).

Proof. Define φ(t, r) and ψ(r) by

φ(t, r)=(V2π tYn exp (-r2/2t2) and φ(r)=^ Qφ(t, r)dσμ(t).

For every aε[0, oo),

^oφ(t, a)dσμ{t)

Let <P(r)=f - - ^ - - r - d σ > ( f ) . Then by Theorem B
Jί>o dr ^

Thus we have the desirable result. •
Let us denote by || || the operator norm.

LEMMA 2. Suppose the hypothesis of Theorem B as ever. Let u be a linear
symmetric invertible operator of Rn onto Rn and C be a closed convex balanced
set in R\ If I l i r i ^ l then μtv..tn{u{C))^μtv..eJP).

Proof. Clearly, when we want to show the above inequality we can neglect
the second part of the representation of μer. en which has been obtained in the
previous lemma. In [4], Gross proved that mn(u(C)r\Sr)^mn(Cr\Sr) for all
r>0. Therefore, by Lemma 1 we have μev..en(u(C))'^μev..en(C). D

Successive two lemmas will be deduced from Lemma 2, then their proofs
will have the same processes as the case of the canonical Gaussian cylindrical
measure.

LEMMA 3. Let E be an n-dimensional Hilbert space, where n is a natural
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number, and σ be a Borel probability measure on [0, oo). Let μ be a probability
measure on E defined by

for every Λ^ &{E), where \-\E denotes the norm of E and m the Lebesgue
measure on E. Let Ex be a linear subspace of E and C be a closed convex
balanced subset of E. Then μ{C)^μ{Cr\E1+E\).

Remark. It is clear that μ is rotationally invariant.

Proof. We can assume that E^E. Let P be the orthogonal projection of
E onto Eλ and / be the identity operator of E. Define PL—l—P and
Tk=lkP1+P for every integer k>l. Then Tk is the linear symmetric invertible
operator of E. Clearly we have | |7V| |<1. Let fe}ί=il2)...in be an orthonormal
basis of E. Then the mapping

n

X = Σ Xiβi ' • (Xl, '•• , Xn)
11 = 1

defines an isomorphism from E onto Rn. Thus Lemma 2 says that μ(Tk(C))
for every integer k>l. By Fatou's lemma, we have μ(lim sup Tk(C))

k ° °

On the other hand, P-1(C)=P-1(CrΛE1)={Cr\E1+Ei}. Then in order
to complete the proof we only have to show that P~1(C)Z)limsup Tk(C), i.e.,

E\P-\C)cXιm\ntTk(E\C). To see this, take any x^E\P-\C). Then there

exists a number ε>0 such that S£+PxdE\C where S ε= {x^E: [ x\E<ε}.
Choose an integer k such that k>\PLx\E/ε. So Tj;1x=Px+(l/k)P1x^Px
+SεdE\C. Hence we have x elim inf Tk(E\C) and E\P-\C)Cllim inf Tk(E\C).

Remark. Given any Borel probability measure σ on [0, oo), there exists a
rotationally invariant cylindrical measure μ on a Hubert space H satisfying the
relation (*) in Theorem B. At this time we call μ the rotationally invariant
cylindrical measure induced by σ. Especially if H is infinite dimensional, the
above correspondence between σ and μ is a bijection.

LEMMA 4. Let H be a real separable Hubert space, σ be a Borel probability
measure on [0, oo) and μ be the rotahonally invariant cylindrical measure induced
by σ on H. Let u be a continuous linear operator of H, Co be a closed convex
balanced set of some finite dimensional subspace of H and C be the cylindrical set
with the base Co.

// | |M | |g l, then μ{u-\C))^μ{C).



20 M. MAEDA

Proof. (I) Suppose that H is a finite dimensional Hubert space and u is a
bijection. We can decompose u as u—I^uu where / is a linear isometric
operator on H and MJ is a linear symmetric invertible operator of H such that
||M|| = ]|MJI. Since H u J ^ l , we have

Hence the proof is complete in this case.
(II) Consider next the case that H is same as (I) and u is a general form.

Let UΓ1=(M"1(0))-L and K2=u(H). Let PKl be the orthogonal projection of H
onto K1 and v be the linear bijection from Kλ onto K2. It is easy to see that
v°PKl(x)=u(x) for all XCΞH and that H ^ l . Let μKχ be the rotationally
invariant cylindrical measure on the Hubert space Kx induced by σ, for i — l, 2.
We have

Since Cr\K2 is a closed convex balanced subset of K2, we can apply the con-
sequence of (I). Then

μKl(v
Therefore

Hence Lemma 3 says the desired conclusion.
(Ill) Now consider the case that H is infinite dimensional. C is a cylin-

drical set, then there exists a finite dimensional subspace N of H such that
CodN and Pjί

1(C0)=C, where PN is the orthogonal projection of H onto N. It
is clear that

\\PN°u\\^l and μ(u-\Q)=μ(u-1(P-ΛC0)))=μ((PNoU)-1(C0)).

Apply (II), then we have μ((PN ° M ) " 1 ^ ) ) ^ / / ^ ^ ) , where μ^ is the rotationally
invariant cylindrical measure on iV induced by σ. Since μN(C0)=μ(C), we have

D

§ 4. The equivalency of two measurabilities with respect to rotationally
invariant cylindrical measures.

In this section, we shall complete the proof of Theorems 1 and 2. Notice
that we identify i/* and H. Let us begin with the following lemma.

Let //be a cylindrical measure on H, Λ: H->L°(Ω, m; R) be the linear
random function associated with μ and yl[τ4]= sup |yl(%*)| for every subset A

of H. Let us denote by |||5||| the cardinal number of S.

LEMMA 5. For every ίΞ>0,
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: SczA,

Proof. Let 5 be a finite subset of A. Since A is the associated random
function with μ, we have μ{tS°)—m{Λ[_S~]^t) for every ί^O. Hence we have
the consequence. D

LEMMA 6. (I) Let u* be a continuous linear operator of H into H such that
| | M * | | ^ 1 . For every t^O and every subset AdH, we have m(Λ[_A~]ίkt)ίkm{Λ[_u*{A)~]

(II) Let Qu Q2 be two orthogonal projections of H such that Q1(H)dQ2(H).
For every ε^O and every subset B(ZH, we have m{Λ[_Q1{B)~]>ε)^m(Λ[_Q2(B)~]>e).

Proof. (I) By virtue of Lemma 5, we can (and do) suppose that A is finite.
Let u be the adjoint of w*. Lemma 4 says that μ{tA°)^μ{u~\tA°)). Therefore,

(II) In order to apply (I) we take u*=Qu A=Q2(B) and t=ε. Then

Thus m(/i[ρ i(5)]>ε)^m(/ί[(?2(i3)]>ε). D

LEMMA 7. Let I be a directed set, {πc}ι(Ξl be a directed family of orthogonal
projections of H such that {Kc(x*)}eei converges to x* for each x*^H, and B
be a closed convex balanced subset of H. Then
for every t>0.

Proof. It follows from Lemma 6 that

m(Λ[J3]^ί)^lfrn inf m(Λ[
c

Then it is sufficient to show that

lim sup

Now we notice that every rotationally invariant cylindrical measure is of type
0, i.e., the associated linear random function A is continuous from H into L°
equipped with the topology of convergence in probability. Thus {Λ\_πt(x*)~\} C(ΞI

converges to A(x*) in L° for each x*^H. It is also obvious that {Λ[πe(S)J\e<=i
converges to -4[5] in L° for each finite subset 5 of B. Then

lim sup
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Since m(Λlπe(B)l^t)^m(Atπe(S)']^:t\ lim sup m(Λίπe(B)2^t)^m(ΛlS2^t) for
e

every 5. Using Lemma 5 we have \\m$\λvm(Λ[_πt(B)^^t)ikrn(Λ[_B~]^t). D
c

LEMMA 8. Let B be a closed convex balanced subset of H, then the following
statements are equivalent.

(1) Given any ε>0, there exists a subspace Kε^FD(H) such that
m(A[_πL(B)~]>ε)<ε whenever L^FD(H) and L 1 Kε, where πL is the orthogonal
projection of H onto L.

(2) Given any ε>0, there exists a subspace K£^FD{H) such that

Proof. It is clear that πκf(H)Z)πL(H). So it follows from Lemma 6 that

Thus we have only to show that (1) implies (2). Let {M?}n=1(2)... be a chain of
increasing finite dimensional subspaces of H such that [JMΐ is dense in H and

n

Γ\M?ZDKC. Using Lemma 7, we have

= lim m{A\_πM

n

ε

By (1), m(/![;r j¥r>n/^(β)]>ε)<ε and this implies that m(AtπMnnκχ(B)Ί^ε)>l—ε.

Therefore we have 7n(Atπκ±(B)]^ε)^l — ε and so m(Λ[τrA^(β)]>ε)ge. Thus

we have (2). D

LEMMA 9. Let v be a cylindrical measure {not only rotationally invariant)
on H, {(Ω\ nι')\ A'} be the pair of a probability measure space and a random
function associated with v and B be a closed convex balanced bounded subset of
H. Then the following two conditions are equivalent.

(1) The semi-norm pBo is v-measurable by projections.
(2) Given any ε>0, there exists a subspace KZ^FD(H) such that

<ε whenever LEΞFD(H) and L [ Kε.

Proof. It is easy to see that m/(A/ίπL(B)']^ε)=v(πl1(εBo)) = v(ε
Also we have {X(ΞH: pBo(x)<ε}(ZεB0 = {χ(ΞH: pBo(x)^ε}. Thus the desired
conclusion follows immediately. D

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Let ΰ be a countable dense subset of C. The
assumption that C is a ^-continuity set implies the existence of the version
λ(x, ω) of A (i.e., Λ=φ°λ, where φ is the canonical map of J7° into L°) which
is continuous on C for almost all ω^Ω. It follows from the compactness of C
that

( 0 Π {ω\ \λ(x-y,ω)\S-ε}) =
\ k = l {x,y)&Dy-D /

m
Ύx'-yTil/k

for all ε>0. This implies that for any ε>0 there exists a positive number δ
such that

«ω: sup \λ{x — y, ώ)\
(x,y)(ΞD^D

[x-y\<δ

Since /) is relatively compact in H, we have a subspace F^FD(H) such that
sup ( inf I x—y \)<δ. Let TΓ be an orthogonal projection onto F, I be the identity
xGD y(ΞFf)D

operator of H and πλ=I—π. It follows from Lemma 6 that

m(\ω: sup \λ(πL(x — y), ω)\ >ε\)
M (x,y)<ED*D ) /

\x-y\<δ

: sup \λ(x—y,ω)\>ε\).
(a:,y)eZ?χZ) J/

For each I G D we can take y&Fr\D such that [ x — ; y | < d a n d π1y:= 0. There-
fore,

sup |^(7r1(x—3;), ω) > e )
(x,y)£DxD )/

\x-y\<3

sup
)GD

\λ(x—y,ώ)\>ε\).
D )/

Thus we can say that for any ε>0 there exists a finite dimensional orthogonal
projection π such that m(/l[>-L(C)]>ε)<ε. Using Lemmas 8 and 9, we can
complete the proof. D

We have the following proposition from the result of Badrikian (cf. [1]).

PROPOSITION 1([1]). Let H be a real separable Hilbert space, μ be a cylin-
drical measure on H and p{-) be a continuous semi-norm on H. We denote by E
the Banach space induced by H and p(-), and by i the canonical map from H into
E. Assume that μ^Γ1 is countably additive on (E, CE). Then the set
p{x)^l}° is the μ-continuity set and also the μ-bounded set.



24 M. MAEDA

Let v be a rotationally invariant cylindrical measure on an infinite dimensional
space. Then we can write

where μ is a rotationally invariant cylindrical measure satisfying that σΛ({0})—0.

PROPOSITION 2. Let μ be as in the above and v=aμJ

Γ(l—a)δ0

Let X be a topological linear space separating by its dual and u be a weakly
continuous linear operator of H into X. Then the following statements are
equivalent.

(1) μ°w1 is extensible to a Radon measure on X.
(2) v°u~1 is extensible to a Radon measure on X.

The proof is easy, and so it is omitted.

Remark. (1) A finite Radon measure means a finite Borel measure with
inner regularity.

(2) Let μ, X and u be as in Proposition 2. Then (1) of Proposition 2 (in
consequence, also (2)) is equivalent to the condition that j°u~x is extensible to
a Radon measure on X (see [1]).

PROPOSITION 3. Let μ be a rotationally invariant cylindrical measure on H
not δ0, p(') be a continuous semi-norm on H, E be the Banach space obtained from
H by means of p{ ) and i be the canonical map of H into E. Put A—

l}°> If Λ is a μ-bounded set, then it is compact.

Proof. Since A is a /^-bounded set, μ°ι~x is extensible to a Radon measure
for σ(E**, E*) (see [1]). And also the converse is true. Then Proposition 2
and its remark imply that γ°ι~1 is also extensible to a Radon measure for
σ(E**, E*). Therefore, it follows that A is a ^-bounded set, i.e., GB-set.
Dudley showed in [2] that every GB-set is relatively compact. Since A is
closed, it yields the consequence. D

Our preparations for Theorem 1 have been completed.

Proof of Theorem 1. Put C= {x<=H: p(x)^l] °. The equivalency of (1) and
(2) is well known. Also it is clear that (4) implies (1). (2)=>(3) is given by
Propositions 1 and 3. Therefore it remains only to prove that (3)=>(4). How-
ever, C is convex balanced and pc°—P, and so we have it by Theorem 2. •

Using the remark of Proposition 2, we have the following corollary.

COROLLARY. Let RI{H) be the family of all rotationally invariant cylindrical
measures on H and p(-) be a continuous semi-norm on H. If there exists a cylin-
drical measure μ in RI(H)\{δ0} such that p( ) is μ-measurable, then for every
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v^RI(H)\{δ0}, p(') is v-measurable by projections.

Acknowledgement The author wishes to express her hearty thanks to

Professor H. Umegaki for his kind suggestions and many useful advices.

REFERENCES

[ 1 ] A. BADRIKIAN AND S. CHEVET, Mesures cylindπques, espaces de Wiener et
fonctions aleatoires gaussiennes, Lecture Notes in Mathematics, vol. 379,
Springer Verlag, Berlin—Heidelberg—New York, 1974.

[ 2 ] R. M. DUDLEY, The sizes of compact subsets of Hubert space and continuity of
Gaussian processes, J. Functional Analysis, 1 (1967), 290-330.

[ 3 ] R. M. DUDLEY, J. FELDAIAN AND L. LE CAM, On semmorms and probabilities,

and abstract Wiener spaces, Ann. of Math., 93 (1971), 390-408.
[ 4 ] L. GROSS, Measurable functions on Hubert space, Trans. Amer. Math. Soc, 105

(1962), 372-390.
[ 5 ] L. GROSS, Abstract Wiener spaces, Proceedings of the fifth Berkeley Symposium

on Mathematical Statistics and probability, 1965, 31-42.
[ 6 ] L. GROSS, Potential theory on Hubert space, J. Functional Analysis, 1 (1967),

123-181.
[ 7 ] L. GROSS, Abstract Wiener measure and infinite dimensional potential theory,

Lectures in modern analysis and applications II, Lecture Notes in Mathematics,
vol. 140, Springer Verlag, Berlin—Heidelberg—New York, 1970, 84-116.

[ 8 ] L. SCHWARTZ, Radon measures on arbitrary topological spaces and cylindrical
measures, Oxford University Press, Bombay, 1973.

[ 9 ] M. MAEDA, Rotation-invariant cylindrical measures, Natur. Sci. Rep. Ochanomizu
Univ., 31 (1980), 47-59.

[10] Y. UMEMURA, Measures on infinite dimensional vector spaces, Publ. Res. Inst.
Math. Sci. Ser. A, 1 (1965), 1-47.

DEPARTMENT OF MATHEMATICS

OCHANOMIZU UXNIVERSITY

2-1-1, OHTSUKA, BUNKYO-KU

TOKYO 112, JAPAN




