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FIBRE HOMOTOPY SELF-EQUIVALENCES

By SEIYA SASAO

Introduction.

Let & be a fibre space p: E—E which means that the projection p has the
COVERING HOMOTOPY PROPERTY for CW-complexes. Then a map f: E—~E
is a fibre preserving map if pof=p and a map f, is fibre homotopic to a map
fy if there exists a homotopy f;: E—E such that pof,=p for all & Now we
call a fibre preserving map f: E—E a fibre homotopy self-equivalence if there
is a fibre preserving map g: E—FE such that gof and f-g are both fibre homo-
topic to the identity 1z. Then it is clear that the set of fibre homotopy classes
of fibre homotopy self-equivalences forms a group under the multiplication defined
by the composite of maps, which we denote by .£(£). This group .£(£) has been
studied by several authors ([4], [5]) and also the purpose of this note is to in-
vestigate .£(&) for &, a sphere bundle over a sphere. By using Gottlieb’s theorem,
K. Tsukiyama showed in a preprint that there exists a split extension:

O_>7Tn+q(sq) — L) —Z,—>0

for &, a S%bundle over S™ (n+2=<q). As a generalization of this result we
prove

THEOREM A. Let &: S*—E—S"™ be a S%bundle over S™ (n,q>2) with a
cross-section, so that there exists pEx,-(SO(q)) with ix(n)=E&. If J() is contained
in XAmp4q-5(S772)) we have an exact sequence

0 —> T01o(S)/[72+1(S), tg] —> L(§) —> Z:4PF —> 0,

where PE denotes the kernel of the homomorphism defined by Whitehead product
[, tqd: wa(S) =T peq-1(SY) and % denotes the semi-direct product with a relation
b r=(—t)xb for t#leZ,.

Moreover, as a bi-product of the proof of Theorem A, we obtain

THEOREM B. If J(9)e 29 1,:1(S")CL7n+1(SY, ¢g], then fibre homotopy self-
equivalences f,, f1: E—E are fibre homotopic if and only if they are homotopic.
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COROLLARY. In the case n<2q—2, if J(§)eXUr,+1(S™)=0 we have the same
conclusion as Teeorem B.

For example, Let V, , be the Stiefel manifold O(n)/O(n—2) and let &, be
the fibring S*?—V, ,—S"» % Then the conditions of Theorem A are fulfiled if
n=0 mod4, n=8. Thus, from well-known results [h,-1, tz-:1#0 and [fi,-1h,,
tn-2]=0 for n=0 mod4, h,#0=7,(S™ ') we obtain an exact sequence (n=0 mod 4):

0 —> mo-s(S"7%) —> L(&n) —> Z, —> 0.

Analogously, in the cases of the complex and quaternion, there exist following
exact sequences:

00— 774n—4(52n_3)/[7'[271(52”—3); lon-s] —> J(ﬂn) —> Z,¢Pi —> 0
(n=0 mod4),
00— 77r8n-6<S"m-5) I -C(vn) —> Z2 —>0 (nEO mod 24) y

where u, is the fibring: S**~*-W, ,—S*" ! and v, is the fibring: S""°—X, ,—
S4n—1_

Here, we list up some notations which are used throughout this note.

XY : the space of continuous maps Y —X endowed with C—O topology.

X¥: the sub-space of XY consisting of a base point preserving maps.

wo(X, xo): the set of path-connected components of X with the distin-
guished point x,.

J: the J-homomorphism: z,(SO(n))—x,+,(S™).

2™: the n-fold suspension functor.

[a, f1: Whitehead product.

1. Preliminaries.

Let &: Sq—aEyS" be a S%bundle over S® with the characteristic class &<
T2-1(SO(g+1)) and we consider the fibring

pE: EE —» S

which is obtained by pZ(f)=p-f. Clearly the fibre over p is the space of fibre
preserving maps: E—E, which we denote by &. Then we have a part of the
exact sequence associated with the fibring:

A1) mlB% 1) — T(S™, p) —> ml€, 1) —> mol EF, 1) —> mo(S™, ).
* Ix
Here we note that &, E¥ are Hopf spaces with the multiplication defined
by the composite of maps and 7,(&%, 1g), z(EF, 15) are semi-groups and appropriate
arrows are homomorphic.
Since £(&) is the group consisting of invertible elements of m,(&%, 1) the



448 SEIYA SASAO
sequence (1.1) is transformed into the exact sequence,

(1.2) T(EE, 15) —> 1,(S™, p) —> L&) —> E(E) —> m,(S™, p),
% 0 ix ¥

where &(E) denotes the group of homotopy classes of self-homotopy equivalences
of E. For, it is sufficient for exactness to show (pE)~*(p)=ix(-L(£)). Let f be
an element of &(E) such that pof=p and g be the inverse of f, i.e. gef~lg~
feg. Since it holds that p~pe(feg)~(p-f)og~p-g we may consider that f and
g are both contained in .£(§). Then fog is contained in 0-image, i.e. fog=0(s)
for some oem,(S**, p) and this shows that f has a right inveres g°0(c™Y).
Analogousely f has a left inverse, hence f is an invertible element of m,(&%, 15),

Le [fleiy(LE).

Thus our purpose is to clarify the image of the homomorphism
pE: mi(EF, 1) —> my(S™, p)
and the kernel of the morphism
pE: €(E) —> 1o(S™, p).

However, for computing these things, it is seemed to need some additional con-
ditions. We assume that & has a cross-section ¢, and n, ¢=3, so that E has a
CW-decomposition ([3]):

E=K\e"*, K=52v5",
where a=J()+[ts, ¢o] for per,-(SO(g)) with 74(n)=E.

2. Barcus-Barratt operations.

We consider two fibrings
Vo

e

Fy

K
0

E
0

E
pEl pE
St

E

<—

nK
0

F

>

1
where 7, denotes the restriction map and Fi=r7p|K), Fo=r3(1g) i.e.
Fi={g: E—> S" gly)=*%, g|K=p|K},
F={f: E —E f(*)=%, f|K=ik}.

Then we have two boundary homomorphisms :

2.1) T(EX, ix) ~ 7o(Foy 1g)= wasg(E),
2
and
7(SEE, pI) > 7o(Fi, P)= Tsg(S™).

1
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By Barcus-Barratt (page 62 of [1]) we may regard 0, and 4, as Barcus-
Barratt operations psi(a),x and a,, respectively.

Now, using the identification z,(X§", u)=n,+:(X) given by Barcus-Barratt
(page 59 of [1]) we obtain identifications:

Xy
mAEE, ix)=m(EF, ) X m(ES", zn>=nq+l<E>><nn+l<E>:{[ ]}
u v
Qyp

TCO(F2y lE): 7rn+q(E): 7'L'n-(—q(Sq) X 7fn+q(Sn) ’

where x €7441(S9), ¥ Em141(SY), U ETG41(S™) and vVE T4 (S™).
Then, from Theorem 4.1, 4.2, and 4.6 of [1], we obtain

X
LEMMA 2.2. a”{([
u

y
]>=x2](7;)+j(77)2"“x+(——1)"“[y, tq]
v
+ 2 vFud J(n) (=1 ey, ul.
If J(y) is contained in X%*image we have

22 J)=Jp2"-1x  for all xEme (S

from Hilton-Barratt formula, Hence Lemma 2.2 is restated as follows:
x Y

(2.3) A =] 2=y, ¢ J+ud J() (=" ey, ul.
u v

Moreover, by using the identification :
Ti(SEY, p/K)=m (ST, p)Xmi(SF", Lsn)=mqs1(S™)+ T rsa(S™)

we have

LEMMA 2.4. Oy(u, V)=ul J(n)+(—=1)"* ¢, u]

3. The image of pZ: m,(EE, 15)—m,(S™%, p).
First we note that the homomorphism :
pE: mEF, 1p) —> mi(S™, p)
is equivalent to the homomorphism:
PE: my(EF, 1g) —> (ST, p)

because of 2-connectedness of £ and S™.
Now consider the diagram which is obtained from two fibrings as stated

in §2:
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7.(Fs, IE):ﬂ'n+q+1(E)—‘—p——‘) 71'n+q+1(sn):7fl(Fh le) — 0
k
.(E%, 1p) - = 1,(S%%, p)
ro. Pox \l’ e
m(Ef, ix) (St p1K)
V 2 e
7o(F2y 15)=mr4o(E) > Tn+q(S")=mo(Fy, pIK)—=0
*

Thus, using lemma 2.2 and 2.3, it is easy to obtain isomorphisms:
7S, p)/pE(x(EF, 18)
= {mi(SE", p)/ms(Fy, pIEOY (pE(x i ES, 1p)/i(Fe, 1))
=07 (p | K)/p§0;'(1p))= A/ B,

where A=(u, V)| U E Tp+g(S™), VET4:(S™) with ul J()+(—=1)"*"*[¢,, u]=0} and
B=AN{(u, v)| J(n) X w+(—=1)"*"*[y, ¢,]=0 for some y&mw,:+:(S}.
Then we have

LEMMA 3.1 If J(3) s contained in X*wmage we have

7:(STE, )/ polmi(EE, 1p)2 {0} of Jp) 20 7 psa(SHCImnsa(SY, 2],

=7, if otherwise.

4. The kernel of 8(E)—>7r0(S"E, p)=Image of L(§)—&(E).
First consider the following diagram (the continuation of the preceeding one):
T E¥, ix) —— m(ST", p|K)
o 2
7'L'n+q(5q)>< 7r,,+q(5"):rc0(F2, ]-E) EO(FI: p):”n+q(Sn)
l i1,

4.1) L
7o(&8, 1g) ——— o EE, 15) ——— wo(SET, p)

bx lr r

ch(Sq) ch(Sn) 2% Kla
=no(EF, ig) ——— a%(St", plK)=my(S") X 74(S™).
Ta(SH7T(S™)

Let f: E—E be a map such that pof=p. From the commutativity of (4.1)
we obtain
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a O
ro(f)= , a€m(S?Y) and Ber,u(S").
ﬁ lsn

0
Conversely we take an element of 7, (E¥, ix) with a form [Z 1 ] for @ e (S9),
sn

BEr,(SY, i.e. a map f: K=S7/S"—E defined by f|S?=a¢,and f|SP=c,-+¢,0f.
Since it holds

Fel@)=aa+alB, tg]

7 is extendable over E if and only if a[f, ¢,]J=0. Let f be an extension of 7
in such a case. Since pof|K=p-f=p|K the separation element d(pf, p)
(E7n+g(S™) is defined and we have

d(pf, p)=dpf, pf)+dpf", P)=p+d(f, [)+d(f, p)

for another extension of £, /. Thus we obtain

LEMMA 4.2. There exists an exact sequence:

0
}aen‘q(Sq), Bema(S9, [8, :q]=0} —>0.

ix(n(&*, 1p) —> {[a
B lsn
Moreover, using the following identities obtained from the diagram (4.1):
ix(mo(E%, 1) NViau AT n4o(SY X T 41(S™)}
=i, (T +4(SDX0y7,(SEE, p|K))
=i (Tnao SHX U J()+(=1)" 4 [, u])), uEmg4s(S™),
we can easily obtain
LEMMA 4.3. There exists an exact sequence.
0 —> C —>ix(mo(&%, 1p)) —> D —> 0,
where C=ip,{(T+o(SYX (Tgs1(SME J(9)+(—1)"* " [tn, 721:(SMD} and D denotes
the middle term in lemma 4.2.
5. The proof of Theorems.

We start from the diagram:
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0

l

7:(S™E, p)/ (= (EF, 1p))

l

L&)

|

0 —> CNE(E) —> E(E)N1x(mo(&, 1p) —> Dy —> 0,

where D, denotes the subgroup of D with a=1. On the other hand, the in-
tersection D,Mig(mo(&¢, 15)) is clearly contained in &(E). Then from lemma 2.2
we have an isomorphism :

DiNE(E)= 7 4o(SO/{ T () 39 7 41(S™)+H(— 1) [7041(SY), 1} -

Now Theorem B follows from lemma 3.1 by using the diagram (5.1) and the
above isomorphism.

In the case J(9)24 ' 7ne1(SMC[7n+1(SY, ¢], Theorem A can be analogously
obtained.

Finally we consider the case J()29 'z +1(S™) & [7741(SD, ¢

We show that a homomorphism ¢:

G:ﬂn+q(sq)/[7fn+l(sq)y !q] - 71'0(55; 1g)

can be defined, which makes the following diagram commute,

7o(&*, 1x) 7o(E", 1g)
G TL-0<F2y ]-E) ’

Then Theorem A follows from the diagram (5.1) and lemma 3.1.
Consider the following two fibrings which are obtained from the restriction
of fibrings in §2:

F,
gt E, F=p,
q
S8 I's(1ggXtn)

where E;=(p%)"(F)=@,)"A(p%)"(p|K)) and I denotes the space of cross-sec-
tions: S®—E. Then we have the diagram consisting of a part of a the homotopy
exact sequence of fibrings:
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Tatgr1(E) === rr\(F;, 1) —;_> r(Ey, 1z)
N * ,LQ*
X Trege)(S™)=—= 71'1(131', ﬁ)
g+1(SY  wana(SON .
{[71':.,.1(3") 72',,.;.11(3")]} ] 71'1(EK: ix) 770(56: 1)
(23 0 \L i*
SXE, Lo X 1) ———> ([, 1) — m(El, 1g)
*

%
41(SYX 7 541(S™) wo(Fa, )]

ﬂ'n+q(sq) X 7Tn+q(Sn> ——"—>7?n+q(sn) ’

where 74 denotes the homomorphism induced by appropriate inclusions. Now we
can easily deduce following results from the diagram (5.2):

(1) px is surjective = gy is surjective = 0 — mo(&, 15) — mo(Ey, 1g) is exact.

(2 ](n)zq—lhn+1:a[g hoﬂ]&am(quqxﬂ LsaXtn) = 1x(J() X% hns1) #0,

where h,.; is the generator of m,.,(S").

@ CrarSD, =0y T ComSX T, 1ggx ) = i Crnn(S7), ) =0.

(@) guis(T1q(SD)=0 = 14(Tn4o(SD) (o, 1i)) -

Thus the homomorphism ¢ which we want is naturally defined by using
~(4).
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