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A CLASS NUMBER FORMULA OF IWASAWA’S MODULES

By TAkAsHI FUKUDA

§0. Introduction.

Let p be an odd prime number which will be fixed throughout the following.
Let & be a finite extension of @ and k. be the cyclotomic Z,-extension 2Q. of
k, where Q.. is the unique Z,-extension of @ (c.f. [6]). For any n=0, let &,
be the unique extension of % in k. of degree p"™ over k: =k, Ck,C - Cke,
and let I,=Gal(k./k,). Let A, be the p-Sylow subgroup of the ideal class
group of k, and D, be the subgroup of A, consisting of ideal classes containing
ideals TIP™®, where P runs over all primes of %, lying over p and m(P)e Z.
Let A;, be the factor group A,/D, (c.f. [6]).

We assume that 2 is a CM field. Then k. is also a CM field. Let ; denote
the complex conjugation of k.. For any Z[{l, j}]-module M, let

M-={acM|(1+j)a=0}.

(0.1) DEFINITION. Let Az=lim A, and AL =lim A}, with respect to the natural
maps induced from inclusion maps k,—k, for m=n=0.

In [3] Greenberg, and in [2] Ferrero and Greenberg have proved that, if %
is abelian over @, then the order of (A% )/ = is finite for any n=0. We shall
compute its order by using p-adic L-functions associated to 2 when the degree
of k over @ is prime to p.

In the following, we assume that % is a finite imaginary abelian extension
of @ whose degree is prime to p. Let G denote the Galois group Gal(k/Q)
and G be its character group Hom (G, @j), where @, is a fixed algebraic closure
of @, We also consider G as the set of primitive Dirichlet characters with
values in Qp which are associated to the extension k/Q by class field theory.
Let @ be the Teichmiiller character module p. Take ¢=G with ¢+w and ¢(;)
=—1. Let L,(s;w¢™") be the p-adic L-function attached to wg™*. For rsl+pZ,
with k€14 p2Z,, using Iwasawa’s construction of p-adic L-functions, we have
the unique power series f(T; wg~')= A, such that

FE wp)=Ly(s; wp™),
where Z,[¢1=Z,[{all values of ¢}] and A;=Z,[¢][[T]]. We note that
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JO; 0 V=L,0; wp)=1A—¢ " (p)LO; ¢~1).
(0.2) DeFINITION.  We define AT ; wp~)e 4, by

4 f(T;wp~)/T i $(p)=1,
AT w¢"):{ )
(T; wp™) otherwise.
Ferrero and Greenberg [2] have proved that f(O;wgﬁ“):ﬁO. Then we see that
fC—1; wp=H#0 for all { with £?"=1 and n=0.

Hence the order of
Ag/([(T; 097, @)

is finite, where w,=(1-+T7T)2"—1.

For a finite set A, let #A denote the cardinality of A. A representation of
a group G will be called Q,-1rreducible if it is defined over @, and irreducible
over Q,. A character of G will be called Q,zrreducible if it is the character
of some Q,-irreducible representation of G.

(0.3) THEOREM. Assume that
(1) %/Q is a finite abelian extension,
(2) ks imaginary, and
(3) the degree [k: Q] 1s prime to p.
Then we have

#(A;‘)fn:*§A¢/(f<T;w¢-1>,wn) for all n=0,

where @ runs over all Q,-irreducible characters of G=Gal(k/Q) such that ®+w,
O(H+#Q(1) and ¢ is an absolutely irreducible component of @.

For a, b=Q;, we write a~b if ord,(a)=ord,(b). Note that
p

A /(AT 5 wp™), 0,) ~ 1;1{ I fC—1; w7, 0.4)

pPh=y

I

where ¢ runs over all “conjugates” of ¢ over @Q,.
7 p

(0.5) Remark. When no prime of the maximal real subfield 2* of %2 lying over
p splits in %, our formula in Theorem (0.3) is a direct consequence of the
analytic class number formula for %k (c.f. [1]). But, if there exist some primes
of k* lying over p which split in %, then (Az)"» is an infinite group and
fQO; wp™") vanishes for some ¢.

(0.6) Remark. To prove Theorem (0.3), we use essentially Gauss sums, Gross-
Koblitz formula concerning a relation between Gauss sums and special values of
Morita’s p-adic I-function in [4], and Ferrero-Greenberg formula concerning
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Ly0; %) in [2].

(0.7) Remark. The assumption (3) is not essential. In fact, to prove Theorem
(2.1), we need not assume that the degree of %2 over @ is prime to p.

(0.8) Remark. In [2], Ferrero and Greenberg proved Theorem (0.3) when % is
imaginary quadratic and n=0.

We define fundamental Iwasawa’s modules in § 1. In § 2, we reduce Theorem
(0.3) to Theorem (2.1). In §3, we introduce an essential exact sequences of
Iwasawa’s modules following [3]. And in §4, p-adic regurators are defined.
In § 5, following [4], we define Gauss sums, which we use to combine orders of
two modules in Theorem (2.1). And the group of Gauss sums is introduced.
In §6, we prove Theorem (2.1). In §7, some examples are given.

The author had studied some parts of the content of this paper from Decem-
ber 1980 till July 1981 with H. Nakazato. The author expresses his gratitude
to Mr. H. Nakazato for his allowance of publishing this paper.

Notations.

As usual, Z, @, R, and C denote the ring of rational integers, the field of
rational numbers, the field of real numbers, and the field of complex numbers,
respectively. For a prime number p, Z, and @, denote the ring of p-adic in-
tegers and the field of p-adic numbers, respectively. Let @ (resp. @,) be an
fixed algebraic closures of @ (resp. Q,). We also fix embeddings Qc.C and

0:Qc.Q,.

§1. Iwasawa’s modules.

Let %/Q be as in Theorem (0.3). Since the degree of £ over Q is prime to
, all primes of %2 lying over p are totally ramified in k. Since (AZ)/» is finite
for n=0, and the natural maps A, — A, are injective for m=n=0, we have

(L.1) LEMMA. For any integer n=0, there exists an integer m, such that (Al5)"»
=(A) ' for all m=mo.

Let Z be the decomposition group of p for 2/Q. Recall that G=Gal(k/Q)
and G=Hom(G, @;). For any ¢=G, Tr¢ denotes the @,-irreducible character
of G which contains ¢ as an absolutely irreducible component, and e(Tr¢)
denotes the orthogonal idempotent in Z,[G] associated to Tr¢. We consider
Ay, Dy, and A; as Z,[GJ]-modules in the natural way. Since all primes of £
lying over p are totally ramified in &, we have

(1.2.) LEMMA. If the restriction ¢|Z is not trivial, then e(Tr$)D,=0 for all
n=0.

Following [3], we have
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(1.3) LeMMA. For m=n=0, we have

Drn/Daz=((Z,/p™ " Z)G/Z])~  as Z,[Gl-modules.
(1.4) LEMMA. For m=n=0,
a
0 —> Dy —> Ay —> (A)"'»/ D7 —> 0

is an exact sequence of Z,[Gl-modules, where a is induced by the canonical in-
clusion Ap—Anp,.

For m=n=0, put
MW ={ac Az |(s—1)ac Dy},
where s is a generator of Gal(kn/kz) (c.f. [3]). Define a homomorphism §: M{™
— Dy, by f(a)=(s—1)a. Then D;CKer f=(A7) ». We have an exact sequence
of Z,[GJ-modules:

0 — (A7)"*/ Dy —> M{™ /D5, —> Dy, . (L5)

From Lemma (1.4) and since M{™/D;=(A,;)"'», we have an exact sequence of
Z ,[ G)-modules :
0—> A —> (A7)’ — D5, (1.6)

§2. Reduction.

In this section, we reduce Theorem (0.3) to the following theorem.

(2.1) THEOREM. Suppose that
(1) k/Q is a finite abelian extension,
(2) k is imaginary, and
(3) p s totally decomposed 1n k/Q.
Then we have

‘*(A;o_y‘n:#?/l(/,/(f(?‘;wgzﬁ’l), w,)  for n=0,

where @ and ¢ are as in Theorem (0.3).

In Theorem (2.1), we need not assume that the degree [k : @] is prime to p,
and it is essential that p is totally decomposed in 2/Q.

Let k/Q satisfy the conditions (1), (2), and (3) in Theorem (0.3). For n=0,
let @, be the n-th layer of the unique Z,-extension of @ (c.f. [6]). Since [#:@Q]

is prime to p, we see that k,=k@Q,.

(2.2) LEMMA. “A;;JI;IHL(O;QS‘W)‘I) for n=0,
7
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where ¢ rnns over all characters of Gal(k/Q) such that ¢(j)=—1 and ¢+w, and
n runs over all characters of Gal(Q./Q).

As in §1, let Z be the decomposition group of p for k/Q. Let X, (resp. X,)
be the set of all @,-irreducible characters Tr¢ of G=Gal(k/Q) such that ¢(;)
=—1 and ¢(p)=1 (resp. ¢(p)#1). Let m=n=0. Put A;,;lque@ e(P)Al7, and

Ani= @ e(D)A;, for i=1 and 2. Then A=A, DAy, and A=A PAn...
From Lemma (1.2) and (1.6), we see that
(A n=Ar=Az,. (2.3)

Let A(k%), denote the p-Sylow subgroup of the ideal class group of (k£%),, where
(k%), is the n-th layer of the cyclotomic Z,-extension of the fixed field k% of Z.
Then

AR%)n= Ay, and A(R%)r=AL,. (2.4)

By Lemma (2.2) for %%, we have
*A(R?); ~HIIL(0 ¢ n7Y) (2.5)

where ¢ runs over all characters of Gal(k/@Q) such that ¢(;)=—1, ¢+w, and
¢|Z=1, and 7 runs over all characters of Gal(Q./Q).
In the rest of this section, we shall prove the following lemma.

(2.6) LEMMA. Theorem (0.3) follows from Theorem (2.1).

Proof. Assume that 2 satisfies the conditions (1), (2), and (3) in Theorem
(0.3). For any n=0, there exists an integer m=n such that

(AR r=(A(R")) ™ and (AL)'n=(A;) ™.
Hence, by (2.3) and (2.4), we have
(A 2 =(Am )" DA ) 2 (ARD)) 2D Az,. . 2.7
By Theorem (2.1) for k%, we have
HARD v =*D Ay /(AT ; ™), wn)

=D Ay/[(T; w47, w), (2.8)
€X'

where ¥ and ¢ are as in Theorem (2.1) with respect to #%. On the other hand,
since A=Az DAs .= Ak%)7PD A5, ,, from (2.2) and (2.5), we see that

#Ana~ T TLO; 67 )~ T T fC—1; 0p™). (2.9)

D PlZ#1 7 D 1Z#1rpn,

Combining (2.7), (2.8), and (2.9), we obtain Lemma (2.6).
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§3 The group of imaginary p-units.

In the following, we assume that . satisfies the conditions (1)-(3) in Theorem
(2.1). For nz=0, let H, be the group of p-units of £,:

H,={ask;|(a)=product of primes of %, lying over p}.
Let m=n=0. Let N »: kn—Fk, be the norm map. Recall that
Miw={acAn|(s—1asDz},
where s is a generator of Gal(k,/k,).

(3.1) DeriNITION. We define a homomorphism
O MY —> Hi? N, (i)

in the following way (c.f. [1, 31). Let ce M{™ and let Wec. Then A *=(a)B
for some askj), and some ideal B which is a product of primes of £k, lying
over p. Define

@™ (0)=Nu, n(a* ) mod Ny, o(H3?) .

This is well-defined (c.f. [3]), and we have

(32) LEMMA ([3]). (1) Kero{m =(A;)"», and
@) Im o™ =(Hy NN, o(E5) )/ N, o HE).

Proof. (1) See [3],

(2) By definition of o™, Im @™ C(HLY NNy, o(k3) ™)/ N, o(H5 7). Take any
ac kX such that N, (@)eHy?. Then (Nu .(a)) is an ideal of %, which is a
product of primes of %, lying over p. Since each prime of k, lying over p is
totally ramified in k,/k,, there exists an ideal B of k, which is a product of
primes of 2, lying over p such that (Nu, »(a))=Np,.(8). Then N, (aB-H=(1).
Thus there exists an ideal A of k, such that (@)B'=A'"S. Let » be an in-
teger prime to p such that the class of A"~ is contained in A;. Put a=class
of AT@-». Then eesM{™ and ¢ (a)=Nn,(a®??) mod N, (HS?). Since
(HS NN, o( k7)) / N, o(Hiy7) is a finite abelian p-group, Im o™ =(Hy NNy, »
(k3 )'9) /N, o(H3).

(3.3) COROLLARY. @
0— Ay —> (A7) —> Imep{™ —> 0

is an exact sequence of Z,[Gl-modules, where & 15 induced from @™ since
™ (Dr)=0 (c.f. (1.5) and (1.6)).
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§4. p-adic regurators.

In this section, we shall define p-adic regurators for certain subgroups of
H{=. Assume that % satisfies the conditions (1)-(3) in Theorem (2.1). For n=0,
let £, be the unit group of %, and let P, be the subgroup {(«)|a=H,} of the
ideal group of k,. From a natural exact sequence 0—FE,—H,—P,—0, we have
an exact sequence 0—E,NH,'—H,7’—P}7—0. Let u(k,) denote the group of
all roots of unity in k., then we have E,NH,’=pu(k,)NHY . Hence, we have
(letting n=0)

p(R)HY ™/ p(R) =Py~ . (4.1)

We note that P}~ is a free Z-module of rank g=[k:Q]/2. Assume that M is
a submodule of u(k)H§7 such that u(k)M/u(k) has rank g. Let my, my, -, m,
be a system of elements of p(k)M such that m, mod pu(k), ---, m, mod u(k) are
Z-basis of p(k)M/u(k). Let sy, s, -+, s, be a system of representatives of
G/{1, j}. Let log, denote the p-adic logarithm from @} into @, normalized by
log, p=0 and log, (=0 for {?~'=1 (c.f. [5]). Recall that p: Q.Q, is the fixed
embedding. Then p(£)CQ, by the assumption (3) in Theorem (2.1).

(4.2) DEFINITION. We define the p-adic regurator of M by

log, p(sum), -, log, p(sinty)

Rp(M):det( ) up to +1.

log, lb(sgml), -, logp ‘b(sgmg)

This definition is independent of the choices of (s;, -+, s,) and (mny, -, my).

(4.3) LeMMA. Let M,CM, be submodules of p(k)HS? such that R,(M,;)#0.
Then, R,(M,;)#0, and
Ry(My)

‘Egm;);:(ﬂ(k)]\fz: (k) M,) up to +£1.

§5. Gauss sums.

In this section, we recall Gauss sums in [4]. Assume that k& satisfies the
conditions (1)-(3) in Theorem (2.1). Let N be the conductor of £/Q. Since p
is totally decomposed in %, N is prime to p. Let K=Q(uy), Gy=Gal(K/Q),
H=Gal(K/k), and let D be the decomposition group of p for K/Q, where py
denote the group of all N-th roots of unity in @. For any t&Z such that
(¢, N)=1, define s, Gy by s,({)=C* for all Lepy. Then D={s,>. Let v be the
place of @ corresponding to the fixed enbedding p: @-Q,. Let p (resp. py) be
the prime of % (resp. K) which is the restriction of v to & (resp. K).

(5.1) DEFINITION. Put
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JIN:%]—Z/Z—{OmodZ} and Ay=Map(dy, Z).

For a=({/N mod Z)= Ay, let §;,;y=0,=Ay be the map defined by d,(a)=1 and
0,(b)=0 for be Ay with b+a. The group Gy acts on Ay and Ay by

s.(t’/N mod Z)=tt'/N mod Z for s,€Gy, t'//NmodZecAy
and

(sa)a)=a(s'a) for s€Gy, acAy, asdy.

We define the Gauss sum g(a, py, TTr)=g(a, pn) as in (1.3) and (1.4) of [4].

(5.2) Note. Let a=NAy. Then g(a, py) is contained in KP. The action of Gy
on g(a, py) is given by

gla, py)=g(sa, py) for seGy.

For xR, let (x> be the unique real number such that 0=<{(x)><1 and
x—<xyeZ. For a=({t/NmodZ)c Ay, let {a)=<t/N>, and for a=Ay, let n(a)
= 5 ala)a).

a N

Let I, be the p-adic I'function defined by Morita. As in [4], we define
I'y: Ay—Z, by

)= T [a))*®  for acAy.
aEd y
The following theorem was proved by Gross and Koblitz [4].

(5.3) THEOREM. If n(a)eZ, then
n( Yy say .
plgla, py)=(—p) ** Fp(sésa) in Qp.
(5.4) COROLLARY. Let acsNAy. Then

log p(glar, py))= 3 logy [(sar).

Let X ={¢=G|¢(j)=—1}. Let M be a divisor of N. We put X={g=X"|
conductor of ¢=M} and H,=Gal(Q(ux)/Q(ex)CGy. Recall that 2g=[k: Q]
=*G=%Gy/H). Fix a system of representatives {s,, -, ss,} of Gy/H (s;=Gu,
1<i<2g). For ¢=X-, let

()= TP €QC]

el

and

)= 3 s H) s c@y[Gn].
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Then we see that *G X e(@)=Z[G] and *G ¥ &@)=Z[Gy].

PEX 3y PEX 3y

(5.5) DEFINITION. Let A, be the submodule of NAy generated by
{*G X e(@)NOy x| M| N} .

Xy
(5.6) DEFINITION. We define the Gauss sum g(a) of & associated to a= NAy by
gu(a)=Ngp;x(gla, by))
and the group &, of Gauss sums of £ by
Gr={gwl@)asA,;}.
We define a Z[G yl-homomorphism S,: NAy—Z[G] by
S,,(a):sez,;Nn(soz)(sH)'1 for acNAy.
We have Stickelberger relations for k.
(5.7) If a=NAy, then
(gel@)=p5® in k.

For n=0, let D, be the subgroup of the ideal group of k2, generated by primes
of %, lying over p, and let G,={(gs(a))|acA,;}. From (5.7), G, is a Z[GJ-
submodule of D,.

(5.8) PROPOSITION.
% —
(D57 G;‘e")=(2gN)ngl';v(*HM) X”ég_ L©O; o).

Proof. Since p is totally decomposed in %, we have
Dy =(1—7Z[G]-p=(1—))Z[G].

We compute the index (D§=’:Gj}~) in (1—@Z[G]®Qp:(1—_]')@p[G] and in
e($)Q,[Gl=e($)Q, for p= X, because (l—j)Qp[széee?{_e(gz’))Qp. Let M|N and
let = Xy. For L|N, we have

e(@)S:(*G X ePINOy 1)

JsXT]
{€(¢)*GN ZG) /M>p~ (s H) if L=M,
= StECGN
0 if L+M.

Futhermore we have

2 /MG (s H)="Hy 3 /M@y H),

StEG N tSCGpr
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where §,=s;Hy, Gy=Gy/Hy, H=HHy/H,, and ¢ is the character of Gyu/H
induced from ¢. Hence
e(P)*GN*Hy L(0; ¢~ if L=M,
e(P)S (*G X &(P)NGy )= )
$eXT 0 if L+M.
Since (1—)e(d)=2e(¢p), we have
(D} Gi)=(2gN)* TI (*H,) ™™ TI_L(O; ¢°).
MIN pEX -
We shall compute the p-adic regurator of ¢j~7 by using p-adic L-functions.

(5.9) THEOREM.

. FxT
R(@})=(4gN)® T1 (*Hy) Xﬂfﬁg{_Lg,(o swo ) up to +1.

We recall a result of Ferrero and Greenberg [2].
(5.10) THEOREM. Let M|N and let ¢<= X5. Then
Ly0; wp )= 2 ¢7(5,)108p L'p(s:01/x) .
$teECGy

By (5.10) and (5.4),

Ly0; wp™)= 7\,;%; 2, 87(s)10gp p(g#(NGwx)°) . (5.11)

Put gi x=g«(Ndyy). We have, for s,eGy with s,H=s,
log, p(ge(N*G 2 &(¢)si0um))
PEX 3y

G X eld)s
=log, p((gk, u)  9EXy )

(56.12) Claim. Let L|N and let g=X;. Then

G X ed)s
s;GqS_l(s)lOgP p((gk,)l) Xy,

_{*‘Gg%gb“(s)logp,o((gk,_,w)s) it L=M,
o if L+M.

In fact, computing in @,[G1Rlog, p(g’}e‘f):Q'p[G]:%) e(4)®,, because log , p(Gh)
CQ,, we have

G X eld)s
0(9?5)%:,;5"1 log , p((gk, u)  sexy
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=e(@)*G X e(¢) X2 s log, p((gr x)?)
ngX;[ SEG
{e(gﬁ)*ng_‘G,gb‘l(s) log, 0((gs. u)*) if L=M,
o if LeM.

Proof of Theorem (5.9)
Define the map log,: Hi7—(1—7)Q,[G] by

logp(x):(l—j)_ez )logp‘o(xs)s‘1 for xeH7.
S >0

G/{1

Since log, (g} )C(1—/)Q,LG], we compute R,(¢}%) in (1—/)Q,[GIRQ,=
(l—j)Qp[G]=¢(§9 e(#)Q,. Since G}’ is generated by

-

¢ % e

(ghd) ¢<%L for all M|N, LI|N,
we have from (5.12)

R, (G)= II 2°G 2 ¢7'(s)log, 0((g#,20")
EXI_K s

MIN¢

=2¢G)"* 11 1II N¥Hy L0 wp™). Q.E.D.
MIN sexy,

|

Ferrero and Greenberg [2] have proved that L,(0; wg$=")=0. Then we see
that R,(g}%)+0. Hence, by Lemma (4.3),

R,(HyH=#0  (cf. [3]). (5.13)

§6. Proof of Theorem (2.1).

In this section, we shall prove Theorem (2.1). Let n=0. Recall that D,=
{TIP™® |Plp in k,, m(P)sZ}. Let P, be the principal ideal group of k..
Put P,=<¢,ND, and 9,=D,/P,. Then

Dy PiH)=*9§— (up to a 2-factor)~ #Dj.
b4

From Lemma (4.3) and (5.13), we have

1-J 1-7 . 1-7
__%:—((%)_—j))-z(m‘f: G},‘f)Z/(—Ilo";GLl (up to a 2-factor).

D7 : PyY)
Thus, from Proposition (5.8) and Theorem (5.9), we have

L L Lo TL L0 g7

R (H) CRgi (up to a 2-factor) (6.1)
¥4 0 0

(6.2) LEMMA. For m=0,
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p(mﬂ)g

CHS /(2 ON o 3D o sy -
p\U1p

Proof. Recall the map log, in §5. Since k,/k is totally ramified at p, by
Hasse’s norm theorem following [3], we have

XENm, o kp) 7’ @ log,(x)e(l—p™Z,[G], for x€H)’. Q.E.D.
(6.3) For n=0 and for a sufficiently large m=n,
ZyQUH NN, ol k) ) =Z (N, o[ HE I N No, () )
In fact, by Lemma (6.2), there exists a sufficiently large m=n, such that
Z,QNn, o )T Z yQUH NN, ol k7))
(6.4) For m=n=0, we have
(Z,QH§™: ZyQHE NN, o( ki)' ™))

=(Z,QP}: Z,@P4 NNy, o(@57)))
and
(ZP®(H;L_]mNm. n(k;L)l_] : Zp®Nm, n(H;n_]))

=(Zy QP NN, (L5 7)) 1 ZpQNum, o(Pi7)) .

For any n=0, let m be an integer satisfying (6.3). Since the norm maps
N, »:Di7—=D47and N, ,: DL7—D}~7 are bijective, we have the following diagram :

D} - P}
. ]
D;~ DP NN, o(L5 ) DN, 2(P17) 6.5)

2Nao | )|

D7 DPi ' DP NN, o( P ) DN, o P17)
We have, by (6.5),
(Z,QP1?NNp, o(PR) 1 Z QN o(P57))

_ (Z,RD%7: Z, QP47
(Z,QD§7: Z, QP INZ, QP72 Z QP NNy, o @57)

Hence, by Lemma (3.2) and (6.4), we have

$Im o™ = *(Dw/Dy)
T Z,QHY T Z,QHY NNy o))

Thus, by Lemma (6.2) and Lemma (1.3), we have
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“Im o™ ~ p=4 R p(Hi™) . (6.6)
y4

Note that
Ly0; 09~ p 0; wp™). (6.7)

Proof of Theorem (2.1)
For a given n, take an integer m=n such that (AL) »=(A%) = and (6.3)
holds. By using (3.3), (6.1), (6.6) and (6.7), we have
# Alr Iy~ % —1; -1y,
Ay I 1 FE=15097)
because
HAL)AY) ~ FC—1; wp™).
(Ai/ A5 T Egl:n[:l]‘(c wg ™)

Hence, we complete the proof of Theorem (2.1).

§7. Examples.

1. Let p=5, and % be the unique subfield of Q(exp(277/1949)) of degree 4
over Q. Then 5 splits completely in 2/Q. There are two imaginary @;-irredu-
cible characters of Gal(k/Q). We have #*A;=5% and Dy=Z/5ZDZ/5Z, by an
easy computation. Hence #A;-=5. By a computation (modulo congruence) of the
coefficients of f(T'; wg™'), we have

"D/ T 5 097, 0)=5".

Using Theorem (0.3) we have #*(A%)v=5%. Hence A;"E(AL)T0. Moreover, we
see that #* A7=>5°, #D7=5% and #A;~=5°% Note that A -invariant of %k (for p=5)
is 6.

2. Let p=>5, and % be the unique subfield of Q(exp(2r1/2269)) of degree 4
over Q. We have

@Ags/(f(T; wp™), wo)= {0} .

By using Theorem (0.3), we have (A%)7°={0}. Hence *D;=*%A;=5°. Note that
A--invariant of % is 2. We have Aj~=(AL)lo={0}.
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Addendum in proof

We received from Gross the preprint of [8] after we had sent him the pre-
print of this paper. There is a partial overlap between the content of [8] and
that of this paper. Assuming Conjecture (5.3) of the paper of Federer and Gross
[7] and combinig their Proposition (3.9) [7], one will get Theorem (0.3) in this
paper in the case of n=0. In [7], they announced that Conjecture (5.3) of
abelian case was proved in [8]. In this paper, without assuming Conjecture
(5.3) [7], we prove Theorem (0.3) for all n=0 by using Theorem (5.9).





