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1. Introduction. Let g be a Riemannian metric which is defined on a com-
pact orientable differentiate manifold M of dimension n and makes its volume

Vg equal to 1, that is, I dVg — l, where dVg is the volume element of M meas-
J M

ured by g. We denote the set of all such metrics by Wl. When g is fixed we
have a Riemannian manifold (M, g). Let us take a covering {U} of M by co-
ordinate neighborhoods and denote the local coordinates in U by {xa}, where
a, b, c, ••- run over the range {1, 2, 3, ••• , n}. In each U, g is expressed by its
components gab. We adopt summation convention so that the contravariant com-
ponents gab of g satisfy gacg

hC:=^ab' By Rabcd, Rab and R we denote the com-
ponents of the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature of (M, g), respectively. Now let us consider the integral

Fuίgl = \ f(R)dVg,M

where f(R) is a scalar field on M determined by g as the contraction of a tensor
product of the curvature tensor. This integral defines a mapping F:W—>R. A
critical point of F is denoted by gF and is called a critical Riemannian metric
with respect to the field f(R) or the integral FM[g~]. The following four kinds
of critical Riemannian metrics have been studied by M. Berger [1] and Y. Mutό
[5, 6, 7, 8, 9] :

ΛMίgl = \ RdVg, BMίgl = \ R2dVg,
JM JM

\ a b g , M l g ] \ a M s
J M J M

The equations of the critical Riemannian metric are written as follows:

(1.1) Aab — CAgab, Bab

where CA, CB, Cc and CD are undetermined constants and Aah, Bab, Cab and Dab

are given by
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Λab=-Rab+~

where V means covariant differentiation with respect to the connection induced

by g. It is well known that a critical point g of -4jf[g] in Wl is an Einstein

metric.

Although critical Riemannian metrics were first defined on a compact mani-

fold, it is to generalize the definition when M is not compact. The resulting

equations are the same as the foregoing ones and (1.1) and (1.2) are valid.

The purpose of this paper is to study the results obtained by Y. Mutδ [9]

more deeply. §2 is recalled the definition of a Sasakian manifold. In §3 a Sasa-

kian manifold is studied when g turns out to be a critical Riemannian metric

and moreover we consider critical Riemannian metrics in a Sasakian manifold

with vanishing C-Bochner curvature tensor in §4. In §5 we investigate some

conditions to be a critical Riemannian metric gc or gD. §6 is devoted to the

study of a Sasakian submersion 77: (M, g, η)->(B, Bg) where g and Bg become

critical Riemannian metrics simultaneously.

2. Sasakian manifold.

Let (M, g, η) be an n(n^3)-dimensional Sasakian manifold (connected and C°°)

Λvith metric tensor g. Then there exist a Killing 1-form η satisfying

φa^^ayb, φab^ — φba, 7]a = gar7]r, 7]aη
a = ~L>

(2.1)
φarφrb=—δabJrηaη

b> Vaφbc=ybgac—yCgab>

On a Sasakian manifold (M, g, η), the following identities are well known:

(2.2) Rabcrr/r=Vagbc-Vbgac , RaVr = {n-l)r]a ,

(2.3) RabsrφcSφdr—Rabcd = gacgbd — gbcgad — φacφbd + φbcφad,

(2.4) Rsarbφ
Sr=-Sab + (n-l)φab ,

where we put Sab—φJRrb-

We introduce the tensor field Uabcd and Gα δ in a Sasakian manifold (M, g, η\

defined by
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(2 5) Uabc

d = RaU
d- -

H—l

n(n-l)-R
\* V) ^ α δ Λ α δ g a b - , Q a f j b ,

71 1 71 λ

, „ 4i?-(n-l)(3n-l)
where we put H = - ( n _ i y - + 1 T - .

A Sasakian manifold (M, g, rj) is called a space of constant ό-holomorphic
sectional curvature H or a locally C-Fubinian manifold if its Uabcd vanishes
identically. A Sasakian manifold (M, g, η) is called an ^-Einstein manifold or a
C-Einstein manifold if its Gab vanishes identically. In an ^-Einstein manifold
(n>3), the scalar curvature R is necessarily constant. A 3-dimensional ^-Einstein
manifold means that R is constant.

The equations (2.5) and (2.6) yield the followings:

(2.7) | G | 2 - G α 6 G α δ - | i ? 1 | 2 - ~ - ^ J - + 2 i ? - n ( n - l ) ,

(2.8) I Zy I R = £ / β f t c d £ / t t f t c d = I Λ I a - h - ( ^

-n(n-m3n-l)},

where we put \R\2=RabcdR
abcd, \R1\

2--=RabRab

Next we introduce the C-Bochner curvature tensor Babc

d in an n-dimensional
Sasakian manifold given by

(2.9) Babcd — Rabcd-\ ΎJ}-{R acgbd — Rbcg adΛ- g acRbd-- gbcR ad

— RacVbV d + Rbcfj aη d—η'aTj'cRbdΛ-rjbΎ}>CRad)

R-371-5

(ή+Γ)(n+3)T.7Ί 1V, ! QN (""gacgbd + gbcgad)

R+n-1

which is constructed from the Bochner curvature tensor in a Kahlerian manifold
by fibering of Boothby-Wang [3].
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By straight forward computations the following identities are obtained:

Babcd= Bbacd > Babcd=
zBcdab , Babc -\~Bbca -\~Bcab —0 , Babc

a= 0 ,

d=0, φa

rBrbc

d=φb

rBrac

d, ψabBabc

d=0, gdrBabcr=Ba=Bbc

d

In the rest of the present section, we assume that a Sasakian manifold
(M, g, η) has the vanishing C-Bochner curvature tensor with a constant scalar
curvature R. Then we have following identity [3].

(2.10) ^dRab={n — l){ηaφdb+7]hφda)—{-ηaSdh+ηbSda).

Operating Ve to (2.10) and using the Ricci identity, we have

(2.11) RasrbR
Sr = RarRb

r-Rab+ {R-n(n-l)} 7]ayb + (n-l)gab

Also, applying 7 d to (2.10), we get

(2.12) VrΨRab=-2Rab+2(n-l)gab+2{R-n(n-l)} ηaηb.

Contracting the vanishing C-Bochner curvature tensor with Rbc and Re

bcd, we
find respectively

(2.13) (n + lXn-l)RarRb

r=(n-l)(R-3n-5)Rab

+ {(n+l)|i?1|
2-i?2+4(n + l)i?-(n-l)(n2+3n+4)}^αδ

+ {-(n+l)\R1\*+R2-(n2+2n+5)R+n(n-l)(n*+3n+4)}ηa7}b,

(2.14)

where we used (2.11). These will be needed later.

3. Sasakian manifolds with critical Riemannian metrics.

Let (A/, g, η) be an n-dimensional Sasakian manifold. If the Riemannian
metric g is a critical Riemannian metric gB, gc or gD, then the undetermined
constants CB, Cc and CD given by (1.1) are determined as follows [9] :

(3.1C) C c = | / ? 1 |

(3.1D) CD=j |i?|2—12i?+4(n—l)(3n—1).

Moreover Y. Muto [9] has proved
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THEOREM A. // g is a critical Riemannian metric gAf gB, gc or gD in a
Sasakian manifold (M, g, η), then scalar curvature is constant.

We first consider the case when g is a critical Riemannian metric gB in a
Sasakian manifold (M, g, η). By the aid of (1.1), (1.2B) and Theorem A, we can
easily see that (M, g, η) is an Einstein manifold. Conversely, if (M, g, η) is an
Einstein manifold, then we can see from (1.2B) that Bab=CBgab> Thus we have

THEOREM 3.1. In a Sasakian manifold (M, g, rj), in order that g be a critical
Riemannian metric gB, it is necessary and sufficient that (M, g, rj) be an Einstein
manifold.

Second, let us discuss the case when g is a critical Riemannian metric gc in
a Sasakian manifold (M, g, rj). It follows from Theorem A, (1.1) and (1.2C) that

CCgab = -ΊrΨRab-2RasrbR
Sr+ ~\RA "gab .

Transvecting the above equation with gab, we have

which and (3.1C) yield

\R1\
2^2nR-n(n-l){nJrl).

If we take account of (2.7), then we get

(n-l)\G\2=-R2-i

Γ2(n2-l)R-n(n~mn+2)^0f

that is,

(3.2) n(n-l)^R^(n-lXn+2).

Now, let us examine the following two special cases of (3.2):

(i) the scalar curvature R equals to n(n — l),
(ii) the scalar curvature R equals to (n—l)(n+2).

It is evident that (M, g, rj) is an Einstein manifold or an ^-Einstein manifold
satisfying Rab~{nJrY)gab—2ηaηb respectively, if the case (i) or (ii) holds.

Thus we have

THEOREM 3.2. // g is a critical Riemannian metric gc in an n-dimensional
Sasakian manifold {M, g, η), then the scalar curvature R is pinched with

Especially, if the scalar curvature R equals to n{n — l) or (n — l)(n + 2), then the
manifold is Einstein satisfying Rab~(n—l)gab or η-Einstein satisfying Rab~

~2ηaVb respectively.
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In the rest of this section, we study that g is a critical Riemannian metric
gD in a Sasakian manifold (M, g, η). From Theorem A, (1.1) and (1.2D) it is
clear that

CDgab= -4VrΨRab+4RarRbr-4RasrbR
sr-2RatsrRb

tsr+ j\R\ *gab,

from which by contraction this with gab we have

n - 4 . | 2
CD= — ~ 2 — Ί ^ - I >

which implies

\R\2=6nR-2n(n-lX3n-l),

because of (3.1D). This together with (2.8) gives

(n2-l) \U12=-8R2+2(n-lX3?

that is,

(3.3) n(n-l)^R^j

If the equalities hold respectively, then we can prove that (M, g, η) is of con-
stant curvature 1 or of constant ^-holomorphic sectional curvature H=3n—1.

Therefore we get

THEOREM 3.3. // g is a critical Riemannian metric gD in an n-dimensional
Sasakian manifold, then the scalar curvature R is pinched with

Especially, if the scalar curvature R equals to n(n — l) or -r(n — I)(τ2+2)(3n — 1),

then the manifold is of constant curvature 1 or of constant φ-holomorphic sectional

curvature H=3n — 1 respectively.

4. Critical Riemannian metrics in a Sasakian manifold with vanishing
C-Bochner curvature tensor.

If g is a critical Riemannian metric gA or gB in a Sasakian manifold with
vanishing C-Bochner curvature tensor, then by virtue of Theorem 3.1 we can
easily verify that it is of constant curvature 1.

Next suppose that g is a critical Riemannian metric gc in a Sasakian mani-
fold with vanishing C-Bochner curvature tensor, then from Theorem A, (1.1),
(1.2C), (2.11) and (2.12) we find

(4.1) 2(n + l)(n
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Differentiating covariantly both side of (4.1) and using (2.10), we get

If we contract this with ηhφc

d and make use of (1.1), then we obtain

(4.2) (n-l){R-(5n+7)}Rac

from which, by contraction

(4.3) \R1\
2=2nR-n(n-l)(n + l).

Substituting (4.3) into (4.2), we have

{R-(5n+7)}ttn~l)Rab-{R-(n-l)}gab+{R-n(n-l)}VaVb'l=0,

from which R—Sn+7 or Rab— Λ gabλ Λ rjavιb. If the scalar

curvature R equals to 5n-\-7, then we can prove by Theorem 3.2 that n is neces-
sarily 7 and the manifold is of constant curvature 1. It follows from (2.7) and
(4.2) that the scalar curvature R equals to n{n—1) or (n—l)(n+2) if Rφ5n+7.
Consequently Theorem 3.2 actually shows that (M, g, η) is of constant curvature
1 or of constant ^-holomorphic sectional curvature H=(n+9)/(n + l), respectively.

Thus we obtain

THEOREM 4.1. If g is a critical Riemannian metric gc in an n-diinensional
Sasakian manifold (M, g, η) with vanishing C-Bochner curvature tensor, then the
manifold is of constant curvature 1 or of constant φ-holomorphic sectional curva-
ture £Γ=(?ι+9)/(n + l).

Finally we assume that g is a critical Riemannian metric gD in a Sasakian
manifold with vanishing C-Bochner curvature tensor. From Theorem A, (1.1),
(1.2D), (2.11), (2.12) and (2.4) we find

(4.4) 2(n-l)(n+l)(n+3)CDgab=8(n-l)(9n2+32n+3l-4;R)Rab

+ {l6(n + l)(n-5)\R1\
2-8(n-9)R2--4(3n3-3n2+37n+9l)R

+2(n-l)(3n4-27n3-19n2+163n+136)}gab

+ {64(n + l) IR, 12~6AR2-S(3nz+5n2-19n-53)R
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+8n(n-l)(3n*+5n2-27n-45)} ηaηb.

Differentiating (4.4) covariantly and making use of (2.10), we get

(n-l)(9n2+32n+31-4:R)(VaSdb+ηbSda)

from which we have by contraction of this with ηbφe

d

(4.5) (rc-l){4tf-(9ft2+32n+31)}#α e

= {-8(n+l) I /?! 1 2+(3n 3+9n 2-27n-49)i?+8i? 2

-(n-l)(3n4+Hn3-4n2-46n~3l)} gae

+ {8(n+l)\R1\
2-8R2-(3n3+5n2-19n-53)R

which implies

(4.6) 8

Comparing this with (4.5), we have

{4#-(9n2+32n+31)} [_{n-l)Rab- {R-(n-l)}gab+ {R-n(n-l)} 37^]=0 .

First let us discuss the case of 4i?^9n 2 +32n+31. Then we can easily verify
that the manifold is 77-Einstein with R — n{n — l) or (n —l)(n+2)(3n — l)/4. Con-
sequently it follows by virtue of Theorem 3.3 that (M, g, η) is of constant cur-
vature 1 or of constant 0-holomorphic sectional curvature H=3n — 1. The case
of 4i?=9ft2+32n+31 implies that n ^ 7 by Theorem 3.3.

Gathering these, we have

THEOREM 4.2. Let g be a critical Riemanman metric gD in an n-dimensional
Sasakian manifold (M, g, η) with vanishing C-Bochner curvature tensor. Then

(i) for 4iv)^9?22+32n+31, the manifold is of constant curvature 1 or of con-
stant φ-holomorphic sectional curvature H=3n — l,

(ii) for 4i?=9n 2+32n+31, the scalar curvature R satisfies the inequality

5. Conditions to be critical Riemannian metrics.

In this section we shall investigate some conditions that g is a critical
Riemannian metric gc or gD in a Sasakian manifold (M, g, η).
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Let (M, g, ΎJ) be an 77-Einstein manifold. Then we have

(5.1) (n-l)Rab= {R-(n-l)} gab+ {n(n-l)-R} ηaηb,

from which

(5.2) (n-l)\Rί\
2=R2-2(n-l)R+n(n-iγ.

Substituting (5.1) into (2.12), we can see

(5.3) (n~l)VrΨRab=2{n(n-l)-R}(gab-nVaVb).

Substituting (5.1) and (5.2) into (2.13), we have

(5.4) (n-lYRarRbr= {R-(n-l)} 2gab+ {n(n-l)-R} {Λ + (n-l)(n-2)} ηa

From (5.1), (5.4) and (2.11), we can get

(5.5) (n-l)2RasrbR
sr={R2-3(n-l)R + (n-mn + l)}gab

- {R-n(n-l)} {R-2(n-l)} ηaηb.

Consequently we get

2(n-iγCab={(?ι-5)R2-2(n-l)(n-9)R+(n-mn2-9n-4)}gab

by virtue of (1.2C), (5.2), (5.3) and (5.5). Therefore we find

THEOREM 5.1. In an n-dimensional η-Einstein manifold, if the scalar curvature
R equals to n(n —1) or (n —l)(n+2), then g is a critical Riemannian metric gc.

As for a critical Riemannian metric gD we shall prove

THEOREM 5.2. In an n-dimensional Sasakian manifold (M, g, η) of constant
φ-holomorphic sectional curvature H, if H equals to 1 or 3n —1, then g is a
critical Riemannian metric gD.

Proof. It is well known that the C-Bochner curvature tensor coincides with
Uabcd if and only if (M, g, η) is an ^-Einstein manifold. Thus, (M, g, η) is
considered as an ^-Einstein manifold with vanishing C-Bochner curvature tensor.
Thus we have the following equation by the aid of (2.8):

(5.6) \R\~jn~1^-~+-μR2-2(n-l^

Substituting (5.1) and (5.4) into (2.14), we have

(5.7) (n + l)(n-l)2RatsrRb

tsr=2{iR2-2(n-l)(3n-l)R+(n-

-4{R-n(n-l)} {2R-(n-l)2} ηaηb.
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Compering with (1.2D), (5.3), (5.4), (5.5), (5.6) and (5.7), we find

(n-mn+l)Dab={4(n-5)R2-2(n-l)(3n2-22n-l)R

which shows that the assertion of the theorem is true.

6. Sasakian submersion.

We consider Riemannian submersions Π: (M, g)-+(B, Bg) such that fibers F
are complete and connected and imbedded in (M, g) regularly as totally geodesic
submanifolds. The Riemannian metrics on the total manifold M, the base mani-
fold B and the fiber F are denoted respectively by g, Bg and Fg. Let (M, g, rj)
be a Sasakian manifold where άimM=ή. Let the indices a, b, c, d, e, ••• run
over the range {1, 2, ••• , ή} and the indices h, i, j , k, ••• the range {1, 2, •••, n)
where n — n + 1. A Sasakian manifold (M, g, rj) admits a Riemannian submersion
where the unit Killing vector rj is a vertical vector and the fibers are geodesies
tangent to rj. Such a Riemannian submersion is called a Sasakian submersion.

Let us recall some relations with respect to a Sasakian submersion Π : (M, g, η)
-*{B, Bg). (For details see [9], [14]). For the Riemannian metric Bg on the
base manifold B we have

(β.l) Bg,χ=gji-i}ή*, Bgjί=gjί.

Relation between the curvature tensor Rabcd of (M, g, fj) and the curvature
tensor BRkJι

h of (B, Bg) has be given as follows:

where RH denotes the horizontal part of the curvature tensor R of (M, g, rj) and
Fj1 represents a complex structure / such that (B, Bg, J) is a Kahlerian struc-
ture on B. For the Ricci tensor and the scalar curvature we have

(6.3) Rn^BRji

(6.4) R=BR-(n-l).

In a Riemannian manifold (M, g), since the tensors B, C and D are given by
(1.2), corresponding tensors of a Sasakian manifold (M, g, 9)) will be denoted by
B, C and D and their components by Bah, C α δ and Dah, while these of the base
manifold (B, Bg) by BB,*C and BD and their components by BBlJ}

 BCl3 and BDl3.
If the scalar curvature R of (M, g, η) is constant, the following identities are
obtained by Y. Muto [9] :

(6.5B) i ^ = *^+2(n- l )* ;? X J + { - ( H - ^ ^
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(6.5C) C u = β

(6.5D) ΰ t J =
 B D j J

where we put

(6.6B) c ( B R ) * 3 ( l ) B R +

(β.βC) Cc=jBRιJ

BRι>6BR+

(6.6D) eD=jBRxjkι

BR**kl-18BR+5@

Y. Muto [9] has proved the following theorems:

THEOREM B. Let 77: (M, £, η)->(B, Bg) be a Sasakian submersion. If g and
Bg are critical Riemanman metrics gB on M and B respectively, then the scalar

curvature R is constant and (B, Bg) is an Einstein manifold satisfying

Conversely consider the case where (B, Bg) is an Einstein manifold where BR =

ή2—l or ή — 1. If one of g and Bg is a critical Riemanman metric gB, then the

other is also a critical Riemanman metrics gB.

THEOREM C. Let 77: (M, g, fj)->{B, Bg) be a Sasakian submersion. If g and
Bg are critical Riemannian metrics gc on M and B respectively, then the scalar

curvature R is constant and {B, Bg) is an Einstein manifold satisfying (*). Con-

versely, consider the case where (B, Bg) is an Einstein manifold satisfying (*).

If one of g and Bg is a critical Riemanman metric gc, then the other is also a

critical Riemannian metric gc. Where (*) is as follows.

THEOREM D. Let 77: (M, g, η)->(B, Bg) be a Sasakian submersion. If g and
Bg are critical Riemannian metrics gD on M and B respectively, then the scalar

curvature R is constant and (B, Bg) is an Einstein manifold satisfying (**). Con-

versely, let us consider the case where {B, Bg) is an Einstein manifold satisfying

(**). // one of g and Bg is a critical Riemannian metric gD, then the other is

also a critical Riemannian metric gΌ. Where (**) is as follows

(**) BRιjkl

BRιJkl=G(n+2)BR-2(3n+2)(n2-l).

We shall now show the following:

THEOREM 6.1. Let 77: (M, g, rj)~>(B, Bg) be a Sasakian submersion. In order
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that g be a critical Riemannian metric gB in a Sasakian manifold (M, g, η), it is

necessary and sufficient that (B, Bg) be an Einstein manifold satisfying

and Bg be a critical Riemannian metric gB.

Proof. If we assume that g is a critical Riemannian metric gB on M, then,
it follows from Theorem 3.1 that (M, g, η) is an Einstein manifold satisfying

In view of (6.1), this means that BRιj —(nJ

Γl)
BgιJ, namely, the base manifold

(B, Bg) is an Einstein one with BR=(n—l)(n+l). Furthermore from (6.5B) we

have BBιJ=
BCB

BgιJ, because of g is a critical Riemannian metric gB. The con-

verse is trivial by Theorem B. These complete the proof.

Secondly, let us prove

THEOREM 6.2. Let Π: (M, g, η)->(B, Bg) be a Sasakian submersion and g be

a critical Riemannian metric gc in a Sasakian manifold (M, g, η). Then the

scalar curvature BR in (B, Bg) is pinched with

(6.7) (ή-l)(ή + l)^BR^(n-l)(n+3).

Especially, if the scalar curvature BR equals to (n—l)(n+l) or (n—l)(w+3), then

the manifold is an Einstein one satisfying

(6.8) BRa*=(n + l)Bgab or

respectively, and Bg is a critical Riemannian metric gc in (B, Bg).

Proof. Taking account of the fact that g is a critical Riemannian metric

gc, in view of Theorem 3.2 and (6.4) it is easy to see that the scalar curvature
BR in (B, Bg) is pinched with (6.7). Recalling that if the scalar curvature BR of

(B, Bg) is n2—1 or (n—l)(n+3), then the scalar curvature R of (M, g, η) is

n(n — l) or (n — l)(n+2) respectively, we can easily see by virtue of Theorem 3.2

that (M, g, η) is Einstein or ^-Einstein satisfying $ab
=(n+l)gab—Zyafjb respec-

tively. Therefore it is evident by (6.3) that (B, Bg) is an Einstein manifold

satisfying (6.8). Consequently, regarding to Cab^Ccgab, (6.1) and the mentions

above, we have BC%J —
 BCC

L]gu, which means that Bg is a critical Riemannian

metric gc. These facts show that the assertion of the theorem is true.

Finally we shall prove the following

THEOREM 6.3. Let Π: (M, g, ?))->{B, Bg) be a Sasakian submersion and g be

a critical Riemannian metric gD in a Sasakian manifold (M, g, η). Then the

scalar curvature BR in (B, Bg) is pinched with

(6.9) ( ή \
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Especially, if the scalar curvature BR equal to ή2—l or (w —l)(w

then (B, Bg) is of constant holomorphic sectional curvature H—4 or H~3ήJ

Γ2 re-

spectively, and Bg is a critical Riemannian metric gD.

Proof. As g is a critical Riemannian metric gD, it follows from (6.4) and
Theorem 3.3 that (6.9) holds. If BR is n2-l or (« —l)(» + l)(3w+2)/4, we have
R — n[n — Y) or (n—l)(rc+2)(3w —1)/4 respectively. So we can see from Theorem
3.3 that (M, g, η) is of constant curvature 1 or of constant ^-holomorphic sec-
tional curvature H=3ή—1. Making use of (6.2), we have that (B, Bg) is of con-
stant holomorphic sectional curvature H—4 or 3^+2 respectively. These facts
prove that Bg is a critical Riemannian metric gD. These complete the proof.

The authors wish to express their sincere thanks to Professor Y. Mutδ who

gave kind encouragements.
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