M. MAEDA
KODAI MATH. ).
6 (1983), 14—25
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By MICHIE MAEDA

§0. Introduction.

Since Gross [4, 1962] introduced the concept of measurable norm, it has
been extensively studied by many researchers (see for example [3, 4, 5, 6, 7).

In a real separable Hilbert space H there is a finitely additive cylindrical
measure 7, say the canonical Gaussian cylindrical measure, which is analogous
to the normal distribution in the finite dimensional case. Gross [5] showed that
if H is completed with respect to any of his measurable semi-norms, as defined
in [4], then y gives rise to a countably additive Borel measure on the Banach
space obtained from H by means of the semi-norm. Dudley [2] showed that if
the polar of the closed unit semi-ball is a compact GC-set, then the semi-norm
is measurable in Gross’ sense. Furthermore, using Dudley’s result just above
mentioned, Dudley-Feldman-Le Cam [3] proved the converse of Gross’ result.

Here we shall generalize the above result for the rotationally invariant
cylindrical measures. There are some inequalities for Gaussian cylindrical
measures, known from Gross [4], which play an important role in the present
circle of ideas. In this paper we shall begin to prove the similar inequalities
concerning rotationally invariant cylindrical measures instead of Gaussian cylin-
drical measures.

On the other hand, Dudley-Feldman-Le Cam [3] introduced another measur-
ability for semi-norms. They denoted Gross’ definition by “measurable by pro-
jections” and the latter by “measurable”. We shall use their expression. Badrikian-
Chevet [1] have offered the problem whether these two concepts of measurability
coincide exactly with each other. Our result will answer partially this problem.

Finally we add that this report contains [9] and improves the main result.

§ 1. Cylindrical measures.

Let E be a real separable Banach space, E* its topological dual and @(FE)
the Borel g-algebra of E. We use (-, -) to denote the natural pairing between
E* and E.

DerINITION 1. Let {&, -+, &} be a finite system of elements of E*. Then
by & we denote the operator : x€E— (&, x), -, (&, x))ER™ A set ZCE is
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ROTATIONALLY INVARIANT CYLINDRICAL MEASURES I 15

said to be a cylindrical set if there are &, ---, &,€ E* and Be< @B(R") such that
Z=EF"Y(B). Let Cy denote the collection of all cylindrical sets of E.

DEFINITION 2. A map g from the algebra of all cylindrical sets into [0, 1]
is called a cylindrical measure 1f it satisfies the two following conditions:

) wB)=1;

(2) Restrict g to the o-algebra of cylindrical sets which are generated by
a fixed finite system in E*. Then each such restriction is countably additive.

Let H be a real separable Hilbert space with an inner product <-, -> and

the induced norm |-|=+/{-, .

DerFINITION 3. The Gaussian cylindrical measure y* on H with parameter
te R is the cylindrical measure defined as follows:

7(C)= (/27 t)”SDexp(— % |2/20d x

for C={x<H: Px=D}, where P is a finite dimensional orthogonal projection
of H, n=dim PH, De ®(PH) and d x is the Lebesgue measure on PH. Especially,
7' is called the canonical Gaussian cylindrical measure and simply denoted by 7.

DEFINITION 4. Let g be a cylindrical measure on H. If #(C)=p(u(C)) for
CeCy and unitary operator u of H, pis called a rotationally invarant cylindrical
measure.

Obviously 7¢ is rotationally invariant, but it is not necessarily countably
additive on (H, Cy).

Let (2, m) be a probability measure space, and L%, m; R) be the linear space
of all real valued random variables. Given any cylindrical measure g on £,
there exist a probability measure space (2, m) and a linear map A: E*—
L°(Q, m; R) such that pe&t=me(A(&)™* for every é€E* We call 4 the
random function associated with x. Conversely, for any linear random function
A: E*>L%Q, m; R), there exists uniquely a cylindrical measure g on E satis-
fying that pe&*=m-(A(&)* for every E€E*.

Let .£%2, m; R) be the family of all m-measurable real valued functions,
and ¢ be the canonical map of £%(2, m; R) into L2, m; R). We call a subset
DCE* a continuity set of A if there exists a map A: E*—>.L%2, m; R) such
that A=¢-2 and a map x€D—A(x, w)ER is continuous for all w=2\N, where
N is an m-null set. A subset ACLYL2, m; R) is said to be bounded in L° if
there exists gL, m; R) such that |f|=g for all f€A. A subset DCE*
is called a bounded set of A if the set {A(x): xD} is bounded in L° (cf. [1]).

Given a cylindrical measure g on H, there exists a linear random function
A associated with p. A subset DCH is said to be a p-continuity set (resp. a
p-bounded set) if D is a continuity set (resp. a bounded set) of 4. Usually a
y-continuity set is called a GC-set and a y-bounded set is called a G B-set.
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§2. Two measurabilities of semi-norms and main results.

First of all, we shall present two definitions of measurability which are
interpreted in the introduction.

Let H be a real separable Hilbert space, FD(H) the family of all finite
dimensional subspaces of H, ¢ a cylindrical measure on H and p(-) be a con-
tinuous semi-norm on H.

DEFINITION 5([4]). We say that p(-) is p-measurable by projections if for
every ¢>0, there exists GeFD(H) such that u(N.NF+F*)=1—e whenever
FeFD(H) and F] G, where N.={xeH: p(x)<e} and F* is the orthogonal
complement of F.

DEFINITION 6([3]). A continuous semi-norm p(-) is said to be p-measurable
if for every e>0, there exists GeEFD(H) such that pu(Pp(N.)-+F*)=1—e when-
ever FeFD(H) and F] G, where Pp is the orthogonal projection of H onto F.

If p(-) is p-measurable by projections, then it is p-measurable. However,
the converse is still epen. Dudley-Feldman-Le Cam showed in [3] that the
above two measurabilities are equivalent with respect to 7.

THEOREM A. Let p(-) be a continuous semi-norm on H, E be the Banach
space obtained from H by means of p(-) and i be the canonical map of H into E.
The following statements are equivalent

(1) p(+) s y-measurable;

(2) 7e17t 1s countably additive on (E, Cg);

(3) The polar of the closed umt semu-ball of p 1s a compact GC-set;

(4) p(+) s y-measurable by projections.

The conditions (1) and (2) in Theorem A are equivalent for every cylindrical
measure as well as 7.

The purpose of this paper is a generalization of Theorem A. Here we shall
present the main theorem.

THEOREM 1. Let H be a real separable Hilbert space, p be a rotationally
tmvariant cylindrical measure on H not 0, and p(-) be a continuous semi-norm
on H. E 1s the induced Banach space from p(:) and H, and @ 1s the canonical
map from H nto E. The following statements are equivalent.

(1) p(+) zs p-measurable;

(2) w1t is countably additive on (E, Cg);

(3) The polar of the set {xeH: p(x)<1} 1s a compact p-continuity set;

4) p(-) is p-measurable by projections.

The essential part of this theorem is (3)=>(4). Therefore, we had better
prove the following theorem before Theorem 1.
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Let C be a subset of H. We denote C° the polar of C and pgo(x)
=inf{p>0: x=pC°} for xeH.

THEOREM 2. Let p be a rotationally invariant cylindrical measure on H and
C be a compact convex balanced subset of H. If C is a p-continuity set, then the
semi-norm pce 1S p-measurable by projections.

Remark. It is easy to see that p.. is continuous.

We need several lemmas and propositions for the proof of the above two
theorems. They will be shown in successive sections.

§3. Gross’ inequalities and rotationally invariant cylindrical measures.

In [4], Gross showed several inequalities for the canonical Gaussian cylin-
drical measure. These facts are basic to some results of Dudley [2] as well as
[4]. In this section we shall show the generalization of these facts for rotation-
ally invariant cylindrical measures. It will be an important tool in the proof of
Theorems 1 and 2.

We present the theorem concerning the characterization of rotationally
invariant cylindrical measures (cf. [1] and [10]).

Let 7, be the canonical Gaussian measure on K™ and m, be the Lebesgue
measure on R" We denote by |-|, the usual norm on R". Let {&,, -+, &}
be a finite system of H and £ be the operator x & H—({&y, x), -+, <&,, x))ER™.
Put pe,..c,(B)=pu(ZY(B)) for B€ B(R™).

THEOREM B([10]). Suppose that H 1s an infinite dimensional real separable
Hilbert space. Let p be a rotationally invariant cylindrical measure on H. Then
there exists a Borel probability measure o, on [0, o) such that

() /lel-uen(A)

:SDOTn(A/t)da#(t)—l—a#({0})50(A)

=[ (| v2m 07 exp (121272000, )dma(0)+ 0, (0))3A)
for every A= B(R™) and every finite orthonormal system {ey, ---, e,} of H.

Now we start with the following lemma.

LEMMA 1. Under the hypothesis of Theorem B, there exists a non-negative
Sfunction @(r) defined on [0, o) such that

ey e D= OO (ANS)dr-+0,({0D3(A)
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where S,={x€R™: | x| <7}
Proof. Define ¢(t, r) and ¢(r) by
3, 1)=(/27 )" exp (—r¥/2t?)  and ¢(r)=52>0¢(z‘, Pdou).

For every a=[0, o),

¢(a)=gt>o¢(f, @)da (1)

7 i

a

S

a

Let @(,):Sm_ﬁ,?ig;fl o,(). Then by Theorem B
ey el =] IR dma(0)+ 0,010 A)

=[ (00710101, o)t Ym0, 10))3104)

=170 @21 o ma0))dr +0,10))34)

:S:@(r)mn(AmST)dr-i- 7 ,({0})d4(A) .

Thus we have the desirable result. ]
Let us denote by ||-| the operator norm.

LEMMA 2. Suppose the hypothesis of Theorem B as ever. Let u be a linear
symmetric wnvertible operator of R™ onto R™ and C be a closed convex balanced
set in R™ If |u |1 then pre..,(u(C)=te, ..., (C).

Proof. Clearly, when we want to show the above inequality we can neglect
the second part of the representation of ..., which has been obtained in the
previous lemma. In [4], Gross proved that m,(u(C)N\S»)=m.(CNS,) for all
r>0. Therefore, by Lemma 1 we have g,...,,(1(C) = te;..e,,(C). O

Successive two lemmas will be deduced from Lemma 2, then their proofs
will have the same processes as the case of the canonical Gaussian cylindrical
measure.

LEMMA 3. Let E be an n-dimensional Hilbert space, where n is a natural
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number, and o be a Borel probability measure on [0, o). Let p be a probability
measure on E defined by

=1 (] (v2r 7" exp (— x| /2 do ) )dm(0)+( (0)3( )

for every A B(E), where ||z denotes the norm of E and m the Lebesgue
measure on E. Let E, be a [linear subspace of E and C be a closed convex
balanced subset of E. Then p(C)Su(CNE+ET).

Remark. It is clear that g is rotationally invariant.

Proof. We can assume that E;SE. Let P be the orthogonal projection of

E onto E, and I be the identity operator of E. Define P*=/—P and

r=kP++P for every integer £>1. Then T, is the linear symmetric invertible

operator of E. Clearly we have |77 <1. Let {e;}:=1,2..,» be an orthonormal
basis of E. Then the mapping

n
x= El Xiey > (X1, "'+, Xn)

defines an isomorphism from E onto R™ Thus Lemma 2 says that (T (C))
=u(C) for every integer k>1. By Fatou’s lemma, we have y(lirr}: sup T ,(C))

=¢(C). On the other hand, P~Y(C)=P Y CNE)={CNE+Et}. Then in order
to complete the proof we only have to show that P‘I(C)Dlix}el sup T x(C), i.e,

E\P"(C)Clirrkl inf T(E\C). To see this, take any x<=FE\P-!(C). Then there

exists a number >0 such that S.+PxCE\C where S.={xcE: |x|z<e}.

Choose an integer £ such that 2>|P*x|gz/e. So Ti'x=Px+(1/k)P*x=Px

+S.CE\C. Hence we have xelirlfx inf T ,(E\C) and E\P*‘(C)C:lir? inf T (E\C).
oo o O

Remark. Given any Borel probability measure ¢ on [0, o), there exists a
rotationally invariant cylindrical measure g on a Hilbert space H satisfying the
relation (*) in Theorem B. At this time we call g the rotationally invariant
cylindrical measure induced by o. Especially if H is infinite dimensional, the
above correspondence between ¢ and g is a bijection.

LEMMA 4. Let H be a real separable Hilbert space, o be a Borel probability
measure on [0, co) and p be the rotationally invariant cylindrical measure induced
by 0 on H. Let u be a continuous linear operator of H, C, be a closed convex
balanced set of some finite dimensional subspace of H and C be the cylindrical set
with the base C,.

If full =1, then p(u(C))= p(C).
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Proof. (I) Suppose that H is a finite dimensional Hilbert space and u is a
bijection. We can decompose u as u=I-u;, where [ is a linear isometric
operator on H and u, is a linear symmetric invertible operator of H such that
lul=lu.l. Since |u:]|=1, we have

wu (O = p(u IOz pUHCO)= (> I7)CO)=p(C) .

Hence the proof is complete in this case.

(II) Consider next the case that H is same as (I) and u is a general form.
Let Ki=(u"'(0)* and K,=u(H). Let Pg, be the orthogonal projection of H
onto K; and v be the linear bijection from K, onto K, It is easy to see that
vePg,(x)=u(x) for all x€H and that [v|=1. Let ux, be the rotationally
invariant cylindrical measure on the Hilbert space K, induced by o, for :=1, 2.
We have

#u N (CO)=pu(Pr,0(CNK))=( PE)w (CNK))

:/«CKI(U_ l(chz)) .

Since CN\K, is a closed convex balanced subset of K, we can apply the con-
sequence of (I). Then
1, W CNEK))Z e (CNEK) .
Therefore
1w Oz pr,(CNEK)=p(CNK,+K3) .

Hence Lemma 3 says the desired conclusion.

(III) Now consider the case that H is infinite dimensional. C is a cylin-
drical set, then there exists a finite dimensional subspace N of H such that
C,CN and P3(C,)=C, where Py is the orthogonal projection of H onto N. It
is clear that

[Pveul=l  and p(u (C)=p(u (P (Co))=p((Py°u)"(C0).

Apply (I), then we have p((Py-°u)*(Co)=pun(C,), where py is the rotationally
invariant cylindrical measure on N induced by ¢. Since uyx(Co)=p(C), we have
1(u=HC) = p(C). O

§4. The equivalency of two measurabilities with respect to rotationally
invariant cylindrical measures.

In this section, we shall complete the proof of Theorems 1 and 2. Notice
that we identify H* and H. Let us begin with the following lemma.

Let p be a cylindrical measure on H, A: H—>L%2, m; R) be the linear
random function associated with g and A[ A= sup | A(x*)| for every subset A

of H. Let us denote by ||S]| the cardinal number of S.

LEMMA 5. For every t=0,
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m(/I[A]§t)=igf {u@S°): SCA, |ISlI<co} .

Proof. Let S be a finite subset of A. Since 4 is the associated random
function with g, we have u(tS°)=m(A[SI=<t) for every 1=0. Hence we have

the consequence. 0

LEMMA 6. (I) Let u* be a continuous linear operator of H wnto H such that
lu*|<1. For every t=0 and every subset ACH, we have m( AL A]=t) Sm(ALu*(A)]

=t).
(1) Let Qi, Q, be two orthogonal projections of H such that Q,(H)ZQ.(H).

For every e=( and every subset BC H, we have m(ALQ(B)]>e)<m(ALQ«B)]>¢).

Proof. (I) By virtue of Lemma 5, we can (and do) suppose that A is finite.
Let u be the adjoint of u*. Lemma 4 says that u(A°)Spu(u"'(tA%)). Therefore,

M(ALA=)=p A”) = p(u™CA"))=pt(w*(A)*)=m(ALu*(ADI=L) .
(II) In order to apply (I) we take u*=Q,, A=Q,(B) and t=e¢. Then
m(ALQ:(B)1=¢)
=m(ALQ:° QuB)]=e¢)
=m(ALQ(B)]=e).

Thus m(ALQ(B)Y]1>e)=m(A[Qo(B)]>¢). 0

LEMMA 7. Let I be a directed set, {z.}.c; be a directed family of orthogonal
projections of H such that {m,(x*)},c; converges to x* for each x*<H, and B
be a closed convex balanced subset of H. Then m(ALBl<t)=lim m(ALx (B)]=1)

for every t>0.
Proof. It follows from Lemma 6 that
m(ALBI<H)<lim inf m(ALx (B)]<t).

Then it is sufficient to show that
lim sup m(A[ =, (B)]1=<t)=m(A[BI=t).

Now we notice that every rotationally invariant cylindrical measure is of type
0, 1.e., the associated linear random function A is continuous from H into L°
equipped with the topology of convergence in probability. Thus {ALz,(x*)]}.cr
converges to A(x*) in L° for each x*<H. It is also obvious that {A[7.(S)]}.er
converges to A[S] in L° for each finite subset S of B. Then

lim sup m(ALz (S)]=t)=m(A[SI=t) .
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Since m(ALz (B)YJ=t)=m(A[ = (S)I=1), li‘m sup m(A[x (B)]1=t)=m(A[S]=t) for
every S. Using Lemma 5 we have lizn sup m(A[z,(B)1<t)<m(A[B1<t). O

LEMMA 8. Let B be a closed convex balanced subset of H, then the following
statements are equivalent.

(1) Gwen any >0, there exists a subspace K.eFD(H) such that
m(ALr(BY]>e)<e whenever L=FD(H) and L | K., where z; 15 the orthogonal
projection of H onto L.

(2) Gwen any e>0, there exists a subspace K.=FD(H) such that

m(ALzx1(B)]>e)<e.

Proof. 1t is clear that erEL(H)DnL(H). So it follows from Lemma 6 that
771(/1[71'](;(3)]>5);771(A[7rL(B)]>8).

Thus we have only to show that (1) implies (2). Let {M?},_, ... be a chain of
increasing finite dimensional subspaces of H such that \JM? is dense in H and

\M?DK.. Using Lemma 7, we have
m(ALz k2 (B)]=e)

=lm m(ALzyne wx(B)]<e)
=lm m(ALzyraxs(B)]=e).

By (1), m(ALwyrnxt(B)]>e)<e and this implies that m(ALzyrax(B)]=e)>1—e.
Therefore we have m(ALzx:(B)]=¢)=1—¢ and so m(A[Lxx:(B)]>e)<e. Thus
we have (2). O

LEMMA 9. Let v be a cylindrical measure (not only rotationally invariant)
on I, {2, m'); A’} be the pair of a probability measure space and a random
Sfunction associated with v and B be a closed convex balanced bounded subset of
H. Then the following two conditions are equivalent.

(1) The semi-norm ppe is v-measurable by projections.

(2) Gwven any e>0, there exists a subspace K.=FD(H) such that
m (A'[z(B)]>e)<e whenever LEFD(H) and L] K..

Proof. 1t is easy to see that m/(A' [z (B)]<e)=w(n;(eB°))=wv(e B°N\L-+L"Y).
Also we have {xEH: ppo(x)<e}CeB°={x&H: ppe(x)<e}. Thus the desired

conclusion follows immediately. O

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Let D be a countable dense subset of C. The
assumption that C is a p-continuity set implies the existence of the version
Ax, w) of A (i.e., A=¢-2, where ¢ is the canonical map of .£° into L°) which
is continuous on C for almost all w= 2. It follows from the compactness of C
that

m( k L y)EDX {w: [Ax—y, w)lée})zl

for all ¢>0. This implies that for any ¢>0 there exists a positive number o
such that

m({w: sup Il(x—y, w)l>e})<e
(x,yED
- yl<
Since D is relatively compact in H, we have a subspace FeFD(H) such that

sup ( 1nf lx— |)<o. Let = be an orthogonal projection onto F, I be the identity
TED YEF|

operator of H and z*=I—nr. It follows from Lemma 6 that

m({w: sup | Azt (x— y),w){>s})

(z,y)EDxD
y<

ém({w: sup ll(x y,w)|>s}>

(ry

For each xD we can take yeFN\D such that |x—y|<dand z*y=0. There-
fore,
m(ALzHC)]>e)=m(A[z*(D)]>¢)

ém({w:( sup |A(zt(x—y), w)]>s})

)EDx
—yi<

§m({w: sup [,Z(r y,w)l>a}>

(l‘ y)

Thus we can say that for any >0 there exists a finite dimensional orthogonal
projection = such that m(A[z*(C)]>e)<e. Using Lemmas 8 and 9, we can
complete the proof. O

We have the following proposition from the result of Badrikian (cf. [1]).

ProPOSITION I([1]). Let H be a real separable Hilbert space, p be a cylin-
drical measure on H and p(-) be a continuous semi-norm on H. We denote by E
the Banach space induced by H and p(-), and by i the canonical map from H into
E. Assume that pe:™' is countably additive on (E, Cg). Then the set {x<H:
P(x)S1}° is the p-continuity set and also the p-bounded set.
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Let v be a rotationally invariant cylindrical measure on an infinite dimensional
space. Then we can write

y=ap+(1—a)d, 0=a=l),

where u is a rotationally invariant cylindrical measure satisfying that o,({0})=0.

PROPOSITION 2. Let p be as in the above and yv=ap-+(1—a)d, (0<a=l).
Let X be a topological linear space separating by its dual and u be a weakly
continuous linear operator of H into X. Then the following statements are
equivalent.

(1) peu ' s extensible to a Radon measure on X.

(2) veu~?! 1s extensible to a Radon measure on X.

1

The proof 1s easy, and so it is omitted.

Remark. (1) A finite Radon measure means a finite Borel measure with
inner regularity.

(2) Let p, X and u be as in Proposition 2. Then (1) of Proposition 2 (in
consequence, also (2)) is equivalent to the condition that y.u~! is extensible to
a Radon measure on X (see [1]).

PROPOSITION 3. Let p be a rotationally invariant cylindrical measure on H
not 0y, p(+) be a continuous semi-norm on H, E be the Banach space obtained from
H by means of p(-) and @ be the canomical map of H into E. Put A={x€H:
p(x)=1}°. If A s a p-bounded set, then it 15 compact.

Proof. Since A is a p-bounded set, poz7" is extensible to a Radon measure
for o(E**, E*) (see [1]). And also the converse is true. Then Proposition 2
and its remark imply that y-:"! is also extensible to a Radon measure for
o(E**, E*).  Therefore, it follows that A is a py-bounded set, i.e., GB-set.
Dudley showed in [2] that every GDB-set is relatively compact. Since A is
closed, it yields the consequence. O

Our preparations for Theorem 1 have been completed.

Proof of Theorem 1. Put C={x=H: p(x)=1}°. The equivalency of (1) and
(2) is well known. Also it is clear that (4) implies (1). (2)=>(3) is given by
Propositions 1 and 3. Therefore it remains only to prove that (3)>(4). How-
ever, C is convex balanced and pc.=p, and so we have it by Theorem 2. [J

Using the remark of Proposition 2, we have the following corollary.

COROLLARY. Let RI(H) be the family of all rotationally invariant cylindrical
measures on H and p(-) be a continuous semi-norm on H. If there exists a cylin-
drical measure p 1 RI(H)\{0,} such that p(-) s p-measurable, then for every
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ve RI(H\{do}, p(+) s v-measurable by projections.
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