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FIBRE HOMOTOPY SELF-EQUIVALENCES

BY SEIYA SASAO

Introduction.

Let ξ be a fibre space p: E-^E which means that the projection p has the
COVERING HOMOTOPY PROPERTY for CW-complexes. Then a m a p / : £ - > £
is a fibre preserving map if p°f=p and a map / 0 is fibre homotopic to a map
fx if there exists a homotopy / £ : £ - ^ £ such that p°ft—p for all t. Now we
call a fibre preserving map / : E^E a fibre homotopy self-equivalence if there
is a fibre preserving map g: E-+E such that g*f and fog are both fibre homo-
topic to the identity 1E. Then it is clear that the set of fibre homotopy classes
of fibre homotopy self-equivalences forms a group under the multiplication defined
by the composite of maps, which we denote by -£(£). This group X(ξ) has been
studied by several authors ([4], [5]) and also the purpose of this note is to in-
vestigate JC{ξ) for ξ, a sphere bundle over a sphere. By using Gottlieb's theorem,
K. Tsukiyama showed in a preprint that there exists a split extension:

0 —-> πn+q(Sq) —-> X(ξ) — > Z 2 -—> 0

for ξ, a Sα-bundle over Sn (n + 2^q). As a generalization of this result we
prove

THEOREM A. Let ξ:Sq^E-+Sn be a Sq-bundίe over Sn (n, q>2) with a
cross-section, so that there exists η<^πn-i(SO(q)) with i*(η)=ξ. If J(η) is contained
in Σ2(πn+q-2(Sq~2)) we have an exact sequence *

0 — > πn+q(S*)/lπn+i(S*), cq-] —+ X{ξ) —> Z,%Pq — > 0 ,

where P% denotes the kernel of the homomorphism defined by Whitehead product
L tq]' π

n(Sq)—>πn+q-i(Sq) and % denotes the semi-direct product with a relation
T'b'T=^(—cq)*b for

Moreover, as a bi-product of the proof of Theorem A, we obtain

THEOREM B. // J(τ})°Σq-1πn+1(Sn)c:tπn+i(Sq), cq~], then fibre homotopy self-
equivalences /o, / i : E-^E are fibre homotopic if and only if they are homotopic.
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COROLLARY. In the case n£2q—2, if J(ξ)°Σq(πn+1(Sn))=0 we have the same
conclusion as Teeorem B.

For example, Let Vn,2 be the Stiefel manifold O(n)/O(n—2) and let ξn be
the fϊbring Sn-2-^Vn,2-^Sn~1. Then the conditions of Theorem A are fulfiled if
ftΞΞO mod 4, n ^ 8 . Thus, from well-known results [_hn-i, tn-ίl^ΰ and \_hn-ihny
^-2]=0 for ftΞθ mod4, hnΦ§^πn(Sn~ι) we obtain an exact sequence (ft Ξ O mod4):

0 —> π2n-s(Sn-2) — > £(ξn) - ^ Z 2 — > 0 .

Analogously, in the cases of the complex and quaternion, there exist following
exact sequences:

0 — > π4ri_4(S2w-3)/[τr2n(S2w-3), c2n-z~] —> X(μn) —> Z2%P\lz\ — ^ 0

(ft^O mod 4),

0 — > π8n-6(Sin-5) — ^ X(vn) —>Z2—^Q (ft^O mod 24),

where μn is the ίibring: S2n-s->Wn,2-+ S271'1 and vn is the fibring: Sin-5-^Xn,2—
Sin~\

Here, we list up some notations which are used throughout this note.
Xγ: the space of continuous maps Y—>X endowed with C—O topology.
XY

Q: the sub-space of Xγ consisting of a base point preserving maps.
π${X, Xo)'. the set of path-connected components of X with the distin-

guished point x0.
J\ the /-homomorphism: πr{SO(n))—>πn+r(Sn).
Σn: the ft-fold suspension functor.
[α, /9] : Whitehead product.

1. Preliminaries.

Let ξ: Sq-*E—>Sn be a Sg-bundle over Sn with the characteristic class f e

and we consider the fibring

which is obtained by pE(f)=p°f. Clearly the fibre over p is the space of fibre
preserving maps: E—>E, which we denote by ξξ. Then we have a part of the
exact sequence associated with the fibring :

(1.1) π1(EE

> I*) — ^ πάS"*, p) -+ πo(ξξ, 1E) —> *o(EE, lE) — > πo(SnE, p).
Pi

Here we note that ξξ, EE are Hopf spaces with the multiplication defined
by the composite of maps and πo(ξξ, 1E), π{EE, lE) are semi-groups and appropriate
arrows are homomorphic.

Since X(ξ) is the group consisting of invertible elements of πo(ξξ, lE) the
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sequence (1.1) is transformed into the exact sequence,

(1.2) π1(EE, lE) — > πάS71*, p) — > X(ζ) — > ε(E) — > πo(SnE, p),

pξ d H pi
where ε(E) denotes the group of homotopy classes of self-homotopy equivalences
of E. For, it is sufficient for exactness to show (pξ)~1(p)=H(X(ξ)). Let / be
an element of ε{E) such that p°f=p and g be the inverse of /, i.e. g°f~lE~
fog. Since it holds that p~p°(fog)~(pof)og~p°g we may consider that / and
g are both contained in X(ξ). Then fog is contained in d-image, i.e. f°g—d{σ)
for some σ^π^S^, p) and this shows that / has a right inveres god{σ~ι).
Analogousely / has a left inverse, hence / is an invertible element of πo(ξξ, lE),
i.e. [/]€=/#(.£(£)).

Thus our purpose is to clarify the image of the homomorphism

p%\ π1(EB,ls)—+π1(SnE,p)

and the kernel of the morphism

pξ:€(E)—»πo(SnB,p).

However, for computing these things, it is seemed to need some additional con-
ditions. We assume that ξ has a cross-section cn and n, q^3, so that E has a
CW-decomposition ([3]):

E=K\Jen+q, K
a

where a=J(η)+[.cn, cq2 for η&πn-ι(SO(q)) with

2. Barcus-Barratt operations.

We consider two fibrings

where rτ denotes the restriction map and Fλ=r~{\p\K), F2=
:r^1(zκ) i.e.

F^lg'.E—>Sn gU)=*, g\K=p\K},

F2={f:E-+E f(*)=*,f\K=iκ}.

Then we have two boundary homomorphisms:

and
o , pK) — > πo(Flf p) = πn+q(Sn).



FIBRE HOMOTOPY SELF-EQUIVALENCES 449

By Barcus-Barratt (page 62 of [1]) we may regard 3i and 92 as Barcus-
Barratt operations p*(a)p\κ and alR respectively.

Now, using the identification πiiXf1, u)~πn+ι{X) given by Barcus-Barratt
(page 59 of [1]) we obtain identifications:

(\x y

v

where xGτr ί+1(S3), y^πn+i(Sq), u<Ξπq+1(Sn) and i;eτrn + 1(Sn).
Then, from Theorem 4.1, 4.2, and 4.6 of [1], we obtain

LEMMA 2.2. α J Γ yU=xΣJ(η)+J(η)Σ»-1x+(--l)»+1ίy,cq]

V l ) n + q + 1 ί c n , u] .

If J{yj) is contained in ϋ'^image we have

xΣJ(η)=J{η)Σn~xx for all χ£Ξπq+1(S*)

from Hilton-Barratt formula, Hence Lemma 2.2 is restated as follows:

(2.3) dl\x y

Moreover, by using the identification:

we have

LEMMA 2.4. d^u, v)=uΣJ(η)+(-l)n+(ί+ι[_ιn, u~]

3. The image of pξ: πx(EE, lE)-*^(SnE, p).

First we note that the homomorphism:

pξ:π1(EE

9lE)—^π1(SnE

9p)

is equivalent to the homomorphism:

jsr) —>π 1 (S f , p)

because of 2-connectedness of E and Sn.
Now consider the diagram which is obtained from two fibrings as stated

in §2 :
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.+ϊ+i(")=*ιCfc. p\K)—>0

Po*
f, p)

f, p\K)
j 3,

o(F2, , ) f f » + β ( ) 9

P*

Thus, using lemma 2.2 and 2.3, it is easy to obtain isomorphisms:

u p\K)}/{pί(πi(El ίE)/πi(F2,

where A=(u, v)\u<Ξπn+q(Sn), v^πn+1(Sn) with uΣJ(v)+(-l)n+q+1ίcn, M ] = 0 } and
B = AίΛ{{u, v)\J(η)Σq~1v+(-l)n+q+1ty, ί β ]=0 for some

Then we have

LEMMA 3.1 // J{η) is contained in Σ2-ιmage we have

π^Sf, p)/poXπ1(EE

o, 1E))= {0} if JtyΣ^π

= Z 2 // otherwise.

4. The kernel of €(E)-*πo(SnE, p)=Image of

First consider the following diagram (the continuation of the preceeding one):

πn+q(S")Xπn+q(Sn)=π<>(F2, 1E) > πo(Fu p)=πn+t(Sn)

(4.1)
πo(Sf, p)

πq(S«) πq(Sn)l) IΓ2 \ζu

\ E « π % S n

o

κ , p \K) = πq(S")X JΓB(S») .

Let / : E^ E be a map such that p'f—p. From the commutativity of (4.1)
we obtain
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[a 0\
\ f q ( ) and βς=πn(Sn).

β l

Conversely we take an element of πo(E$, iκ) with a form \ o Λ for a

β(Ξπn(Sq), i.e. a map / : K=SqVSn—E defined by f\Sq^acq and /
Since it holds

/ is extendable over £ if and only if a[_β, <re]=0. Let / be an extension of /
in such a case. Since p°f\K=p°f=p\K the separation element d(pf,p)
(<=πn+q(Sn)) is defined and we have

d(pf, p) = d(pf, pf')+d(pf, p)=p*d{f, f')+d(pf, p)

for another extension of /, /'. Thus we obtain

LEMMA 4.2. There exists an exact sequence:

\ q ( ) , β n ( ) , [/, J [ 0 .
i8 J

Moreover, using the following identities obtained from the diagram (4.1):

\iu {πn+q(Sq) X πn+i(Sn)}

=t2Sπn+q(Sq)Xd1π1(Sf)p\K))

we can easily obtain

LEMMA 4.3. There exists an exact sequence.

0 — > C — > i*(πo(ξξ, lE)) — > D — > 0 ,

where C=i2Λ(πn+q(Sq)X(πq+1(Sn)Σj(η)+(-l)n+q+1lcn, πn+1(Sn)~])} and D denotes
the middle term in lemma 4.2.

5. The proof of Theorems.

We start from the diagram:
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, p)/pξ(πi(EE, 1,))

0 — > CΓ\ε{E) —> ε{E)Γ\ι*{πQ{ξξ, lE)) —> Dx — > 0,

where Z?i denotes the subgroup of D with a — I. On the other hand, the in-
tersection iλΓV*(7Γo(?^ IEΪ) is clearly contained in <£(£). Then from lemma 2.2
we have an isomorphism:

Now Theorem B follows from lemma 3.1 by using the diagram (5.1) and the
above isomorphism.

In the case J{η)Σq-ιπn+i{Sn)C-ϊπn+i{Sq), rβ], Theorem A can be analogously
obtained.

Finally we consider the case Kη)Σq-1πn+ί(Sn)(t[_πn+i(Sq)> cq~].
We show that a homomorphism φ:

G = πn+q(S*)/lπn+1(S*), cj —

can be defined, which makes the following diagram commute,

πo(ξ$, U) > *o(EE, 1E)

\ t
Then Theorem A follows from the diagram (5.1) and lemma 3.1.
Consider the following two fibrings which are obtained from the restriction

of fibrings in § 2:

where E1=(pE)~1(F1)=(r2)''1((pκ)~Kp\K)) and Γ denotes the space of cross-sec-
tions : Sn-*E. Then we have the diagram consisting of a part of a the homotopy
exact sequence of fibrings:
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sr
ί+1
(S«)Xπ

n+1
(S«)

where f# denotes the homomorphism induced by appropriate inclusions. Now we

can easily deduce following results from the diagram (5.2):

(1) p* is surjective o q* is surjective •=> 0 —» π-0(f
f, 1̂ ) —> π o(£Ί, IE) is exact.

(2) /(7)j«-iAn+1=af? .° l ί S i Γ ^ x

where ΛΛ+1 is the generator of πn+1(Sn).

(3)

(4)

Thus the homomorphism φ which we want is naturally defined by using
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