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A CLASS NUMBER FORMULA OF IWASAWA'S MODULES

BY TAKASHI FUKUDA

§ 0. Introduction.

Let p be an odd prime number which will be fixed throughout the following.
Let k be a finite extension of Q and &oo be the cyclotomic Zp-extension kQoo of
k, where Qoo is the unique Zp-extension of Q (c.f. [6]). For any n^O, let kn

be the unique extension of k in &oo of degree pn over k: k = kodk1c: ••• dk^,
and let JΓn=Gal(/?«x,/&J. Let An be the ^-Sylow subgroup of the ideal class
group of kn and Dn be the subgroup of An consisting of ideal classes containing
ideals ΓPPm c ί B ), where $ runs over all primes of kn lying over p and m(Sβ)eZ.
Let A'n be the factor group AJDn (c.f. [6]).

We assume that k is a CM field. Then ko* is also a CM field. Let j denote
the complex conjugation of kc». For any Z[{1, /}]-module M, let

(0.1) DEFINITION. Let Az=\m Aΰ and A£=\\m A!~, with respect to the natural
maps induced from inclusion maps kn^km for ?n^n^0.

In [3] Greenberg, and in [2] Ferrero and Greenberg have proved that, if k
is abelian over Q, then the order of {Af~)Γn is finite for any n^O. We shall
compute its order by using p-adic L-functions associated to k when the degree
of k over Q is prime to p.

In the following, we assume that k is a finite imaginary abelian extension
of Q whose degree is prime to p. Let G denote the Galois group Gal(£/Q)
and G be its character group Hom(G, Qp), where Qp is a fixed algebraic closure
of Qp, We also consider G as the set of primitive Dirichlet characters with
values in Qp which are associated to the extension k/Q by class field theory.
Let ω be the Teichmϋller character module p. Take φ^G with φφω and φ(j)
= -—1. Let Lpis ωφ'1) be the p-adic L-function attached to ωφ~\ For /c^l+pZp

with tc&l+p2Zp, using Iwasawa's construction of £-adic L-ίunctions, we have
the unique power series f(T; ωφ~1)^Λφ such that

where Z p [ 0 ] = Zp[{all values of φ}2 and Aφ^Zp[_φ~][_[TJ] We note that
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/(0 ωφ-ι) = Lp® ωφ-')=(l-φ-\P))L(0

(0.2) DEFINITION. We define f(T; ωφ~ι)^Λφ by

(/(T ωφ^/T if
^ )

I / ( T ; ωφ-1) otherwise.

Ferrero and Greenberg [2] have proved that/(0; ωφ'^ΦO. Then we see that

M-I ωφ-^ΦO for all ζ with ζ*n = l and n ^ O .

Hence the order of

is finite, where ω n = ( l + T ) p n —1.
For a finite set A, let #^4 denote the cardinality of A. A representation of

a group G will be called Qv-ιrreducible if it is defined over Qp and irreducible
over Qp. A character of G will be called Qv-ιr reducible if it is the character
of some Qp-irreducible representation of G.

(0.3) THEOREM. Assume that
(1) k/Q is a finite abelian extension,
(2) k ts imaginary, and
(3) the degree [_k : Q~] is prime to p.

Then toe have

α>^-1),ωn) for all n^O,

where Φ runs over all Qp-irreducible characters of G — Gdλ(k/Q) such that Φφω,
and φ is an absolutely irreducible component of Φ.

For a, b^Qp, we write a~b if ordp(α)=ordp(£>). Note that
v

*Λφ/{f{T ωφ-1), ωn) - Π Π / ( ζ - 1 ωφ'1), (0.4)
P φ ζPn=ι

where ψ runs over all "conjugates" of φ over Qp.

(0.5) Remark. When no prime of the maximal real subfield k+ of k lying over
p splits in k, our formula in Theorem (0.3) is a direct consequence of the
analytic class number formula for k (c.f. [1]). But, if there exist some primes
of k+ lying over p which split in k, then (A~)Γn is an infinite group and
fiO ωφ'1) vanishes for some φ.

(0.6) Remark. To prove Theorem (0.3), we use essentially Gauss sums, Gross-
Koblitz formula concerning a relation between Gauss sums and special values of
Morita's p-aάic Γ-function in [4], and Ferrero-Greenberg formula concerning



A CLASS NUMBER FORMULA OF IWASAWA'S MODULES 505

Z/P(O;Z) in [2].

(0.7) Remark. The assumption (3) is not essential. In fact, to prove Theorem
(2.1), we need not assume that the degree of k over Q is prime to p.

(0.8) Remark. In [2], Ferrero and Greenberg proved Theorem (0.3) when k is
imaginary quadratic and n=Q.

We define fundamental Iwasawa's modules in § 1. In § 2, we reduce Theorem
(0.3) to Theorem (2.1). In § 3, we introduce an essential exact sequences of
Iwasawa's modules following [3]. And in § 4, p-adic regurators are defined.
In § 5, following [4], we define Gauss sums, which we use to combine orders of
two modules in Theorem (2.1). And the group of Gauss sums is introduced.
In § 6, we prove Theorem (2.1). In § 7, some examples are given.

The author had studied some parts of the content of this paper from Decem-
ber 1980 till July 1981 with H. Nakazato. The author expresses his gratitude
to Mr. H. Nakazato for his allowance of publishing this paper.

Notations.
As usual, Z, Q, R, and C denote the ring of rational integers, the field of

rational numbers, the field of real numbers, and the field of complex numbers,
respectively. For a prime number p, Zp and Qp denote the ring of p-adϊc in-
tegers and the field of jb-adic numbers, respectively. Let Q (resp. Qp) be an
fixed algebraic closures of Q (resp. Qp). We also fix embeddings QcC and
P: Q^Qp

§ 1. Iwasawa's modules.

Let k/Q be as in Theorem (0.3). Since the degree of k over Q is prime to
p, all primes of k lying over p are totally ramified in k. Since {A'~)Γn is finite
for n^0, and the natural maps A'ΰ-*A'ΰ are injective for m ^ n ^ O , we have

(1.1) LEMMA. For any integer n^0, there exists an integer m0 such that (A/

or)Γn

—{Af^)Γn for all m^m0.

Let Z be the decomposition group of p for k/Q. Recall that G—Gal(£/Q)
and G=Hom(G, Qp). For any φ<=G, Trφ denotes the Qp-irreducible character
of G which contains φ as an absolutely irreducible component, and e(Trφ)
denotes the orthogonal idempotent in ZP[_G~\ associated to Tr^. We consider
Any Dn, and A'n as Zp[G]-modules in the natural way. Since all primes of k
lying over p are totally ramified in kn, we have

(1.2.) LEMMA. // the restriction φ\Z is not trivial, then e(Trφ)Dn=0 for all

0.

Following [3], we have
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(1.3) LEMMA. For m^n^O, we have

Dn/Dή = ((Zp/pm~nZp)lG/Z-]y as ZPίGl-modules.

(1.4) LEMMA. For m^n^O,

0 — > Dή •—•> Aΰ — > (An)Γn/Dή —> 0

is an exact sequence of Zp[_C]-modules, where a is induced by the canonical in-
clusion Aή-+Am.

For m^tt^O, put

where s is a generator of Gal(&m/£n) (c.f. [3]). Define a homomorphism β: M4m)

-*Dm by β(a)=(s—l)a. Then .D^cKerβ—(^4~)Γ^. We have an exact sequence
of ZP[_G]-modules:

0 — ^ ( ^ ) Γ » / ΰ ^ — > M^/D~m — > Z)^ . (1.5)

From Lemma (1.4) and since M(

n

m)/Dm=(A'ΰ)Γn, we have an exact sequence of
^[G]-modules:

0—+A'n—* (A'ήfn —> D~m . (1.6)

§ 2. Reduction.

In this section, we reduce Theorem (0.3) to the following theorem.

(2.1) THEOREM. Suppose that
(1) k/Q is a finite abelian extension,
(2) k is imaginary, and
(3) p is totally decomposed in k/Q.

Then we have

*{AίΓ)Γn = *@Λφ/(f(T ωφ-'), ωn) for n^O ,
Φ

where Φ and φ are as in Theorem (0.3).

In Theorem (2.1), we need not assume that the degree [_k: Q] is prime to p,
and it is essential that p is totally decomposed in k/Q.

Let k/Q satisfy the conditions (1), (2), and (3) in Theorem (0.3). For n^O,
let Qn be the n-th layer of the unique Zp-extension of Q (c.f. [6]). Since [_k : Q~\
is prime to p, we see that kn—kQn.

(2.2) LEMMA. ^ - Π Π L ( O f V ) for n^O,
P Φ v
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where φ runs over all characters of Gal (&/(?) such that φ(j) = — l and φφω, and
η runs over all characters of Gal(Qπ/Q).

As in § 1, let Z be the decomposition group of p for k/Q. Let Xx (resp. X2)
be the set of all Qp-irreducible characters Ύrφ of G=Gal(fc/Q) such that φ{j)
= -1 and φ(p)=l (resp. φ(p)Φl). Let m ^ n ^ O . Put Afήtl= Θ e(Φ)A'ή, and

Aή.i= θ e(Φ)An for i=l and 2. Then A'ή=A'ήΛ@Afή,2, and A^=A^tl®A^,2.
Φ<=Xτ

From Lemma (1.2) and (1.6), we see that

(A^2)
Γn = A'n:2=:An,2. (2.3)

Let A(kz)n denote the £-Sylow subgroup of the ideal class group of (kz)n, where
(kz)n is the n-th layer of the cyclotomic Z^-extension of the fixed field kz of Z.
Then

-n = A~nΛ and A{kz)^ = A^Λ. (2.4)

By Lemma (2.2) for kz, we have

where φ runs over all characters of Gsl(k/Q) such that φ(j)= — l, φφω, and
φ\Z=l, and ̂  runs over all characters of Gal(Qn/Q).

In the rest of this section, we shall prove the following lemma.

(2.6) LEMMA. Theorem (0.3) follows from Theorem (2.1).

Proof. Assume that k satisfies the conditions (1), (2), and (3) in Theorem
(0.3). For any n^O, there exists an integer m^n such that

'ή)Γ» and (AL-)Γ»=Wή)Γ».

Hence, by (2.3) and (2.4), we have

(ALΎn=(A^ynQ{Λ^2)rn^Λ{kz)LΊrn^A-n,2. (2.7)

By Theorem (2.1) for kz, we have

Γ /{f{T; ωφ~'), ωn)

Aφ/{f(T\ωφ-ι),ωn), (2.8)

where Ψ and ψ are as in Theorem (2.1) with respect to kz. On the other hand,
since An = An,i@An,2 = A(kz)n®A->2, from (2.2) and (2.5), we see that

Mή.«~ Π Π ^ O ̂ V 1 ) - Π Π ftζ-l ωφ-1). (2.9)
p φ\ZΦl η p φ\ZΦl ζpn==1

Combining (2.7), (2.8), and (2.9), we obtain Lemma (2.6).
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§3 The group of imaginary ^-units.

In the following, we assume that k satisfies the conditions (l)-(3) in Theorem
(2.1). For n^O, let Hn be the group of ^-units of kn:

Hn= {a^knI(OL)=product of primes of kn lying over p}.

Let m^n^O. Let Nm,n\ km->kn be the norm map. Recall that

where s is a generator of Ga\(km/kn).

(3.1) DEFINITION. We define a homomorphism

ψn lvln ^ I1n IiVm, n\nτn )

in the following way (c.f. [1, 3]). Let ceMi m > and let I G C . Then Sl1"*=(α)a3
for some α e ^ i and some ideal S3 which is a product of primes of km lying
over p. Define

This is well-defined (c.f. [3]), and we have

(3.2) LEMMA ([3]). (1) K e r ^ ^ m ) = ( ^ m ) Γ ^ , and

(2) Im φ}T> = (Hi-JΓ\Nm, n(ft jk) 1 " ')/^. n{H%'\

Proof. (1) See [3],
(2) By άeΆmύonoί ψim\lmψ^CL{Hi^(ΛNm,n{k^^^ Take any

aξΞkm such that Nm>n{ά)^Hιn3. Then (Nm>n(a)) is an ideal of kn which is a
product of primes of kn lying over p. Since each prime of kn lying over £ is
totally ramified in km/kn, there exists an ideal 93 of km which is a product of
primes of km lying over p such that (Nm>n(a))=Nm,n(β). Then iVTO,n(αS5":ι)=(l).
Thus there exists an ideal St of km such that (α)©" 1 ^^ 1 "* . Let r be an in-
teger prime to p such that the class of SίrC1-^ is contained in ^4^. Put a—class
of St r c l"Λ . Then G G M ? ' and ^im)(fl)=^VTO,n(α2rC1-Λ) modiVw > n(i/^). Since

niH^) is a finite abelian £-group,

(3.3) COROLLARY. φ

0 — > A'n — > (^-) Γ » — > I m ^ — * 0

an £xacί sequence of Zp[_G^\-modules, where φ is induced from ψ^ since
m)(Dή)=0 (c.f. (1.5) and (1.6)).
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§4. p-aάic regurators.

In this section, we shall define £-adic regurators for certain subgroups of
HI'3. Assume that k satisfies the conditions (l)-(3) in Theorem (2.1). For n^O,
let En be the unit group of kn and let Pn be the subgroup {{a)\a^Hn} of the
ideal group of kn. From a natural exact sequence 0-*En—>Hn—^P^-^O, we have
an exact sequence 0-*EnΓΛHl-J-+HlrJ-*P1

7r
J-+0. Let μ{kn) denote the group of

all roots of unity in kn, then we have EnP\i/Jfj'=μ(kn)ΓΛH1^'. Hence, we have
(letting n=0)

We note that PJ"-7 is a free Z-module of rank g—\_k : Q]/2. Assume that M is
a submodule of μ{k)Hl~3 such that μ(k)M/μ(k) has rank g. Let 7721? ?n2, ••• , ?n̂
be a system of elements of μ{k)M such that mi modμ(&), ••• , mg mod/^(^) are
^-basis of μ(k)M/μ(k). Let Si, 52, ••• , sg be a system of representatives of
G/{1, y}. Let logp denote the j^-adic logarithm from Qx

p into Qp normalized by
logp p=0 and l o g p ζ = 0 for ζ ^ - ^ l (c.f. [5]). Recall that p : Qc*Qp is the fixed
embedding. Then p(k)dQp by the assumption (3) in Theorem (2.1).

(4.2) DEFINITION. We define the p-aάic regurator of M by

Rp(M)=άet[ •: : up to ± 1 .
\logp ρ(sgmι), '•• , logp ρ(sgmg)/

T h i s d e f i n i t i o n i s i n d e p e n d e n t o f t h e c h o i c e s o f ( s l t ••• , s g ) a n d (77^1, ••• , m g ) .

(4.3) LEMMA. Let MxCM^ be submodules of μi^H'f1 such that
Then, RP{M2)ΦQ, and

W ί u p t 0 ± 1

% 5. Gauss sums.

In this section, we recall Gauss sums in [4]. Assume that k satisfies the
conditions (l)-(3) in Theorem (2.1). Let N be the conductor of k/Q. Since p
is totally decomposed in k, N is prime to p. Let K—Q{μN), GN=Ga\(K/Q),
H—G%\{K/k), and let D be the decomposition group of p for K/Q, where μN

denote the group of all JV-th roots of unity in Q. For any ί e Z such that
(f, N)=l, define st^GN by s t (ζ)=ζ ί for all ζe=μN. Then J)=<sp>. Let v be the
place of Q corresponding to the fixed enbedding p: Qc*Qp. Let p (resp. pN) be
the prime of k (resp. K) which is the restriction of v to k (resp. K).

(5.1) DEFINITION. Put
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JlN = — Z/Z— {0 mod Z) and AN=Map ( ^ , Z).

For a = (t/NmodZ)(ΞJIN, let δt/N=δa^AN be the map defined by δ α (α)=l and
<5α(b)=0 for b^JίN with fr^α. The group G^ acts on JίN and A^ by

St(t'/NmodZ)=tt'/N modZ for steGN , t'/NmodZ&JlN

and

(sα)(α)=α(s"1α) for

We define the Gauss sum g(α, j)^, ?P" Tr)=(gr(α, J)^) as in (1.3) and (1.4) of [4].

(5.2) Note. Let a<=NAN. Then g(a, pN) is contained in KD. The action of GN

on ^r(α, p v) is given by

g(a, pN)S:=g(sa, PN) for s^GN .

For xe/?, let <x> be the unique real number such that 0^<*><l and
For α = (ί/Λ^modZ)e<J^, let <a} = <t/N>, and for α e A ^ , let n(a)

- Σ
Let Γp be the />-adic F-function defined by Morita. As in [4], we define

Γp: AN-+ZP by

Γp(a)= Π Γp{(a>Yw for

The following theorem was proved by Gross and Koblitz [4].

(5.3) THEOREM. // w(α)eZ, then

p{g{a, pN)) = (-p)n^DSa'Γp( Σ set) in Qp .

s(~D

(5.4) COROLLARY. L^ί a^NAN. Then

logpρ(g(a, pN))=ΈDlogpΓp(sa).

Let X~={φE:0\φU)=-l}. Let M be a divisor of N. We put XM=
conductor of φ=M} and HM=Gal(Q(μN)/Q(μM))aGN. Recall that 2 g = [
= *G = *(GN/H)- Fix a system of representatives {slf ••• , s25} of GN/H(SI

For ^ e Z " , let

and
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Then we see that #G Σ # e Z [ G ] and *G Σ e(φ)zΞZ[GN'].

(5.5) DEFINITION. Let Ak be the submodule of NAN generated by

{*G Σ e(φ)Nδ1/M\M\N}.

(5.6) DEFINITION. We define the Gauss sum gk(a) of k associated to a^NAN by

gk(a)=NKD/k(g(a, pN))

and the group Qk of Gauss sums of k by

We define a Z[Gjv]-homomorphism Sk: NAN^Z[_G~] by

Sk(a)= Σ nisaXsH)-1 for

We have Stickelberger relations for k.

(5.7) If a<ΞNAN, then

(^*(a))=|) 5* c a ) in A.

For n^Q, let Dw be the subgroup of the ideal group of kn generated by primes
of kn lying over p, and let G*={(gΛ(α))|αeA*}. From (5.7), G^ is a Z\_G~\-
submodule of Do.

(5.8) PROPOSITION.

(DJ-': Gϊ')={2gN)' Π {*HM)X~M Π L(0 ^ " x ) .

Proof. Since /> is totally decomposed in k, we have

We _compute the index (DJ-'. Gί- O in ( l-y)Z[G]®Q 2 , = (l--y)Q2,[G] and in
^WQp[G]=^(^)Qp for ^ G Γ , because ( l - y ) G P [ G ] = 0 e(^)Qp. LetM|A^and

φEX~

let Φ<=XM. For L|iV, we have

Σ e(φ)Nδ1/L)
L

(e(φ)*GN Σ <ΐ/M)φ-\stH) if L=M,

10 if LΦM.

Futhermore we have

Σ <t/M>φ~KstH)=*HM Σ <t/M)φ-MKstH),
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where st=stHM, GM=GN/HM, H=HHM/HM, and φM is the character of GM/H
induced from φ. Hence

iφyMK φ) if L=M,
e(φ)Sk(*G Σ e(ψ)Nδ1/L)=\\

10 if LΦM.

Since (l—j)e(φ)=2e(φ), we have

(D5-':Gi-')=(2sΛO* Π (*HM)X* Π Lφ φ'1).
M\N ψϊΞX-
Π

M\N

We shall compute the £-adic regurator of Q\~3 by using /)-adic L-functions.

(5.9) THEOREM.

Π {*HM)Z* Π L ί ( 0 ; ω^"1) 2^ ίo ± 1 .

We recall a result of Ferrero and Greenberg [2].

(5.10) THEOREM. Lei M\N and let Φ^XM. Then

L'iO ωφ-1)^ Σ

By (5.10) and (5.4),

L̂O ^-^-^^-Σ^-^log^fe,^^)5). (5.11)

Put gk.M = gk(Nδ1/M). We have, for st^GN with stH=s,

logpP(gk(N*G Σ 8{φ)stδ1/M))
Φ^XM

*G Σ e(ί&
)

(5.12) Claim. Let L\N and let ^ e Z z T h e n

Σ
Σ φ'1(s)\ogpp[(gk,M)
EG

[Έφ\)gvP{{gk,Mγ) if L=M,

0 if LΦM.

In fact, computing in QPlGl®\ogp p(£l-j)=QPlG^ = Έe(φ)Qp, because logp

CQP, we have

Σ
SGG
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= e(φ)*G Σ

M)s) if L=M,

.0 if LΦM.

Proof of Theorem (5.9)
Define the map logp: £β-MW)Qp[G] by

logp(x)=(l-j) Σ logp/oU Js"1 for
βGG/UJ}

Since _log p (^^)C(l-y)Qp[G], we compute i ? p ( ^ " ) in ( l -
(l~y)Qp[G]= Θ_β(0)QP. Since Q\~3 is generated by

#ί? Σ e(.φ)

(gU) φGXϊ for all M\N, L\N,

we have from (5.12)

±Rp(£ϊη=π π

={2*G)*X~ Π Π N*HML'P(O ω^" 1). Q. E. D.
MιN φe*M

Ferrero and Greenberg [2] have proved that L'p(0; ωφ'^ΦO. Then we see
that Rp(ύ\-j)Φΰ. Hence, by Lemma (4.3),

Rp(Hl~j)Φ0 (c.f. [3]). (5.13)

§6. Proof of Theorem (2.1).

In this section, we shall prove Theorem (2.1). Let n^O. Recall that Ώn —
m\^\P in kn,m{^)^Z}. Let £>n be the principal ideal group of kn.

Put P ^ ^ n D ^ and £Dn=Ί)n/Pn. Then

(DJ- >: PJ- 0=#£)}-•> (up to a 2-factor)

From Lemma (4.3) and (5.13), we have

Thus, from Proposition (5.8) and Theorem (5.9), we have

Π LίiO ωφ-1) Π W φ-1)
( u p t 0 a 2 - f a c t o r ) ( 6 υ

(6.2) LEMMA. For ra^O,



514 TAKASHI FUKUDA

/ U X M-7\\ _ . -r

Proof. Recall the map \ogp in §5. Since km/k is totally ramified at p, by
Hasse's norm theorem following [3], we have

for xe=#J->. Q. E. D.

(6.3) For n^O and for a sufficiently large m^n,

In fact, by Lemma (6.2), there exists a sufficiently large m^n, such that

zp®Nn>Q(

(6.4) For m ^ n ^ O , we have

{

and

For any n^O, let m be an integer satisfying (6.3). Since the norm maps
NTO, n: D^-^D^"-7 and Nn, 0 : D '̂̂ -^DJ"-7 are bijective, we have the following diagram :

D i-j —) pi-;

0 (6.5)

D J - O P J - O P J - ^ N , , . ,(a>irθDNm. 0(Pir

We have, by (6.5),

Hence, by Lemma (3.2) and (6.4), we have

Thus, by Lemma (6.2) and Lemma (1.3), we have
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*Imφ'n

m )~p-gRp(m~ j). (6.6)
v

Note that
L'p(0 ωφ-1) ~ />/(0 ωφ-1). (6.7)

P

Proof of Theorem (2.1)
For a given n, take an integer m^n such that (AΌr)Γn=(A'm)Γn and (6.3)

holds. By using (3.3), (6.1), (6.6) and (6.7), we have

*(A'ήfn~ Π Π / ( ζ - l α^-1),

because

Π Π /(ζ-1 ω^"1).
φX

Hence, we complete the proof of Theorem (2.1).

§ 7. Examples.

1. Let p—5, and k be the unique subfield of Q(exp(27π/1949)) of degree 4
over Q. Then 5 splits completely in k/Q. There are two imaginary Q5-irredu-
cible characters of Gal(fe/Q). We have Mό=53 and D-0^Z/5Z®Z/5Z, by an
easy computation. Hence * A'f—5. By a computation (modulo congruence) of the
coefficients of f(T ωφ'1), we have

Φ

Using Theorem (0.3) we have #(^44r)r°=58. Hence Ar

Q~^(Af^)Γ\ Moreover, we
see that #τ4γ=59, #Dτ=54, and *A[-=5\ Note that ^"-invariant of k (for />=5)
is 6.

2. Let ί = 5 , and k be the unique subfield of Q(exp (2τr//2269)) of degree 4
over Q. We have

By using Theorem (0.3), we have (,4£r)Γo={0}. Hence *DQ = *AIΪ=53. Note that
^--invariant of k is 2. We have τ4ό~—(AΌr)Γ°={0}.
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Addendum in proof

We received from Gross the preprint of [8] after we had sent him the pre-
print of this paper. There is a partial overlap between the content of [8] and
that of this paper. Assuming Conjecture (5.3) of the paper of Federer and Gross
[7] and combinig their Proposition (3.9) [7], one will get Theorem (0.3) in this
paper in the case of n=0. In [7], they announced that Conjecture (5.3) of
abelian case was proved in [8]. In this paper, without assuming Conjecture
(5.3) [7], we prove Theorem (0.3) for all n^O by using Theorem (5.9).




